
Image Processing Techniques for the Quanti�cationof Atherosclerotic ChangesK.V. Chandrinos1, M. Pilu2, R.B. Fisher3, and P.E. Trahanias11Institute of Computer Science, Foundation for Research and Technology { Hellas (FORTH),P.O. Box 1385, Heraklion, 711 10 Crete, Greece2Digital Media Department, Hewlett-Packard Laboratories, Bristol, UK3Department of Arti�cial Intelligence, University of Edinburgh, Scotlande-mail: kostel@ics.forth.gr, mp@hplb.hpl.hp.com, rbf@dai.ed.ac.uk, trahania@ics.forth.grAbstractThis paper describes the design and implementation of an o�-line, non-invasive, automated method for theexamination and follow up of the arteriosclerotic changes due to hypertension, with the help of digital imageprocessing of fundus images. This method would help in evaluating the e�cacy of various treatments on theregression and reversion of arteriosclerotic lesions. This method, in interaction with appropriate knowledgebases, can be used at the clinical practice for monitoring hypertensive patients on a frequent basis, henceit aims at minimum discomfort of the patient, by-passing even the regular uorescein injection for fundusimage enhancement. Our method is based on segmenting the vasculature by identifying the centerline ofeach vessel utilizing the idea that vessels present a ridge in cross-sectional intensity pro�les. Therefore,such a ridge can be detected along the vessels, as if there was three-dimensional information. Once thevasculature is segmented we present image-based measuring techniques for length to next bifurcation, vesselcalibre, wall thickness and we introduce a novel measure of tortuosity. All our measurements are automatic,with minimal assumptions, and they are calibrated by means of the papilla which is considered of standardsize. To achieve this, we implement a locating technique for �nding and measuring the papilla on fundusimages.1 IntroductionSince the eye is considered an outgrowth of the brain, it is reasonable to assume that changes inthe vasculature of the retina reect changes in blood microcirculation of the brain. Hypertension,even at an early stage, is known to manifest itself in the retina by attenuation changes, focalnarrowing and occlusion of retinal vessels. Automatic quanti�cation of these changes would be agreat step not only in the direction of diagnosis of hypertension, but also towards an optimisedmethod for monitoring the progress of subsequent treatment.The retinal vasculature can be considered a series of cylindrical pipes with respect to bloodcirculation [1]. The simplest hydrodynamic system is a long straight pipe with a steady owthrough it. In such a pipe the head of the pressure (�p) is directly proportional to the length(L), the ow (F), the viscosity of the uid (�) and inversely to the fourth power of the radius (R).This is the law of Poiseuille: �p = 8L�F�R4It is therefore clear why the calibre of the vessel is important in any attempt to recognisethe presence or progress of systemic hypertension. By injecting dye into retinal vessels and thenstudying the uorescein angiograms it has been observed [1] that there are two distinct types ofow in the vessels, laminar and turbulent. Laminar ow can be regarded as a series of concentriclaminae moving faster at the axis than away from it. When two pipes with such ow join, dyefrom one of them will not mix with the other and the two streams run side by side. As the rateof ow through the pipes increases there comes a point where mixing occurs and the regular linesof laminar ow are lost. The new type of ow is no longer governed by Poiseuille's law and istermed \turbulent". The breakdown of laminar ow depends upon the diameter of the tube (D),



the mean velocity of the ow (V), the density (�), and the viscosity (�) of the uid. The point oftransition from laminar to turbulent ow depends upon the value of the Reynolds number (Re),which is calculated as: Re = VD��It should be noted that the critical value of the Reynolds number for any uid (including blood)to become turbulent is about 2000 [1] and narrowing of the vessels alone has not been acceptedas a sole reason for turbulence. Eddy formation along the walls is also mentioned as a possibleculprit. However, it is established that transition to turbulence in retinal vessels always occursclose to bifurcations. This is why length to next bifurcation, as well as wall thickness are criticalin the study of hypertension induced retinopathy. For a recent method of tracking and studyingow transitions see [2].The �rst step in performing measurements of blood vessels is to extract the vessels from theirbackground. Estimating the location of blood vessel boundaries within images of a living vascularnetwork \has all the problems associated with image segmentation of biological data and stillremains a di�cult problem" [3]. This is largely because such images have low signal-to-noise ratioand limited spatial resolution. The algorithms proposed for tracing vessels and can be generallyclassi�ed in three categories:� model �tting, which identi�es edge points by optimising a function �tting (e.g. a Gaussian)on the intensity pro�le of a vessel.� optimal �ltering, where gray level thresholds are speci�ed based on the distribution of pixelproperties (e.g. adaptive thresholding)� sequential contour tracing, where active contour models (e.g. \snakes") are used to performa global region extractionF.P. Miles and A.V. Nuttall [3] studying blood ow in the cochlea of the ear, proposed analgorithm that estimates diameter and position of vessels by minimising the mismatch betweenthe measured intensity pro�le and a �nite set of intensity pro�le models, thus constructing amatched �lter estimator. A similar approach is adopted by Zhou et al in [4]. Here, the centerlineis tracked using an adaptive densitometric technique to improve computational performance inregions where the vessel is relatively straight. Their method calculates vessel calibre and walllocation (but not vessel wall thickness) as well as a curvature index de�ned as the ratio of the pixellength of the centerline over the distance between two points. This algorithm fails at arteriovenouscrossings and no information is given on its behaviour in bifurcations. Initial centerline point anddirection are expected to be given by the end user.Alternatively, T. McInerney and D.Terzopoulos [5] have presented a topologically adaptablesnakes model for angiogram segmentation. Their model bene�ts from reparametrization during thedeformation process. Still, it su�ers from the problem of initialisation common to snake models.The authors report that they had to perform the segmentation of the vascular network one branchat a time freezing the snake manually once it began to ow into a crossing branch. Similar userinput is anticipated in the recent work of Klein et al [6].2 Method OverviewAll absolute measurements undertaken in fundus images are prone to errors caused by a numberof reasons. Prominent among these reasons is the refraction of light from the lens of the eye aswell as the liquid that �lls the area between the cornea and the retina (vitreous humor). Othererror inducing factors are visual impairments of the eye, i.e whether the eye is emmetropic or not,as well as the sharpness of the image. Littmann has presented a method for calculating theseerrors in [7] but his method and formulae have been critisized in [8] and [9] and more recentlyby Sanchez in [10]. To minimise the impact of such errors during our study, we calibrate all ourmeasurements according to the size of the papilla which constitutes a reference feature for ourimages. In order to identify the papilla we used a disk �tting procedure that is explained in [11].The estimate of our method had less than 2% deviation from the true radius measured explicitly(Fig. 1a).



(a) (b)Figure 1. (a) Papilla location on a fundus image (b) Tracked centerlines superimposed on raw data.2.1 Ridge DetectionIdeally we would wish to obtain a pixel-wide line running through the centre of each vessel. Thiswould greatly facilitate tracking the vessels and simplify our measurements. However, a cross-sectional intensity pro�le of a typical vessel (Fig. 2a,c) indicates that vessels present two peaksseparated by a valley. This is due to the variation in intensity caused by the blood stream insidethe vessel. To overcome this a gaussian smoothing is introduced (Fig 2b,d). Once the imageis smoothed a directional map [11, 12] is being built by scanning the image and registering thedirection of the gradient at each point. The image is scanned again and ridge points are identi�edby suppressing pixels which do not satisfy the following criteria:� Directional consistency with their neighbouring pixels� Intensity supremacy over their neighbouring pixels in the direction orthogonal to the tenta-tive direction of the vessel� Contrast maximization in the direction orthogonal to the tentative direction of the vesselDuring the ridge point identi�cation, the image is binarized and after that it undergoes a�ltering process to clean some noise by removing individual pixels. Dilation and erosion cater forfragmented vessels. At this point thinning �lters prepare the image for tracking. The vessels arethen tracked and a list containing pixel co-ordinates is produced. A second �ltering of vesselsunder a certain length practically eliminates noise completely and concludes the segmentation.3 Measurements of Retinal StructuresIn this section we present a possible use of the vessel extraction derived earlier in order to makeestimates for sizes of retinal structures. We are mainly interested in the length of vessels until nextbifurcation, the width of the vessel lumen (hereafter referred to as \vessel calibre") and the widthof the wall of the vessel. We also introduce a measure of tortuosity for the vessels and presentrelevant calculations for our demonstration image.3.1 Vessel lengthWe estimate the length of a vessel by consulting the tracked �le and counting the pixels for eachindividual track. This approach is under the assumption that the length of the centerline is a good



(a) (b)
(c) (d)Figure 2. Vessel pro�les before (a),(c) and after smoothing (b),(d)
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o = lateral maxima       * = minimum difference from GaussianFigure 3. Application of the width estimation method on a vessel pro�leapproximation of the length of the vessel and that our tracker stops at bifurcations and gives anew track for every sub-vessel. We note that of medical interest in our case is not the total lengthof a vessel but the length until the next bifurcation. This allows for monitoring hypertensiveretinopathy which makes vessels bifurcate earlier than they do in normatensive persons [13]. Thelength of the tracks is reported as the tracks are met in the track �le. In Fig. 1b the tracks aresimply overlaid on the original greyscale image. Other con�gurations that would enhance thevisualisation of such results, such as colour-coding for short-bifurcating vessels, are possible.3.2 Estimation of Vessel Calibre and WallApart from the signi�cance of the vessel calibre changes that lead to (and depend on) pressureuctuations, it is apparent that the width of the wall is an interesting parameter in monitoringatherosclerotic changes that result from hypertension. Since at this point we have identi�ed thepixel co-ordinates of the points that constitute the centerline at each vessel, we can use these todetermine automatically the width.We do this by �rst sampling the original image in a direction orthogonal to the local directionof the vessel. We also sample the same points from the smoothed image. Sampling goes out a setnumber of pixels to the \left" and to the \right" of the scanned pixel in a direction orthogonalto the local direction of the vessel. The rationale for doing this is that the points less a�ected bythe Gaussian smoothing (in the region sampled) will be the ones that lie closer to the border of ablood vessel. Additionally we identify the two maxima to the left and to the right of each pointregistered in the tracked �le. These are taken to correspond to the beginning of the lumen of thevessel in either side. In Fig. 3 we can see the application of our technique on a cross-sectionalpro�le of a vessel that appears in our test image.



Once the co-ordinates of those pixels are stored, the width of the vessel at every point that hasbeen recorded by the tracker can be estimated using, for example, the Euclidean distance betweenthe two external pixels that have been calculated for this particular point. This way we can havea detailed width variation of each particular vessel along its length as well as an average width ofall the vessels tracked. Also, we can easily estimate the wall width as the distance between thepixel where the sample from the original has a maximum and the respective pixel that was foundto represent the wall on that side.3.3 TortuosityWe measure tortuosity by averaging the change of angle calculated at reasonable discrete stepsalong the length of the vessel. The change of angle is independent of scale and does not cancel outalong the length of the vessel. We therefore introduce as mean tortuosity index of a track, Tt, anumber derived in the following manner: for each pixel indicated in the track list, P, we considertwo more centerline pixels, P-s and P+s that lie a set number of pixels behind and ahead of P,respectively. We then form the vectors (P-s,P) and (P,P+s) and we normalise them by dividingeach with its norm. Lastly, we form their dot product and take the inverse cosine of this product.If we average these angles over the number of points used along the vessel track we get the meantortuosity index of the respective track. This index is not reported when very few points aresampled (e.g ten or less). In mathematical notation, the ideas expressed above can be formulatedas: Tt = 1(t length� 2 � step) � (t length�step)Xn=step arccos(UV (Pn�step; Pn) � UV (Pn; Pn+step))where t length stands for the length of the particular track and UV means unary vector. Withthis kind of tortuosity measure we can also have an idea of variation of tortuosity along a vessel.The format of the results we get is:Track # 1 Average tortuosity N/A Very few points tested 1........Track # 21 Average tortuosity 0.1513 # points tested 120.......Track # 30 Average tortuosity 0.3418 # points tested 92Track # 31 Average tortuosity N/A Very few points tested 7Track # 32 Average tortuosity 0.3522 # points tested 38........In Fig. 4 we have numbered the tracks to indicate correspondence with results and we have removedthe papilla region because vessels twist and bend a lot on the verge of coming out of the opticdisk, hence we would have accepted false indications of tortuosity as true. Tracks 30 and 32 havea markedly higher index of tortuosity which is reasonable given that their curves are more sharpthan, say, track 21.4 Future workThe work presented here describes a method for evaluating the relationship between retinal �ndingsand hypertension. In that sense, we feel that the ridge detection technique has proved ideal forour purposes and could well be used in an extension of this work into an integrated software toolin support of a physician's practise. The fact that this method can be applied on uorescein-free fundus images facilitates frequent re-examination and monitoring of hypertensive patients. Apossile future extension would be to work with coloured images. This way one could study standardarteriovenous indices such as artery to vein ratio, or arteriovenous crossings. A further step towardsthe integration of the presented techniques would be to form a grading scale on the severity ofhypertension based on weighted numerical results from our method. Ideally, classi�cation in thisscale will be by the software itself either through the use of classic AI techniques, e.g. through anExpert System, or through a Connectionist approach where a Neural Network could be trained to
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