
Integrating iconic and structured matchingR. B. Fisher and A. MacKirdyDepartment of Arti�cial Intelligence, Edinburgh University5 Forrest Hill, Edinburgh EH1 2QL, Scotland, UKrbf@dai.ed.ac.ukhttp://www.dai.ed.ac.uk/daidb/staff/Robert Fisher.htmlAbstract. Several investigations [11, 16, 19{21] have recently been un-dertaken into object recognition based on matching image intensity neigh-borhoods rather than geometric matching of features extracted from theimages. These projects have used small subwindows or complete im-age regions and matching has been based on the similarity of extracteddescriptors to previously stored descriptors. One characteristic commonto these approaches is the representation of objects as a whole, ratherthan as a structured ensemble. This paper describes an extension to theseapproaches wherein a set of related features recognized at an earlier iter-ation also contribute to the complete object recognition. The paper de-scribes an iconic, or image-based, matching approach that incorporatesan element of geometric matching and shows that use of the subfeaturesimproves matching e�ciency, position accuracy and completeness.1 IntroductionSymbolic matching algorithms have been popular and well-explored (e.g. [9]).They depend for their success on a combinatorial search process to establishfeature correspondence and thus have an \all-or-nothing" behavior. To improvereliability and e�ciency the use of a subcomponent hierarchy in matching al-gorithms has also been common in the symbolic domain, for both machine vision(e.g. [17, 4, 6, 7]) and biological vision (e.g. [13, 3]). In contrast, image templatematching has been used in restricted domains for many years (e.g. [1], pg 65).The template matching approach has problems with rotation and scale invari-ance, and has requires much image computation. With the use of the log-polarrepresentation [18, 22], the invariance problems can be overcome and the recentgreat increase in computational power of standard processors has reduced thecomputation time. As a consequence of these two factors, several investigations[11, 16, 19{21] have recently been undertaken into object recognition based onmatching images (or some non-symbolic representation of them) directly ratherthan geometric matching of symbolic features extracted from the images.We have been investigating [10, 11] the capabilities of iconic, or image-based,approaches to object recognition (described in some detail in Section 2) as haveother research groups. Rao and Ballard [16] used a number of �lters, derivativesof gaussians at several di�erent scales, to build an n-dimensional feature vec-tor. The feature vectors are input into a simple neural network which associates



each vector with one of a number of objects. Their system is able to distin-guish between a large number of objects under varying pose, by learning a setof poses. However, their system is unable to distinguish between objects withsimilar global frequency responses and the global �ltering approach does notrepresent the spatial distribution of features necessary for distinguishing subtleappearance di�erences. Schiele and Crowley [19] have matched 2D histograms ofpairs of image properties (mainly gradient-based) and achieved good matchingresults using a �2 metric, but their approach also ignores the global organiza-tion of the image features. Seibert and Waxman [20] used an ART network tomatch feature vectors extracted from log-polar processed images. Their featureswere interest points extracted from binary images of single isolated objects. 2Dimage-based recognition was linked into a 3D aspect and multiple competingidentity object recognition network. Siebert and Eising [21] used the log-polararchitecture with a di�erence-of gaussians receptive �eld and their matchingscheme used templates applied directly to the log-polar image. An alternativeapproach [2] uses log-log sampling in the fourier domain but it is not consideredhere as it confounds the structural information exploited in our approach.There has been much work on property-based image indexing from databases(e.g. [14]) but most of it has not used image geometry other than [8], which usesgraph-like models of human and animal limb relationships. Mundy et al [15]have compared an iconic and a projective invariant object recognition systemon a small database of simple parts and found that the iconic approach had ahigher false-positive rate and lower false-negative rates. In part this was due tothe iconic system not having a veri�cation stage. The computation rate was alsoa�ected as the model base grew. On the other hand, their invariant approachwas limited by the ability to model only simple shapes, but did cope better withillumination problems. One of the questions addressed in our research is how theassociated model evidence a�ects the false-positive rate.Another approach has been to represent families of similar objects by aweighted set of eigenvectors, with the recognition mechanism comparing the pro-jection weights of a sample image to the eigenvectors in a database (e.g. [24]).In this case, object geometry is implicit in the representation, so the techniqueinvestigated here is inappropriate. Tistarelli [23] investigated the combinationof the active space-variant sensor (as used here) with the eigenvector approach,and concluded that the accuracy of recognition can be much improved whilesimultaneously reducing the database size.This paper describes an iconic matching approach that incorporates a sim-pli�ed geometric model and shows that use of the subfeature matching promotesmatching e�ciency, position accuracy and correctness. More details can be foundin [12].The motivation for this research comes from the intuition that if I am lookingat a feature and have some moderate evidence that it is a given model (e.g. \itmight be an eye") and I have seen other nearby related features (e.g. another eyeand a nose in the correct relative orientation and placement) then this featureis more likely to be the hypothesized object. The accuracy will increased by the



response from the correct orientation and placement of the other features withrespect to the current feature. The better the predicted and actual associatedlabels match, the more accurate the current match is likely to be.2 Overview of the iconic recognition processWe have used a foveated (R; �) log-polar coordinate system [22] for retino-centriccoordinates, with 20 bands, each containing 48 sectors. The receptive �elds (i.e.the area of the (i; j) image from which they take input) of each pixel in the(R; �) representation increase (logarithmically by 1.2) as R grows larger in orderto cover the entire foveated area. The receptive �elds in the innermost bands taketheir input from only one or a few pixels, averaging the value. This gives highresolution around the foveation point. Receptive �elds in the outermost bandsaverage large numbers of pixels, giving lower resolution. Receptive �elds overlapby about 33% to avoid gaps, leading to some blurring. The polar representation isattractive because it maps rotation and scaling into translation, and this featureis used in the matching algorithm described below to deliver scale and rotationinvariance.The main representations are:1. The World - a large static (r; g; b) image (here 5122) within which the iconicmatcher saccades and extracts smaller (here 1282) foveated views.2. The Image Stack - Foveating the world image maps part of the raw (r; g; b)image to (R; �) space, to form the �rst part of the image stack.The feature extraction process extracts 42 log-polar images registered withthe current foveated image [10]. The images consist of 3 scales (extractedfrom the 12 , 1 and 2 size images) of 14 feature types: the red/green/blueintensity component images, two on- and o�-center-surround features, fourradial and orthogonal on- and o�- bars, four orientations of edges and anunoriented corner measure. Each receptive �eld in each of the feature planesgives a measure of the strength of the given property at the correspondingspatial image location. The feature images are extracted by applying a smallneighborhood operator at each location in the foveated image.3. The Model Base - a set of models that may be matched to the currentimage stack. The iconic portion of each model has the same format and con-tents as the image stack. Each feature plane has a weight associated withit, indicating how useful the feature is in identifying this object. The struc-tured portion of each model may have a list of associated models (e.g. aneye may link to a likely nearby nose position). This list has of the formf ( model type, relative position, relative orientation, relative scale, import-ance weight ) g. These links can also be used to form an iconic geometricmodel (described in Section 3). Models are created by a learning processusing pictures that are representative of the class. A model is normally re-gistered on a feature that will attract the attention system [11]. Models arelearned at three scales (50%, 100% and 200%) because not all features willbe visible at all scales.



4. The Interest Map - The interest map [11] is an image structure registeredwith the world. Its contents record a value representing the interestingness ofa given point in the scene. Interestingness values increase as center-surroundand corner image features are found and as models are identi�ed (as thesepredict locations of likely associated models). Interestingness values decreaseat parts of the image that have been explored. Details of the calculation ofthe interest map is given in [11].The scene is explored in a saccade-like process by selecting the currenthighest interest point as the next location to foveate.The matching process uses a modi�ed multi-variate cross-correlation func-tion: Vf = f( 42Xk=1 �kwk + w0) (1)where �k is the single channel match score (using the standard statistical cross-correlation between 2 feature images at each given rotation and scale o�set)and wk are weights which are learned by a perceptron learning algorithm. Theseweights re
ect the relative importance of the feature correlation scores in de-termining object identity. The bias w0 re
ects the a priori probability of databelonging to this class (defaults to 0). f(x) is the sigmoid function 1=(1 + e�x).The matching process compares the stack of 42 iconic feature images to entries ina model database. In order to achieve rotation and scale invariance, the log-polarimages are shifted in a convolution-like process. One shift direction is equivalentto a scale change, the other is equivalent to a rotation (well known propertiesof the log-polar transform). The shift process, for example, allows alignmentof a rotated model with a database entry, thus improving correspondence. Toachieve translation invariance, the matcher outer loop has a saccade-like processthat shifts foveation to the next highest point in the attention map. As modelsare created by foveation at high interest points, using these points to direct fo-veation increases the chances of aligning a model image with the correspondingimage in a test scene. Thus, the highest model score (greater than a \recog-nition threshold") is the recognized model, the current saccade position is theobject's position and the rotation and scale at which the best match occurs isthe estimated model orientation and size.While this is an unusual approach to object recognition, its advantages are:the primal-sketch-like features provide an element of illumination invariance, thecorrelation matching allows a graceful degradation of correspondence and thusan element of generalization and the log-polar representation allows rotationand scale invariance. Its disadvantages include: an unconventional, idiosyncraticand generally unexplored architecture, moderate computation time per foveationposition (a second per saccade and model), and somewhat heuristic feature ex-traction processes.The architecture does allow exploration of the questions addressed in thispaper: is it possible to integrate geometric models within an iconic



image matching paradigm? If so, does it provide any bene�t in termsof speed, spatial accuracy or recognition completeness?3 Integrating substructures into matchingTo extend the architecture summarized in Section 2, �ve data structures orprocesses needed to be developed:1. Structured model representation,2. Subcomponent evidence recording,3. Subcomponent evidence location,4. Extended matching function, and5. Interest map update.These points are discussed in the following subsections.3.1 Structured model representationThe models need to be extended to include other models associated with thecurrent model. The associated models include subcomponents (such as an eyeas being a subcomponent of a face) as well as more generally associated objects(such as a keyboard and a monitor).Each augmented model becomes:model type42 feature (R; �) feature planes42 feature evidence combination weights !k plus !0a set of N associated models:A = f ai g = f ( associated model typei,relative position ti, relative orientation  i and scale �i,relative importance 
i ) gEach related model is normally also a proper full model, containing its own42 feature planes, as well as its own associated models, which may or may notrefer back to the initial model.3.2 Subcomponent evidence recordingThe Stable Feature Frame (SFF) [5] represents the system's visual memory.It is registered on the world rather than the gaze location and increment-ally records a stable, non-retinocentric view of the world. It contains defo-veated (r; g; b) data obtained during the system's visual exploration, plus alist fsjg = f(Mj ; tj ;  j ; �j ; Vj)g of recognized image structures (i.e. model in-stances) Mj , their image locations tj , estimated orientation  j , estimated scale�j and matching scores Vj .



3.3 Subcomponent evidence locationWhen matching at the current foveation position tf , initially only the 42 featureplanes are involved. The matching algorithm computes a feature-based match attf with score Vf (using Eqn (1)) and an estimated model scale �f and rotation f . For each associated subcomponent i with relative position ti, relative orient-ation  i and relative scale �i, one can predict where in the scene the associatedmodels are likely to be found:tpi = tf + �fR( f )ti (2)their expected scale: �pi = �i�fand their expected orientation:  pi =  f +  iThe SFF can then be searched for model instances of the correct type thatare within a search window of the predicted position, and that have a scaleand orientation that are within a tolerance of the predicted position, scale andorientation.3.4 Extended match evaluation functionThe match evaluation score originally used only the match score Vf providedby correlating the 42 feature planes and combining their match scores (see Eqn(1)). With the associated model matching scores, the overall matching functionhas been extended to be: �Vf + (1� �)Vawhere Va is the associated model evidence and � = 0:7 (chosen arbitrarily).The associated model evidence Va is given by:Va = Xai2A 
i maxsj2SFF f h(pred(ai); sj) gwhere pred(x) is the predicted properties of the observed model, as given by theformulas in Section 3.3, 
i is the relative importance of each associated model,ai is an associated model and sj is a previously found model instance recordedin the stable feature frame (SFF). Thus, the more associated models that aresuccessfully found, the larger is the combined evidence score Va.The associated model goodness evaluation h() is given by:h((:::; tpi; :::); (:::; tj ; :::)) =Mje��d(tpi;tj)where Mj is the associated model's match evaluation score, d() is a positiondissimilarity metric and � is a scaling factor.



The position dissimilarity function d() is evaluated by:d(tpi; tj) = jj tpi � tj jjjj 12 (tpi + tj)� tf jjwhich has a small value if the distance between the predicted tpi and observedti model positions is small relative to the distance of the matched models fromthe foveation point tf . This relative distance is important because the accuracyof position location declines as models are located distant from the foveationpoint (in part due to the averaging e�ects of the log-polar representation). Anorientation and scale dissimilarity metric could also be incorporated into h().3.5 Interest map updateThe original interest map was updated by computing an interest function ateach of the 3 scales on the 14 features. Activity from high-interest features wascombined with activity from opponent color features and then defoveated intothe existing interest map. Details of the interest map calculation are given in[11].If a model is successfully recognized, this means that there may be othernearby associated models. Section 3.3 discussed how the position of these asso-ciated models was predicted and how the previously recognized instances of themodels were located. However, not all of the associated models may have beenfound so far. Therefore, it makes sense to look for these other models in the pre-dicted locations (tpi) that had no successful match. The appropriate mechanismfor causing this search is to increase the level of activation in the interest mapat the predicted locations. The uncertainty in match position and scale grows asthe predicted position becomes more distant from the foveation point. Therefore,the interest map is updated according to this function:Imap(x)+ = �e���(x)where x are points near the predicted position tpi, tf is the foveation point,� = 250, � = 100 and �(x) = jj tpi � x jj2jj tpi � tf jj2The interest map is updated only if no associated model has been previouslyfound at the predicted point tpi. Determining whether a model has been foundthere uses the mechanism discussed in Section 3.4.4 ExperimentsThe claim of the paper is that use of the subcomponent evidence improves thespeed, positional accuracy and completeness of recognition. We demonstrate thisby running the iconic recognition system with and without the subcomponent



evidence process enabled. The recognition system is iconic, so only objects trans-formed by translation, scaling and rotation about the optical axis are appropri-ate. The experiments used a set of images containing frontal views of faces as theexperimental scenes, with eyes, nose and mouths as the associated models. Faceshave standard substructure and face images are commonly obtainable. Note, weare making no claims about this system as a face recognizer, or identi�er system.The model database contained (for these comparison experiments) 4 models:eye, nose, mouth and full face. When the subcomponent mechanism was notused, the interest map was not updated with the predicted associated modelpositions and the SFF was not searched for associated model matches. All othercomponents of the system were identical including the model base. The time persaccade was virtually identical, with or without the subcomponent process.All experiments started with a foveation at the center of the image (whichwas always on the face). The stopping criteria were when either all features werefound, or the system had completed 20 saccades.Table 2 summarizes the measurements taken from the experiments withoutand with subcomponent evidence, using 7 test images. Table 1 (left) describes thecontents of the �ve feature columns of Table 2, and Table 1 (right) describes thecontents of the rightmost summary column of the data tables. Italicized entriesin Table 2 denote incorrect recognitions. The feature column boxes record onwhich saccade the feature was found, how many pixels error there were betweenthe estimated feature position and what we thought was the correct registrationpoint (correct matches only), the match score for the correct recognition andthe number of false recognitions of that feature. (As eyes were indistinguishable,false recognitions of eyes are listed only for the left eye.) The rightmost columnlists the number of saccades needed until the last feature was found, the totalnumber of correct features found, the average position error in pixels of thecorrectly found features, and the total number of mismatched features.The results for image c6 need a special explanation: in this case the initialfoveation point was very close to the registration point for the face model, sothe face was immediately recognized. This results in a large inhibition region(to prevent re-saccading back to already recognized features) suppressing therecognition of other nearby features. Consequently, it was hard to recognize anyother nearby features. This is why the right eye and nose were never found andwhy it took a long time to saccade to the mouth.With regard to the three qualities claimed, the evidence shows that:speed - in all images except c6 (which searched a long time to �nd the 3rd modelat the edge of the inhibition region), the number of saccades to recognize allfeatures was less in the subcomponent evidence case.position - For the 17 features recognized by both systems, the average subcom-ponent case position error was smaller (13.5 versus 16.7 pixels).completeness - more features were correctly found (30 versus 17 out of 35possible), and fewer incorrect features were found (12 versus 17).The results on other images (results not shown here) have slight variations, butthe same general properties still hold. Thus, we claim that the use of subcom-



ponent evidence increases the speed, positional accuracy and completeness ofrecognition.A side e�ect of the subcomponent evidence mechanism is that recognitionscores of the correctly found features are often reduced. This arises because therecognition score now requires associated model evidence in order to obtain topscores. As initial feature recognitions will not have many previously found asso-ciated features, their recognition scores will be lower. Also, features recognizedwith inaccurate positions reduce the match scores in proportion to the positionerror.Figure 1 shows the saccade path on the fce5 image (left) without and (right)with subcomponent evidence. The search is clearly much more focussed withsubcomponent evidence.Saccade found Match scoreO�set error False instances Max. saccades Total correct features foundAverage o�set Total mismatchesTable 1. Key to the entries in Table 2.

Fig. 1. Saccades on fce5 without (left) and with (right) use of subcomponent evidence.



a) Image left eye right eye nose mouth face Summaryc1 4 1.00 1 1.00 5 1.00 3 1.00 7 1.00 7 216 2 1 1 22 0 19 4c3 1 1.00 7 1.00 8 1.00 4 1.00 3 1.00 8 414 1 12 1 11 0 26 0 15.8 2c4 10 1.00 2 1.00 1 1.00 8 1.00 12 0.99 12 316 1 19 13 0 1 1 16 3c5 10 1.00 12 1.00 1 1.00 12 32 1 28 0 0 10 1c6 5 1.00 2 0.86 1 0.98 5 332 0 34 1 27 0 31 1fce5 9 1.0 9 1.0 3 1.0 5 0.79 20 11 9 2 2 9 5bebie1 1 1.00 18 1.00 2 0.94 18 13 0 1 1 3 2b) Image left eye right eye nose mouth face Summaryc1 3 0.71 4 0.76 6 0.82 5 0.79 7 0.91 7 59 2 14 9 0 7 0 10 0 7.8 2c3 1 0.70 2 0.76 3 0.76 4 0.83 5 0.89 5 514 0 14 16 0 12 0 5 0 15.6 0c4 4 0.71 9 0.81 10 0.82 7 0.77 10 419 0 25 20 1 23 0 17.2 1c5 3 0.79 2 0.72 1 0.70 4 0.82 5 0.74 5 57 1 17 7 0 5 0 9 0 9 1c6 2 0.83 18 0.80 1 0.68 18 325 0 9 3 27 0 20.3 3fce5 13 0.83 12 0.76 14 0.81 11 0.75 15 0.92 15 54 2 5 4 2 6 2 4 4bebie1 1 0.70 6 0.80 5 0.75 9 0.86 9 43 1 10 22 0 8 0 8.6 1Table 2. Results of testing (a) without and (b) with full subcomponent evidence.



Fig. 2. Test images for reported experiment (c1, c3, c4, c5, c6, fce5, bebie1)5 DiscussionThe claim made earlier in the paper is that the use of the simpli�ed geomet-rical model and the associated subcomponent recognition processes improves therecognition process in several ways:{ recognition speed - in most cases, the number of saccades needed to re-cognize the features in the scene was reduced.{ position accuracy - the average error in the estimated position of thefeature was reduced.{ recognition correctness - more features were correctly found and fewerincorrect features were found.The experimental evidence supports this claim.Sometimes, when a model has been incorrectly recognized (e.g. recognizing asquint eye with the mouth model), then prediction can lead the process to searchseveral non-feature positions before returning to true feature positions. Addinga cumulative evidence process to the attention mechanism could help reduce thee�ect of this.At the moment, the models do not distinguish between left and right eyes.This reduces matching accuracy but means that a single recognized eye willpredict two possible positions for the second eye and the recognition will alsoexpect to �nd evidence from 2 positions. The multiple prediction is reasonable,but the model representation that we use should be extended to allow mutuallyexclusive alternatives.References1. DH Ballard and CM Brown. Computer Vision, Prentice-Hall, New Jersey, 1982.2. J Ben-Arie and Z Wang. Pictorial recognition using a�ne-invariant spectral sig-natures. Proc. Int Conf on Comp. Vis. and Pat. Rec., pp 35{39, San Jose, PuertoRico, 1997.3. I Biederman. Recognition-by-components: A theory of human image understand-ing. Psychological Review. vol 4, pp 115-147, 1987.4. RA Brooks. Symbolic reasoning among 3D models and 2-D images. Arti�cialIntelligence Journal, vol 17, pp 285{348, 1981.5. JA Feldman. Four frames su�ce: a provisional model of vision and space. Beha-vioral Brain Sciences Vol 8, pp 265-313, 1985.6. RB Fisher. From Surfaces to Objects: Computer Vision and Three DimensionalScene Analysis. John Wiley, UK, 1989.
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