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Abstract

In this paper we consider one aspect of the problem of
automatically constructing geometric models of articulated
objects from multiple range images. Automatic model con-
struction has been investigated for rigid objects, but the
techniques used do not extend easily to the articulated case.
The problem arises because of the need to register surface
measurements taken from different viewpoints into a com-
mon reference frame. Registration algorithms generally as-
sume that an object does not change shape from one view
to the next, but when automatically building a model of an
articulated object, it is necessary for the modes of articula-
tion to be present in the example data. To avoid this prob-
lem we propose that raw surface data of articulated objects
is first segmented into rigid subsets, corresponding to rigid
subcomponents of the object. This allows a model of each
subcomponent to be constructed using the conventional ap-
proaches and a final, articulated model to be constructed
by assembling each of the subcomponent models. We de-
scribe an algorithm developed to segment range data into
rigid subsets based on surface patch correspondences and
present some results for the planar patch case.

1 Introduction

The ability to automatically acquire geometric models
from example objects is useful in a growing number of ap-
plication areas. In the field of computer graphics, the need
for improvements in realism requires more complex mod-
els, but manual model construction is time-consuming and
difficult. In industrial settings it is useful to capture the
geometry of existing parts either for the purpose of inspec-
tion or to enable exact replicas to be manufactured auto-
matically. For reasons which will be clarified shortly, cur-
rent techniques are generally limited to constructing mod-
els of single rigid objects. In this paper we suggest how
these algorithms might be augmented to allow the automatic

construction of articulated objects, increasing the scope of
this technology. For clarity we define articulated objects as
those objects consisting of a number of rigid parts that are
connected by non-rigid joints [1].

The established approach for automatic model construc-
tion begins by taking surface measurements from a number
of viewpoints so that all of the object’s surface is captured.
Typically, this will be done with a range finder such as a
laser striper or stereo vision system. Either of two different
approaches can then be taken. In the first approach surface
primitives are fitted to the raw data in each of the views of
the object, and then the different views areregisteredby
aligning similar primitives [2]. The second approach re-
gisters the raw data initially, using local surface shape (see
for example [3, 4]) and then surface primitives are fitted
directly to the registered surface data [5]. The second ap-
proach is favoured because it makes maximum use of the
raw data when surface fitting and avoids the problem of hav-
ing to piece together possibly fragmented surface patches
from different viewpoints that are not perfectly aligned.

Whichever approach is taken, the registration process as-
sumes that the shape of the object does not change as the
surface data is acquired. If, however, we wish to automatic-
ally capture the geometry and kinematics of an articulated
object, then the object’s shape must change from example
to example. This means that current registration algorithms
cannot be used directly. Rather than developing new regis-
tration algorithms we propose here that the raw measure-
ment data is segmented intorigid subsetseach correspond-
ing to a rigid subcomponent of the object. This will en-
able models of each subcomponent to be constructed inde-
pendently using existing technology and a final, articulated
model to be formed by assembling each of the subcompon-
ents.

The algorithm we have developed processes a pair of
range images at a time and segments each of them intoN
sub-images, whereN is the number of independently mov-
ing, rigid subcomponents which are present in the data. This
processing is carried out in two distinct stages. In the first



stage, the rigid transformation that aligns most of the data in
the first image with corresponding data in the second is es-
timated. This is done by segmenting the range data into sur-
face patches and then finding the transformation that aligns
most of the patches in the first image with potential corres-
pondents in the second. In the second stage, the movement
of each surface patch between the two images is compared
to the estimated transformation and labelled as belonging to
the current rigid subcomponent if it is in agreement. These
two stages are then iterated until no surface data remains
unlabelled and the required segmentation is obtained.

We have already published a rigid part segmentation al-
gorithm which utilises point-to-point as opposed to surface
patch-to-surface patch correspondences between two range
images [6, 7]. In this approach the transformation that
aligns object subcomponents are estimated by aligning rigid
coordinate frames defined at corresponding surface points.
This approach is, however, limited to non-developable sur-
faces on which an invariant, rigid coordinate frame can be
uniquely defined. This limitation has motivated the devel-
opment of the surface patch based algorithm presented here
but it is our intention to eventually combine the two ap-
proaches to produce a general purpose, rigid subcomponent
segmentation algorithm.

In the next section a detailed description of our rigid part
segmentation algorithm is presented. This is followed by a
demonstration of the algorithm applied to some real range
image data. Finally we summarise the contribution made by
this work and briefly discuss the aims of ongoing and future
work.

2 The Rigid Part Segmentation Algorithm

Given a pair of range images of an articulated object,Ra
andRb, the goal is to segment the range data into subim-
ages where each subimage represents a rigid subset of the
data. We present an overview of our proposed segmentation
algorithm here, followed by a more detailed description of
the most important stages.

1. Segment the range data into surface patches

Each of the range images,Ra andRb, is segmented
into a set of surface patches,fSag andfSbg respect-
ively. Currently, only planar patches are used by later
stages of the algorithm.

2. For each surface patch infSag find corresponding
patches infSbg
Geometric constraints may be used to form corres-
pondences between surfaces patches. In the work
presented here, however, we consider each planar
patch infSbg to be a potential correspondence with
each planar patch infSag.

3. Determine constraints on the rigid transforma-
tions that align object subcomponents from surface
patch correspondences

Each correct surface patch correspondence provides
a constraint on the rigid transformation that aligns
the object subcomponent that the surfaces belong to.
Incorrect surface correspondences will provide erro-
neous constraints but these will be rejected later.

4. Vote for each rigid transformation constraint in a
discretized parameter space

A Hough transform is used to accumulate evidence for
the transformations that align each of the object sub-
components. Surface patches belonging to the same
subcomponent will provide constraints which intersect
at the correct alignment transformation parameters,
producing a peak in the Hough space. To account for
the significance of larger patches, votes are weighted
by the area of the smallest patch in each pair. The
6-parameter rigid, transformation space is partitioned
into a 3-parameter rotation space and a 3-parameter
translations space for efficiency.

5. Surface patches are labelled, based on their contri-
bution to the highest peak in the Hough transform

The highest peak in the Hough transform is isolated
and then the transformation constraints contributing to
the peak are identified. The surface patches associ-
ated with those constraints are then labelled as either
definitely, or in some special cases (see Section 2.4)
possibly, belonging to the current subcomponent.

6. Steps 2 through to 5 are repeated until no more
peaks can be found

The Hough transform is reconstructed using the sur-
faces withoutdefinitelabels to find the next most sig-
nificant subcomponent. This is repeated until no more
peaks are found in the Hough transform.

7. Surface patches labelled aspossibly belonging to a
subcomponent are confirmed

A verification stage is used to confirm whether surface
patches labelled aspossiblybelonging to a particular
subcomponent do in fact belong to that part. This is
done by aligning each of these surfaces with the cor-
responding range image and looking for good agree-
ment.

2.1 Surface Patch Segmentation

We have used a surface patch segmentation algorithm
which segments the surface data into quadric patches using
the local surface curvature. The full details of this algorithm



can be found in the literature [8, 9, 10] but can be summar-
ised as follows:

1. The range data is smoothed using edge preserving, dif-
fusion smoothing.

2. The mean and Gaussian curvatures are calculated at
each data point.

3. Seed surface patches are formed by grouping neigh-
bouring pixels whose mean and Gaussian curvature
have the same sign.

4. Seed patches are either eliminated or cleaned up using
a morphological operator.

5. Quadric surfaces are fitted to the seed patches and
pixels are regrouped according to the surface patch
they are closest to. This is repeated until a stable seg-
mentation is obtained.

In the future we intend to use generic quadric patches to
segment range data into rigid subsets but we currently only
use planar patches.

2.2 Calculating the Transformation Constraints

Each pair of corresponding surface patches provides a
constraint,Ti, on the parameters of a rigid transformation.
For planar surface patches the constraint fixes 3 of the 6
degrees of freedom and can be defined as:Ti(�; du; dv) = f(n̂m; n̂n; dm; dn;�; du; dv) (1)

wheren̂m andn̂n are the surface normals of the two patches
and dm and dn are the corresponding perpendicular dis-
tances from the surfaces to the origin. The details of the
functionf are presented in Appendix A. The parameters�,du anddv represent the remaining degrees of freedom.

2.3 RepresentingNoisy Constraints

In the absence of measurement error, each of the con-
straints on the transformation of a particular subcompon-
ent will intersect at the appropriate point in the parameter
space. In practice, measurement errors are inevitable and
unless these are accounted for in an appropriate manner, the
robustness of the segmentation algorithm will suffer.

To ensure robust performance, measurement errors are
propagated through the algorithm to determine the error on
each of the constraints. If the errors on all of the plane
parameters are represented by the covariance matrix�plane
(these errors are themselves calculated by error propaga-
tion) then the error on each constraintTi can be approxim-
ated as:

�i(�; du; dv) = rfT�planerf (2)

whererf is the matrix of partial derivatives off with re-
spect to the plane parameters, commonly known as the Jac-
obian matrix.

Having established the error on each constraint we can
define a probability density function,Pi(T;�; du; dv), to
integrate into the Hough transform instead of making a
single vote. In fact, it is the logarithm ofPi which is in-
tegrated into the Hough transform so as to turn a product of
probabilities into a sum of independent terms. For conveni-
ence we make the simplifying assumption that the errors are
Gaussian so that:Pi(T;�; du; dv) / e��2 (3)

where: �2 = [Ti �T]T�i[Ti �T] (4)

This provides a probability for each cell in the Hough space,
defined byT, which is a function of the parameters�, du
anddv. To evaluate this probability we choose parameter
values which maximisePi. The result is that each con-
straint is nowsmearedin the parameter space according
to its sensitivity to measurement errors. It is worth noting
the relationship between the constraint error and the size of
the planar patches used to derive the constraint. For small
patches the error on each of the plane parameters is relat-
ively large which results in a moresmearedconstraint entry
in the Hough transform. For large patches the constraint
entry becomes much sharper as the constraint error is small.

2.4 Surface Patch Labelling

The highest peak in the Hough transform space provides
an estimate,Uj , of the transformation that aligns most of
the surface data between the range images. Each of the con-
straints,Ti, is considered to have contributed to the peak
under the condition that:�[Uj �Ti]T�i[Uj �Ti]� 12 � 3:0 (5)

In other words, the constraint is within 3 standard devi-
ations of the peak given the estimated error. Surface patches
are then labelled as eitherpossiblyor definitelybelonging to
the current subcomponent if they are associated with any of
the constraints contributing to the peak. Thepossiblylabel
is used if the surface patch is perpendicular to the axis of
rotation. This is a degenerate case and can only be resolved
later by verification.



3 Experiments

Rigid part segmentation results are presented in this sec-
tion for 2 sets of range data acquired using a laser striper.
For both experiments the same algorithm parameters have
been used. These are detailed in Table 1.

3.1 Experiment 1

Figures 1(a) and (b) present a pair of range images each
of which contains 2 rigid subcomponents. The subcompon-
ents are simple metallic blocks with planar surfaces. Fig-
ure 1(a) depicts the components in their original position
and Figure 1(b) depicts the components after they have un-
dergone a relative transformation. The dimensions of these
range images are 165x182 pixels and 152x175 pixels re-
spectively.

(a) (b)

(c)

(e)

(d)

(f)

Figure 1. The range images used in experi-
ment 1 and the segmentation results

The first pass of the rigid part segmentation algorithm
took 213 seconds on a 200MHz Ultra Sparc for this data set.
Figure 2 presents details of the rotation Hough transform.
The lower of the 2 charts on the left presents the heights of
each of the peaks detected in the rotation space in order of
importance. The upper of these charts presents the positions
in the rotation parameter space of the largest two peaks. The
segmentation of the range data based on the largest of these
peaks is presented in Figures 1(c) and (d).
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Figure 2. Details of the rotation hough trans-
form constructed for the range data in Fig-
ure 1. The graphs on the left show the posi-
tion of the first two peaks (top) and the height
of all of the peaks found in order of signific-
ance (bottom) after the first pass of the al-
gorithm. The graphs on the right show the
peaks details after the second pass.

Having labelled patches belonging to the first rigid sub-
component the segmentation algorithm was iterated again,
this time taking 74 seconds. The details of the rotation
Hough transform peak for this pass are also presented in
Figure 2. The height of this peak is now significantly smal-
ler than in the first pass as much of the spurious Hough
transform voting has been removed. The position of this
peak has also moved, and is likely to give a better estimate
of the second alignment transformation. The segmentation
of the range data based on the largest of the new peaks is
presented in Figures 1(e) and (f). No surface patches are



left at this stage so the segmentation is terminated.

3.2 Experiment 2

Figures 3(a) and (b) presents a pair of range images
each of which contains 2 rigid subcomponents. Figure 3(a)
depicts the components in their original position and Fig-
ure 3(b) depicts the components after they have undergone
a relative transformation. The dimensions of these range
images are 198x114 pixels and 196x152 pixels respectively.

(c) (d)

(e) (f)

(a) (b)

Figure 3. The range images used in experi-
ment 2 and the segmentation results

The first pass of the rigid part segmentation algorithm
took 242 seconds on a 200MHz Ultra Sparc for this data
set. The segmentation of the range data based on the largest
of these peaks is presented in Figures 3(c) and (e). Hav-
ing removed the first rigid subcomponent the segmentation
algorithm was iterated again, this time taking 74 seconds.
The segmentation of the range data based on the largest of

Parameter No. Bins Full Range

Rotation H.T. 40x40x40 2�x2�x2�
Translation H.T. 20x20x20 100mmx100mmx100mm

Table 1. Algorithm parameters used in the two
experiments

the new peaks is presented in Figure 3(d) and (f). One small
surface patch is left at this stage so the segmentation is con-
tinued but no peaks are found and the process terminates.

4 Conclusions and Future Work

As a first step in the process of automatically build-
ing geometric models of articulated objects from multiple
range images, we have developed an algorithm that seg-
ments range images into rigid subsets. Evidence for the
presence of rigid object subcomponents can be determined
by measuring the transformations that align surface points
and patches from one range image to another. Here only our
new work on surface patches is reported but we have previ-
ously reported successful segmentation using point corres-
pondences. Surface patches belonging to the same subcom-
ponent can be identified as a set of surface pairings which
undergo a similar transformation. The algorithm has been
tested on real range data and shown to work effectively.

One advantage of this approach is that, in addition to per-
forming the required rigid part segmentation, an estimate of
the transformation that aligns each subcomponent between
images is determined. This will provide a valuable initial
estimate for performing accurate surface registration later
on.

In this paper, the algorithm has only been tested on
planar surface patches, but the approach can be extended to
many different classes of surface. We are currently exper-
imenting with cylindrical surfaces and intend to extend the
algorithm to other degenerate surfaces, for example spheres.
We have already published results on a rigid part segment-
ation algorithm which works on non-developable surfaces
and intend to integrate these algorithms together to provide
a general purpose tool.
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A The Planar Patch Transformation Con-
straint

The alignment of a pair of planar patches,Sam andSbn,
provides 3 constraints on the 6 parameter rigid transforma-
tion,Ti, where:Ti(�; du; dv) = f(n̂m; n̂n; dm; dn;�; du; dv) (6)

In homogeneous coordinates this can be expressed as the
product of a rotation,ri, and a translation,ti.Ti(�; du; dv) = ti(du; dv)ri(�) (7)

The rotation constraint is the set of rotations that align the
surface patch normals,̂nm with n̂n. This is determined by
finding an arbitrary rotation that alignŝnm with n̂n and then
rotating around̂nn. We can align̂nm with n̂n by rotating
by � radians about the bisector,̂nb, to n̂m and n̂n. This
gives the value of the constraint at� = 0.ri(0) = rot(n̂b; �) (8)

where rot(n̂; �) describes the rotation around an axis
defined byn̂ by � radians. A good reference for this can
be found in [11]. The constraint is then found by rotating
aroundn̂n. ri(�) = rot(n̂n; �)rot(n̂b; �) (9)

The translation that aligns a pair of planes is only con-
strained in the direction of the plane normals. Note that
the first plane has now been rotated so that it is parallel with
the second. ti(0; 0) = n̂n(dn � dm) (10)

We now define a pair of orthogonal vectorsû andv̂, which
are mutually orthogonal to the plane normalsn̂n, such that:û� v̂ = n̂n (11)

The translation constraint is then given by:ti(du; dv) = n̂n(dn � dm) + ûdu+ v̂dv (12)
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