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Emotion-triggered Learning in Autonomous Robot ControlSandra Clara Gadanho and John HallamDepartment of Arti�cial Intelligence, University of Edinburgh5, Forrest Hill, Edinburgh EH1 2QLfsandrag,johng@dai.ed.ac.ukAbstractThe fact that emotions are considered to be essential to human reasoning suggests thatthey might play an important role in autonomous robots as well. In particular, the decisionof when to interrupt on-going behaviour is often associated with emotions in natural systems.The question under examination here is whether this role of emotions can be useful for arobot which adapts to its environment.For this purpose, an emotion model was developed and integrated in a reinforcement-learning framework. Robot experiments were done to test an emotion-dependent mechanismfor the automatic detection of the relevant events of a learning task, against more traditionalapproaches. Experimental results are presented that con�rm that emotions can be useful inthis role, speci�cally by improving the e�ciency of the learning algorithm.IntroductionIn recent years, the importance of emotions and their assistance to cognition has been increas-ingly acknowledged. For example, Toda (1994) argues that emotions are the ultimate sourceof intelligence and might provide robots with the autonomy they need. Doubts have even beenposed on whether machines can exhibit intelligent behaviour without emotions (Minsky, 1986;Charland, 1995).In robotics, emotions are often used to modulate activity (Ca~namero, 1997; Bates et al.,1992a). The social role of emotions has been particularly explored. The external demonstrationof emotions has been used as a sort of communication mechanism that allows the robot to reportto others its internal state (e.g. its level of task achievement Shibata et al., 1996) or makesthe robot capable of generating empathy emotions in people by creating an illusion of life in abelievable character (Bates, 1994).In contrast, in the research reported here emotions are used in the control of a solitaryautonomous robot that adapts to its environment using reinforcement learning. The workwas done under an animat philosophy (Wilson, 1991a), by building a biologically inspired1The �rst author is supported by a scholarship from the Portuguese programme PRAXIS XXI. Facilities forthis work were provided by the University of Edinburgh.



Emotion-triggered Robot Learning 3complete agent where emotions form an integral part of the whole. Although the experimentsreported here focus on the evaluation of the emotion-dependent event-detection mechanism,emotions were also used to inuence perception and provide a reinforcement function withinthe reinforcement-learning framework.Reinforcement-learning (e.g., Sutton and Barto, 1998; Kaelbling et al., 1996) is a techniquethat allows an agent to adapt to its environment through the development of a policy, whichdetermines which action it should take in each environmental state in order to maximisereinforcement. Reinforcement de�nes the desirability of a state and can be expressed bothin terms of rewards and punishments. These are usually formalised in terms of the positive andnegative values, respectively, of a reinforcement function that attributes a value to each learningiteration. The reinforcement function value can also be zero meaning that no reward or pun-ishment was attributed and that the evaluation is neutral. In opposition to simpler techniques,reinforcement learning assumes the existence of delayed reinforcement. The reinforcement canbe the consequence of a sequence of actions instead of a single action. This is important if therobot has to perform elaborate behaviour and possibly receive negative reinforcement in thecourse of achieving its task, because otherwise the robot will not have the necessary look-aheadto overcome the deterrents that it �nds in the way of accomplishing its task. This means thatreinforcement-learning algorithms usually have some form of credit assignment propagation sothat value can be attributed to the states that lead to the goal state which produces reward.One of the most important design problem faced when employing reinforcement learningtechniques in robotics applications is to determine when a discrete state transition occurs,i.e. when the controller needs to re-evaluate its previous decision and make a new one, sincereinforcement-learning techniques assume that the system is an Markov decision process. Anincorrect state transition design can be fatal to the success of the learning agent Gadanho(1999).There are several approaches to the de�nition of state transition. Some researchers (e.g.,Mahadevan and Connell, 1992; Lin, 1993; Mataric, 1994) extend the duration of the currentaction according to some domain speci�c conditions of goal achievement or applicability of theaction while others interrupt the action when there is a change in the input state (Rodriguezand Muller, 1995; Asada, 1996). Rodriguez and Muller (1995) argue that new decisions shouldonly be taken when there is a change in the input state, on the basis that otherwise the choiceis uniquely determined by the current state of knowledge. However, this may not be a verystraightforward solution when the robot is equipped with multiple continuous sensors that are



Emotion-triggered Robot Learning 4vulnerable to noise.Emotions are often pointed to as essential mechanisms for autonomous agents with multiplegoals and limited resources in uncertain environments (Oatley, 1987; Frijda and Swagerman,1987; Mo�at et al., 1993), precisely because their role is associated with the process of inter-rupting the agent's ongoing activities to deal with new and unexpected situations that need tobe attended to (Sloman and Croucher, 1981; Simon, 1967) while protecting the resource-limitedactivities from unnecessary interruption and computation (Wright, 1994).Taking as inspiration the emotions' role of interrupting behaviour in natural systems, thecurrent work explores the usefulness of emotions in determining state transitions in a reinforcement-learning system.In the next section, a description of the emotion model developed is presented. This is anon-symbolic model that takes the form of a recurrent arti�cial neural network where emotionsinuence the perception of the state of the world, from which they ultimately depend. Thismodel is afterwards integrated in a reinforcement learning architecture.The experiments done with this model are reported in the following section. Althoughemotions research in biological systems can be a source of inspiration to guide robot design, itis not by itself a valid proof of the adaptive value of arti�cial emotions for arti�cial systems(Ca~namero, 1998). It is important to show empirically that endowing the robot with emotionshas adaptive value by comparing the developed emotional robot with other non-emotionalrobots. The emotion-dependent mechanism under study, i.e. the event-detection mechanism,was therefore experimentally compared with other approaches. Experiments were carried outon a simulated Khepera robot (Michel, 1996) in an animal-like adaptation task.Experimental results demonstrate that the proposed event-detection mechanism was com-petent and competitive, proving emotions helpful for the robot's success in its task.Emotion ModelA large subset of theories of emotions is based on elaborate cognitive appraisal theories (e.g.,Lazarus, 1982; Power and Dalgleish, 1997) that stress the role of conscious reasoning in the gen-eration and de�nition of emotions, in spite of emotions also being aroused by crude subconsciousexperiences without the need for high level reasoning processes (Zajonc, 1984).Following the psychologists' main stream, most Arti�cial Intelligence models of emotions arebased on an analytic and symbolic approach (Sloman et al., 1994; Frijda and Swagerman, 1987;



Emotion-triggered Robot Learning 5Pfeifer, 1982; Pfeifer and Nicholas, 1985; Bates et al., 1992b) that tries to endow the modelwith the full complexity of human emotions as perceived from an observer's point of view.In opposition to the traditional approach, a synthetic bottom-up approach based on theanimat approach (Wilson, 1991b) was preferred for the current work which made the existingmodels inadequate, because they are over-designed and too complex (Pfeifer, 1994). Recently,models have been suggested that also follow a bottom-up approach (Vel�asquez, 1998; Ca~namero,1997; Foliot and Michel, 1998; Wright, 1996).The most signi�cant features of emotions that the model proposed in this document triesto capture are:� Emotions have valence, i.e., they provide a positive or negative value.� Emotions have some persistence in time, i.e. sudden unrealistic swings between di�erentemotions should not be allowed, particularly when the emotions in question di�er a lot.� The occurrence of a certain emotion depends not only on direct sensory input, but alsoon the agent's recent emotional history.� Emotions colour perception in that what is perceived is distorted by the current emotionalstate.� Emotional state can be neutral or dominated by an emotion. This implies the existenceof a mechanism to decide which emotion, if any, is dominant at any one time.The model that was developed | �gure 1 | is based on four basic emotions: Happiness,Sadness, Fear and Anger. These emotions were selected because they are among the mostuniversal emotions and are adequate and useful for the robot{environment interaction a�ordedby the experiments (Gadanho, 1999).The model determines the intensity of each emotion based on the robot's current internalfeelings: Hunger, Pain, Restlessness, Temperature, Eating, Smell, Warmth and Proximity.These feelings are described below in the context of the experimental setup. Each emotionis de�ned by a set of constant feeling-dependencies and a bias. The values of the dependenciesare carefully chosen to provide adequate emotions for the possible body states.Based on what was suggested in (Dam�asio, 1994), the emotion state should also inuencethe way the robot feels. In the model, the body reactions aroused by emotions also give rise to
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Figure 1: Emotions model.the emotions that create them. Each emotion tries to inuence the body state in such a waythat the resulting body state matches the state that gives rise to that particular emotion.When an emotion is active, i.e. its intensity value is signi�cantly large, then it will inuencethe body through a hormone system. The hormone system in the model is a very simpli�ed one.It consists in having one hormone associated with each feeling. A feeling intensity is not a valuedirectly obtained from the value of the body sensation that gives rise to it, but from the sumof the sensation and hormone value. The hormone values can be (positively or negatively) highenough to totally hide the real sensations from the robot's perception of its body. The hormonequantities produced by each emotion are directly related to its intensity and its dependencies onthe associated feelings. The stronger the dependency on a certain feeling, the greater quantityof the associated hormone is produced by an emotion.



Emotion-triggered Robot Learning 7On the one hand, the hormone mechanism provides competition between the emotions togain control over the body which is ultimately what selects which emotion will be dominant.On the other hand, what the robot feels is not only dependent on its sensations but is alsodependent on its emotional state.The hormones' values can increase quite rapidly, allowing the quick build up of a newemotional state, and decrease slowly allowing the persistence of an emotional state even whenthe cause that has given rise to it is gone, another of the characteristic features of emotions.The dominant emotion is the emotion with the highest intensity, unless no emotion intensityexceeds a selection threshold. In this case, there will not be a dominant emotion and emotionalstate will be neutral. Emotions were divided into two categories: positive and negative. Theones that are considered \good" are positive (only Happiness, in the set of emotions used), theothers are considered negative.In summary, the model of emotions described (a formal description is available in theappendix) provides not only an emotional state, based on simple feelings, that is coherentwith the current situation, but also inuences the body perception. Although the model issomewhat more sophisticated than those usually found in equivalent non-symbolic systems,it is based on a simpli�ed hormone system and is far from the complexity of true emotionsexperienced by humans. In fact, it does not aim to model human emotions' complexity, butonly to model simple emotions a�orded by the agent's interaction with its environment.The model of emotions behaves appropriately when tested on the robot, in the sense thatthe robot consistently displays plausible contextual emotional states during the process ofinteracting with the environment. Furthermore, because its emotions are grounded in bodyfeelings, and not direct sensory input, it manages to avoid sudden changes of emotional state,from one extreme emotion to a completely di�erent one. The more di�erent the two emotionsare, the more di�cult it is to change from one to the other. The physiological arousal caused byemotions was repeatedly left out of cognitive theories of emotions, because it was not consideredcognitively interesting, yet without it emotions lack their characteristic inertia (Mo�at et al.,1993). Nevertheless, recent arti�cial emotion models based on a sub-symbolic approach do oftentry to model this feature (e.g., Breazeal, 1998; Vel�asquez, 1998).In order to evaluate the functional role of emotions in reasoning, the emotional state shouldbe used for the actual control of a complete agent, determining its behaviour (Albus, 1990;Wright, 1996; Mo�at et al., 1993). The next section describes the experiments done in thisdirection.



Emotion-triggered Robot Learning 8ExperimentsThe robot's task consists in collecting energy from food sources scattered throughout theenvironment. These food sources are actually lights so that the robot is able to distinguishthem with its poor perception capabilities. The robot needs this energy to use during itsfunctioning. It will use up energy faster if the velocity it demands from its motors is higher.To gain energy from a food source, the robot has to bump into it. This will make energyavailable for a short period of time. At the same time an odour will be released that can besensed by the robot. During this short period, the robot can acquire energy by receiving highvalues of light in its rear light sensors. This means that the robot must turn its back to thefood source. To receive more energy the robot has to restart the whole process again by hittingthe light again so that a new time window of released energy is started.The robot can only extract a limited amount of energy from each food source. In time, thefood source will recover its ability to provide energy again, but meanwhile the robot will beforced to look for other sources of energy in order to survive. The robot cannot be successful byrelying on a single food source for energy, i.e. the time it takes for new energy to be availablein a single food source is longer than the time it takes for the robot to use it. When the foodsource has no energy, the light associated with it is turned o�.The robot's task can be translated into multiple goals: moving around the environment inorder to �nd di�erent food sources and, if a food source is found, extracting energy from it.Furthermore, the robot should not keep still in the same place for long durations of time orcollide with obstacles.Experiments were carried out in a Khepera simulated robot (Michel, 1996) within a closedenvironment divided by several walls and containing three lights surrounded by bricks | see�gure 2. Speci�c implementation details for the experiments reported on this document can befound in Gadanho (1999).The Emotion SystemAn emotion system was developed based on the emotion model presented previously and usingfeelings dependent on the following sensations:� Hunger: The robot's energy de�cit;� Pain: High if the robot is bumping into obstacles;
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Figure 2: The robot and its environment.� Restlessness: Increases if the robot does not move and is reset whenever a behaviour isselected;� Temperature: Rises with high motor usage and returns to zero with low motor usage;� Eating: High when the robot is acquiring energy;� Smell: Active when there is energy available;� Warmth: Directly dependent on the intensity of light perceived by the robot's lightsensors;� Proximity: Reects the proximity of the nearest obstacle perceived by the distancesensors.In order to have the robot's emotional state compatible with its task, the emotional depend-encies on feelings are such that:� The robot is happy if there is nothing wrong with the present situation. It will beparticularly happy if it has been using its motors a lot or is in the process of getting newenergy at the moment. Even just the smell of food can make it happy.� If the robot has very low energy and it is not acquiring energy, then its state will be sad.It will be more sad if it cannot sense any light.



Emotion-triggered Robot Learning 10� If the robot bumps into the walls then the pain will make it fearful. It will be less fearfulif it is hungry or restless.� If the robot stays in the same place too long it will start to get restless. This will makeit angry. The anger will persist for as long as the robot does not move away or changeits current action. A hungry robot will tend to be more angry.The Adaptive ControllerReinforcement learning techniques have already been successfully used in the �eld of roboticsand were therefore selected for the learning algorithm. The main problem with reinforcementlearning is that learning can be very slow, particularly if the task is very complex. However,behaviour decomposition of the task can reduce signi�cantly the learning time or even make thetask feasible. Behavioural decomposition usually consists in learning some prede�ned behavioursin a �rst phase and then �nding the high-level coordination of these behaviours. Althoughthe behaviours themselves are often learned successfully (Mahadevan and Connell, 1992; Lin,1993), behaviour coordination is much more di�cult and is usually hard-wired to some extent(Mahadevan and Connell, 1992; Lin, 1993; Mataric, 1994). One problem in particular whichis quite di�cult and task dependent is determining when to change behaviour. This is not aproblem in traditional reinforcement leaning where agents live in grid worlds and state transitionis perfectly determined. However, in robotics, agent states change asynchronously in responseto internal and external events and actions take variable amounts of time to execute (Mataric,1994). In our work we have chosen to have the primitive behaviours hand-designed and learnonly the behaviour coordination in the hope that emotions might be useful in solving thisproblem. Three primitive behaviours were hand-designed:Avoid-obstacles | Turn away from the nearest obstacle and move away from it. If thesensors cannot detect any obstacle nearby, then remain still.Seek-light | Go in the direction of the nearest light. If no light can be seen, remain still.Wall-follow | If there is no wall in sight, move forwards at full speed. Once a wall is found,follow it. This behaviour by itself is not very reliable in that the robot can crash. However,the avoid-obstacles behaviour can easily help in these situations.The controller developed | �gure 3 | tries to maximise the evaluation received by selectingone of the three possible behaviours, taking into account the current robot feelings, and the
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Selected BehaviourFigure 3: Adaptive controller.previously received evaluations. It has two separate modules:Associative Memory Module | This plastic module uses feed-forward networks to asso-ciate the robot feelings with the current expected utility of each one of the three robotbehaviours. Q-learning (Watkins, 1989) was used in an implementation very similar to theone reported by Lin (1992). Neural networks learned by back-propagation utility functionsthat model util(x; a) = R + eval(y). The value R is the immediate reinforcement. Thefunction eval(y) is the expected cumulative discounted reinforcement starting from statey reached by executing behaviour a in state x. The discount factor () was set to 0:9.For each iteration, the target value u = R+Maxfutil(y; k) j k 2 actionsg is given to thenetwork whose behaviour was used in the previous iteration.Behaviour Selection Module |Based on the information provided by the previous module,this module makes a stochastic selection of the behaviour to take next. For a temperatureT, the probability of selecting behaviour a whose value is va, is P (a) = e vaTP3i=1 e viT .Emotions and Adaptive ControlIn robotics, the role of providing an evaluation of the state of the world is often attributed toemotions (e.g., Albus, 1990; Wright, 1996). It is often assumed that human decision makingconsists in the maximization of positive emotions and minimisation of negative emotions (e.g.,Tomkins, 1984). Therefore a reward function was devised that extracts a value judgementfrom the emotion system by considering the intensity of the current dominant emotion andwhether it is positive or negative. This value is the intensity of the current dominant emotion,or zero if there is no dominant emotion. If the dominant emotion is a negative one then its
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Figure 4: Emotions and control.(positive intensity) value is negated. Although this reward function failed for a simple step bystep action selection controller (Gadanho and Hallam, 1998), it proved quite satisfactory in abehaviour-based architecture and was therefore used throughout the experiments reported inthis document.In a robotic environment, a new system state can be found at virtually every step. Theperception of the world will always be at least slightly di�erent from step to step due to noise.Nevertheless, making a new re-evaluation of a behaviour-based system every step by selectinga new behaviour and performing an evaluation on the previous behaviour is not wise. Theproblem is not so much one of too much computational waste, but mostly of not making acorrect evaluation of the achievements of the behaviours. If the behaviour is evaluated andpossibly replaced every step, then it will not have time to develop to its full potential. This willmake it di�cult for the learning system to understand what are the advantages of each of thebehaviours. On the other hand, if the behaviours are left running for too long, events may occurthat will make them inappropriate for the new situation. The ideal would be to know when asigni�cant change has occurred in the environment that makes a re-evaluation necessary.Using emotions to trigger state transition seems reasonable, because emotions can providea global summarised vision of the environment. Any important change in the environment isliable to be captured by changes in the emotional state.Emotions are frequently pointed to as a source of interruption of behaviour (Sloman andCroucher, 1981; Simon, 1967) in the domain of more traditional symbolic Arti�cial Intelligencearchitectures. In general, it is considered that behaviour should be interrupted and eventually



Emotion-triggered Robot Learning 13replaced whenever a strong emotion is felt. This work's added claim is that if the emotionalintensity falls drastically, then behaviour should also be changed, because the crisis that gaverise to the emotion has probably been solved. So state transition is triggered not only bysudden rises of emotional intensity but also by abrupt drops. Implicit in this approach is thefact that the emotion model being used is continuous and so does not provide a clear cut onsetor termination of emotions, requiring that abrupt changes be detected instead.In this work, emotions directly inuence perception through the emotion model used andprovide reinforcement value, but the purpose of the experiments reported here was to explorewhether emotions can successfully ful�ll the role of determining state transition | see �gure 4.Testing the HypothesisTo test the hypothesis above, a controller was designed that has state transitions triggered bythe detection of signi�cant changes in the emotional state. From the robot's point of the view,an event occurs whenever there is a signi�cant change in emotional state, as this should reecta relevant event in the robot-environment interaction. More speci�cally, an event is detectedwhenever:� there is a change of dominant emotion, including changes between emotional states andneutral emotional states (i.e. states with no dominant emotion);� the current dominant emotion intensity is statistically di�erent from the values recordedsince a state transition was last made, i.e. if the di�erence between the new value andthe mean of the previous values exceeds both a small threshold and � times the standarddeviation of the previous values, where � is a constant that was set to 2;� A limit of 10 000 steps is reached.If an event occurs, then the adaptive controller is triggered: an evaluation of the previousbehaviour is made based on the current emotional state and a new behaviour selection is madeaccording to the new situation. Otherwise, the current behaviour is left running.The calculation of the mean and the standard deviation of the emotion intensity takes intoaccount all the steps between events. When a new event is detected, the restlessness feeling isreset and the emotional state is re-evaluated. This is the �rst state taken in the calculation ofthe two statistical variables. In the following steps, these variables are iteratively updated untilan event is detected. It should be noticed that a state can only be discriminated statistically



Emotion-triggered Robot Learning 14after at least two states have been recorded. A minimum di�erence for value discriminationwas required, a tolerance threshold of 0:02, to disregard insigni�cant variations in intensityvalue. Otherwise, in situations of very low standard deviation, imperceptible variations wouldbe caught by the event detection mechanism.In order to access the performance of the Event-triggered controller, three other controllerswere designed and tested for comparison:Interval-triggered | A simple alternative to having an event detection system is to triggerthe adaptive controller at regular intervals. After extensive testing, 35 steps was found tobe the most successful number of steps to have between two successive triggerings for thepresent task and environment. Finding the right time interval between consecutive controliterations was not trivial. If the number of steps is reduced, a proper behaviour evaluationbecomes di�cult, the system overall learning performance is lost and the robot is unableto maintain its energy. In particular, the inadequacy of establishing a state transitionat every step, i.e. generating an evaluation and selection of a behaviour in every step,was shown empirically in Gadanho (1999). Results showed that a controller triggeredevery step can hardly learn anything useful, and its performance is not very di�erent fromthat exhibited by random selection of behaviours. On the other hand, if the the numberof steps is increased then the number of collisions increases, because it takes longer forthe robot to notice obstacles. If increased enough the robot will also become incapableof keeping its energy, because its changes of behaviour will not be fast enough to allowacquiring new energy.Hand-crafted | The purpose of hand-crafting a controller was to determine how muchreinforcement a reasonably successfully controller would receive. To allow for a faircomparison with the other controllers, this controller only resorts to the same behavioursand no extra external or memory information unavailable to the others, but has to resortto a random number generator to deal with some di�cult environmental situations.Solving the problems of wandering in the environment and successfully eating whennecessary was quite straightforward. Avoiding obstacles, on the other hand, was quitetricky and would often lead to fatal deadlock situations, the main reason being the poorsensory capabilities, that allow the robot to lose sight of nearby obstacles very easily. Thisturned the design of a successfully non-learning controller into a slow and arduous cycleof test and redesign.



Emotion-triggered Robot Learning 15The hand-crafted controller uses the emotion-dependent event detection, with � equal to1.5, i.e., it uses a more sensitive event detection that is triggered by smaller variations inthe emotion value. In fact, this controller performance is strongly inuenced by the eventtriggering mechanism in use (see discussion for details).Random | This controller simply selects a new behaviour at each step. It was included inthe experiments to give a baseline to the results, showing how low the performance of anunsuccessful learning controller can be. This is particularly relevant for the experimentsat hand, where reinforcement tends to drop with time, making it di�cult to see the realachievements made by the learning systems.Four identical experiments were done, each using one of the di�erent controllers. Each ex-periment consisted in having thirty di�erent robot trials of three million learning steps. In eachtrial, a new fully recharged robot with all state values reset was placed at a randomly selectedstarting position. No distinction was made between a learning phase and a performance phasebecause, as a truly autonomous learning robot, the robot was designed to learn continuously.Instead the robot was evaluated while learning. For evaluation purposes, the trial period wasdivided in smaller periods of �fty thousand steps. For each one of these periods the followingstatistics were taken:Reinforcement | mean of the reinforcement obtained during all the steps;Event reinforcement | mean of the reinforcement obtained only during the steps in whichthe adaptive controller was triggered;Energy | mean energy level of the robot;Collisions | number of collisions;Events | number of times the adaptive controller was triggered.It should be noticed that while the �rst reinforcement statistic is a good measure of overallperformance, the second reects the actual reinforcement received by the adaptive controller.An average of the di�erent statistics over the several trials is presented in �gure 5, witherror bars representing the 95% con�dence interval. The last two statistics were presented as apercentage over the total number of steps in the period.
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Figure 5: Value of the statistics recorded for each one of the controllers throughout theexperiments.In table 1, a summary of the results is given. Looking at the graph curves it can be safelyassumed that, for every controller, learning has fully converged when a robot reaches the middleof its trial. This summary table presents the average of the values obtained from that pointonwards.Looking at the graphs in �gure 5, one can see that the learning controllers do manage tolearn their task. Their performance is much better than that exhibited by random behaviourselection. It is also noticeable that the successful learning controllers have signi�cantly worsereinforcement than the hand-crafted controller. This is directly related to the higher averageenergy obtained by the later. In fact, in terms of obstacle avoidance the human designedcontroller performs worse. The lower energy is actually not a problem as long as the controllersare able to keep it relatively high above zero and this is done with success.



Emotion-triggered Robot Learning 17Controller Reinforcement Event Energy Collisions EventsReinforcement (%) (%)Hand-crafted 0:34� 0:01 �0:03 � 0:02 0:83 � 0:01 3:0� 0:8 6:1� 1:6Event-triggered 0:24� 0:01 0:04� 0:02 0:63 � 0:01 0:6� 0:3 0:5� 0:0Interval-triggered 0:21� 0:03 0:20� 0:03 0:62 � 0:04 1:7� 0:1 2:7� 0:0Random �0:38 � 0:01 �0:38 � 0:01 0:02 � 0:01 5:6� 1:2 100:0 � 0:0Table 1: Summary of results obtained. The values presented are the mean of all the valuesobtained in the last half of the trials.The hand-crafted controller having higher energy only shows that this controller acquiresenergy more often and can be at least partially attributed to the higher number of events it hasavailable. In fact, changes in the triggering of this controller produce signi�cant alterations inthe results. When the controller was tested with � = 2, its energy level dropped to values similarto the ones found for the learning controllers. If, on the other hand, the hand-crafted controlleris triggered at every step, it will eventually result in a trapped robot which is incapable ofmaintaining its energy. It is natural that the controller works better with the settings it wasdesigned for in the �rst place, but this pronounced dependence on the triggering mechanismshows once again how important the latter is. Setting the triggering mechanism correctly canmake the di�erence between a successful robot and a failed robot.There is no signi�cant di�erence in performance between the two learning controllers, apartfrom a slight di�erence in the number of collisions. In this respect the event-triggered controllerdoes better, because the controller is triggered to deal with the obstacles that the robot �nds inits way instead of having to wait until the next trigger point to deal with them. The di�erence inevent reinforcement does not tell much apart from the fact that the event-triggered controllersare often triggered when something goes wrong: the event reinforcement of the interval-triggeredcontroller is very similar to its overall reinforcement, because the event reinforcement values arepicked from the rest at regular intervals and independently of their value; on the other hand,the event-triggered controllers are triggered in very speci�c situations that are often associatedwith negative evaluations. Typically, circumstances were that the current behaviour had to bechanged, because it was not adequate anymore.The event-triggered controller does not perform outstandingly better than its counterpart,but, it manages to have similar learning performance with a much reduced number of events.This can also be an important issue in real time systems like robots, because it saves preciouscomputation time.
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Figure 6: Comparing learning speeds in terms of events.In fact, the performance of the event-triggered controller converges in a much smaller numberof learning steps than that of the interval-triggered controller. Figure 6 demonstrates this pointby presenting the performance of the controllers in terms of the number of events, insteadof the number of steps. It is the number of events that accounts for the number of learningsteps because it is only during events that the robot learns, i.e. it updates the utility valuesof its behaviours. In order to obtain these results, two experiments were done: one for eachcontroller. Each experiments consisted of thirty di�erent robot trials of sixty intervals of �vehundred events each. This actually corresponded to a signi�cantly di�erent number of totalsteps for each controller | see table 2, and slightly di�erent values for the various trials of theevent-triggered controller.Controller Total in millions Relative to normalEvent-triggered 5:69 � 0:08 190%Interval-triggered 1:05 � 0:00 35%Table 2: Duration of trials in steps.The graphs show that although the event-triggered controller has learned its task after onesixth of the trial, the interval-triggered is still improving its performance by the end of the trial.It is clear that the e�ciency of the learning algorithm is increased by presenting it with onlyevent-related situations.



Emotion-triggered Robot Learning 19In the case of the event-triggered controller, it is interesting to notice how the number ofevents decreases as the agent learns its task. After learning how to prevent certain problems,like obstacle collisions, the robot is not interrupted as often as before.A closer observation of the robot's �nal behaviour brought forward two problems with theexperiments' design:� The restlessness feeling is intended as an indicator of the progression of the behaviourat hand. Through the emotion of anger it punishes the robot when the behaviour it hasselected is incapable of moving the robot. It will also provide the necessary interruptionin the case of emotion-dependent event detection. The problem is that it is necessary toavoid its saturation. If this happens, no more interruptions will be detected, because thedominant emotion of anger will not change. For this reason, the restlessness value mustbe reset whenever an event is detected. This is not a very far fetched solution, because itis natural for the frustration to go away when a new behaviour is selected, at least untilthe selected behaviour proves to be ine�cient as well. However, the fact that the newlyselected behaviour might be the same behaviour that was showing problems previouslymakes the solution a bit strange. Nevertheless, this was necessary for the controller towork e�ectively.� The interval-triggered controller managed to exploit being still to save energy, and thusexhibit local behaviour around a single light. This was not the intended behaviour at all,and the only reason why the controller can get away with it follows directly from the �rstproblem. With the frequent events provided by the control triggering of this controller,the anger emotion cannot reach intensities high enough to dissuade this kind of solution.Moreover, controllers that frequently select behaviours bene�t from an unfair advantagein terms of reinforcement, because the anger emotion is not able to manifest itself.In order, to prevent controllers from exploiting the low usage of the motors to save energy,two measures were taken:� The normal environment was replaced by the more demanding environment pictured in�gure 7. This is a more corridor-like environment, where it is more di�cult to travel fromone light to another by chance.� The �rst measure proved insu�cient by itself, because the robots can apparently stillmanage to maintain high levels of energy if only one light is available. So the robot
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Figure 7: The robot in its more demanding environment.energetic needs were increased. Furthermore, the advantage of not moving was removedby making the value of energy decrease independent of motor usage.A new set of experiments was performed applying both measures discussed above: changein environment and increase in energy usage. The results shown in �gure 8 demonstrate thedi�erences between the two controllers in this context. In this case, the advantages of theevent-triggered controller are more evident.DiscussionIn this document a emotion model was proposed and integrated in a reinforcement learning ar-chitecture. The system was implemented and tested in a realistic robot simulator. Experimentsshowed that emotions can be used both as reinforcement and event detector in a reinforcementlearning controller architecture based on behaviours. Furthermore, the emotion-dependent eventdetector allows drastic cuts in the number of triggerings of the learning controller which canbe particularly advantageous in the case of very time-consuming learning controllers, whereeach triggering of the controller can result in a signi�cant loss of precious real time. The event-triggered controller learns its task with much less learning iterations and needs much less controliterations for successful robot performance.It was empirically established that triggering the controller at every step was totally inad-equate. Nevertheless, the interval-triggered controller that regularly triggers the controller atlonger intervals of time was found adequate. However, it is less exible. The fact that intervals
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Figure 8: Comparing the di�erent triggering mechanisms in the more demanding environmentand with harder energy requirements.



Emotion-triggered Robot Learning 22are �xed a priori to �t the task makes it more task dependent. Furthermore, �nding the rightinterval for the task can be time-consuming.The event-triggered controller which triggers control at variable intervals dependent on thedetection of signi�cant changes in emotional state was the best learner. This controller has theadvantage of both being a more time-e�cient learner and a more exible learner, i.e. it is ableto master more di�cult tasks. Moreover, it manages to achieve a reinforcement similar to thatof the interval-triggered controller which takes advantage of not being punished for restlessness.The reset of restlessness that permitted this unfair advantage was necessary for the event-triggered controller to work, but other approaches to emotion-dependent control triggeringcould avoid this problem by looking into emotion intensity instead of variation. An examplewould be to have the frequency of control triggerings directly proportional to the intensity ofthe current emotional state.An alternative to the use of emotion-dependent detection of events would be to look at allthe controller's feelings inputs for statistical novelty instead of looking at the emotion valuealone. The problem is that this solution is much less clean. Instead of only one set of statistics,this solution requires several, each one of them with a very particular behaviour. This will makea uniform test of all them di�cult or even impossible, eventually requiring a separate analysisfor each one of the inputs. Another advantage of using the emotional state is that emotionsalready take in consideration what is and what is not important in each situation, and therelative importance of each individual feature. The fact that they hide away details might evenbe bene�cial (Gadanho, 1999).Although not much importance is usually given to the problem of control triggering in thecontext of reinforcement learning and people usually resort to domain-speci�c solutions thatarti�cially constrain the learning algorithm, experiments showed that the performance of therobot was very sensitive to the de�nition of the control triggering mechanism. Unlike other workin the �eld, the detection of changes in the input state proposed was dependent on the robot'sdominant emotion and therefore intrinsically related with its reinforcement. The presented eventdetection mechanism pro�ts from the novel structure of the reinforcement function. Apart fromproviding an absolute reinforcement value that varies with the robot's situation, the developedreinforcement function based on emotion also di�erentiates and prioritises the di�erent problemsfaced by the robot. This added information allows the detection of events when there is adi�erence in type of dominant problem and not just in problem degree.The development of a emotion system for integration in a reinforcement-learning agent
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Emotion-triggered Robot Learning 27Taking this into consideration, the intensity value of emotion e at step n (Ien), depends onthe intensity of the feelings in the following way:8e 2 E ;8n 2 N; Ien = Th[0;1](Be +Xf2F (CefIfn)) (4)where Be is a bias and Cef is a coupling coe�cient between the emotion e and the feeling fwhich are parameters of the system. To calculate the intensity of the feeling f at step n (Ifn)the following functions are used.8f 2 F ;8n 2 N; Ifn = Th[0;1](ChHfn + Sfn) (5)Hfn = ( 0 if n = 1�nHfn + (1� �n)Afn if n > 1 (6)Afn = Xe2E: Ien>Itha CefIen (7)�n = ( �up if jAfn j > jHfn j�dn otherwise (8)The feeling's intensity calculation has to take into account both the inuences provided bythe hormone system (Hfn), which are dependent of a coe�cient parameter (Ch), and the valueof the respective sensation (Sfn). The sensations' values are directly derived from the sensorydata. The hormone values are responsible for the memory of the emotion system, and dependboth on their previous values and the emotion inuences. Emotions only inuence the hormonevalues if their intensity is above an activation threshold (Itha). To calculate the value of thehormones (Hfn), two di�erent system parameters are used, the attack gain (�up) and the decaygain (�dn). In general, the attack gain is much higher than the decay gain. This way the decayof emotions is slow while the emergence of new emotions is much faster.If there are any emotions whose intensity is higher than a selection threshold (Iths)9e 2 E : Ie � Iths (9)then the emotion with the highest value is selected to be the dominant emotion.


