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Abstract

Distributed compute clusters allow the computing power of heterogeneous (and homogeneous) re-
sources to be utilised to solve large-scale science and engineering problems. One class of problem that has
attractive scalability properties, and is therefore often implemented using compute clusters, is task farming
(or parameter sweep) applications. A typical characteristic of such applications is that no communication
is needed between distributed subtasks during the overall computation. However interesting large-scale
task farming problem instances that do require global communication between subtask sets also exist.
We propose a framework called Semi-synchronised task farming in order to address problems requiring
distributed formulations containing subtasks that alternate between independence and synchronisation.
We apply this framework to several large-scale contemporary computer vision problems and present a
detailed performance analysis to demonstrate framework scalability.

Semi-synchronised task farming splits a given problem into a number of stages. Each stage involves
distributing independent subtasks to be completed in parallel followed by making a set of synchronised
global operations, based on information retrieved from the distributed results. The results influence
the following subtask distribution stage. This subtask distribution followed by result collation process is
iterated until overall problem solutions are obtained. We construct a simplified Bulk Synchronous Parallel
(BSP) model to formalise this framework and with this formalisation, we develop a predictive model for
overall task completion time. We present experimental benchmark results comparing the performance
observed by applying our framework to solve real-world problems on compute clusters to that of solving
the tasks in a serial fashion. Furthermore by assessing the predicted time savings that our framework
provides in simulation and validating these predictions on a range of complex problems drawn from real-
world computer vision tasks, we are able to reliably predict the performance gain obtained when using a
compute cluster to tackle resource intensive computer vision tasks.

1. Introduction1

Many computational tasks that employ serial code are limited by the total CPU time that they require2

to execute. When the individual tasks that make up an overall computation are independent of each other3

it is possible that they run simultaneously (in parallel) on different processors. Using this approach has the4

potential to greatly reduce the wall-clock time (real-world time elapsed from process start to completion)5

needed to obtain scientific results. Distributing separate runs of the same code while varying model6

parameters or input data in this way is known as task farming and has been the focus of much work of7

both cluster and grid computing [1, 2, 3]. Trivial task farming is a common form of parallelism and relies8

on the ability to decompose a problem into a number of nearly identical yet independent tasks. Each9

processor (independent node) runs a local copy of the serial code, often with its own input and output10

files, and no communication is required between these processes. This form of task farming is well suited11

to exploring large parameter spaces or large independent data sets. On the assumption that all tasks take12
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a similar amount of time to complete then there are no load imbalance issues and linear scaling can often13

be achieved in relation to the number of processors employed.14

Many interesting problems do however require some level of communication between tasks during15

distributed execution. In this work we develop a framework to enable semi-synchronised task farming in16

which an overall computation involves distributing many sets of parallel tasks such that all tasks within17

a set are independent yet these tasks must finish before a following task set is able to begin execution.18

Taking into account a level of communication between tasks has been approached previously with a focus19

on (e.g.) the scheduling aspects of aperiodically arriving non-independent tasks [4], data staging effects20

on wide area task farming [5] and cost-time optimisations of task scheduling [6]. Given that we propose21

to handle global communication between task sets with a post task set completion synchronisation step22

after a round of concurrent computation, components of the Bulk Synchronous Parallel (BSP) model are23

a suitable basis for our framework. The BSP model is a bridging model originally proposed by [7] and24

further detail of how to realise our framework and hybrid time prediction model is provided in Section 3.25

Numerical algorithms can often be implemented using either task or data parallelism [8, 9]. Task26

farming algorithms can be considered a simple subset of task parallel methods that break a problem down27

into individual segments, such that each problem segment can be solved independently and synchronously28

on separate compute nodes. The task parallel model typically requires little inter-node communication.29

Data parallel models conversely share large data sets among multiple compute nodes and then perform30

similar operations independently on the participating nodes for each element of the data array. Data31

parallelism therefore typically requires that each processor performs the same task on different pieces32

of the distributed data. In this way, HPC data parallelism often results in additional communication33

overhead between nodes and requires high bandwidth and low latency node connectivity. In practice34

most real parallel computations fall somewhere on a spectrum between task and data parallelism. This is35

also true of the task farming framework that we introduce (see Section 3).36

Computer vision, like many fields, contains algorithms that are challenged by the size of the data sets37

worked with, the number of parameters that must be estimated or the requirement of highly accurate38

results. These requirements often result in computationally expensive algorithms that demand time39

consuming batch processing. One efficient solution for accelerating these processes involves executing40

algorithms on a cluster of machines rather than on a single compute node or workstation. Our semi-41

synchronised task farming framework provides a simple form of parallel computation that is able to42

reduce the wall-clock time required by such computationally expensive tasks that might otherwise take43

several hours, days or even weeks on a single workstation.44

Here we choose computer vision applications as the test bed for our framework. Once an algorithm45

has been formulated under our framework we use simple performance modelling to accurately predict46

overall computation time and therefore the likely speed up made possible by employing a distributed im-47

plementation over a serial approach. In this way we provide a framework that enables the straightforward48

task distribution for problems, comprised of many individual tasks that likely require communication49

upon completion, coupled with a modelling process capable of predicting the available speed benefit of50

instantiating the distributed implementation.51

Our contributions in this paper can be summarised as follows:52

• We introduce a simple framework for non-independent task farming based on the Bulk Synchronous53

Parallel (BSP) model [7]. The framework allows us to formulate problems by dividing them into54

many independent parallel tasks that also require some level of communication and synchronisation55

between tasks before an overall solution to the problem can be obtained.56

• As part of this framework we develop a computation-time model capable of predicting overall ap-57

plication completion time for problems that are formulated using the task farming framework that58

we introduce. Providing this simple tool affords a method to reliably predict time requirements and59

evaluate computation-time and solution-quality trade offs prior to runtime.60

• We apply our semi-synchronised task farming framework to three contemporary computer vision61

problems and report on our experiences of implementing distributed solutions to these problems62
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and explore predicted and experimental speed up available when deploying these implementations63

on an HPC cluster.64

The HPC system that we make use of experimentally is described in Section 3.1. We outline our65

task farming framework and relate it to the BSP model in Section 3.3. We then introduce performance66

modelling techniques to facilitate predictions about computational time required for problems formulated67

under our framework in the remaining part of Section 3. Results from simulation experiments that verify68

our predictive model are given in Section 4. Section 5 details the results of implementing several real world69

computer vision applications under our framework and these are compared to sequential implementations70

of the equivalent problems. Finally Section 6 provides some discussion.71

2. Related work72

The task farming model of high-level parallelism has been the basis for much HPC cluster based73

work with recent examples utilising HT Condor [10], Google’s MapReduce [11] and Microsoft’s Dryad74

[12]. The HT Condor framework is able to harnesses idle cycles from both a network of non-dedicated75

desktop workstation nodes (cycle scavenging) and dedicated rack-mounted clusters. The framework then76

employs these cycles to run coarse-grained distributed parallelisation of computationally intensive tasks.77

Task farming is also common in data centres, for example MapReduce and Dryad both make use of task78

farming to schedule parallel processing on large terabyte scale datasets. In systems such as these a master79

process manages the queue of tasks and distributes these tasks amongst the collection of available worker80

processors. The master process is typically also responsible for handling load balancing and worker node81

failure. In the current work, master and worker node interaction is handled by Sun Grid Engine (SGE)82

[13] using a batch queue system similar to the Condor framework. This queueing system is responsible83

for accepting, scheduling and managing the distributed execution of our parallel tasks. This approach84

allows the distribution of arbitrary tasks as there is no requirement for a specialised API. Using SGE to85

manage our task queueing system allows our developers to concentrate on the image processing aspects86

of the problems that we investigate.87

Using the SGE environment, jobs typically request no interaction during execution unless they contain88

the integrated ability to find their interaction partners from their dynamically assigned worker node. The89

semi-synchronised task farming model that we build on top of the SGE layer respects this such that only90

after a set of tasks has completed are results collated to make decisions regarding the distribution and91

form of the following set of tasks. In standard task farming, when a worker node completes a task it will92

request another from the master node and our framework also does this until all tasks in a task set are93

processed. Once all tasks in a task set are finished the results are collated before the following set of tasks94

are defined and distributed. In comparison to standard task farming, many task sets likely contribute to95

a single overall computation under our framework.96

Dedicated parallel computer architecture has also been employed to develop computer vision sys-97

tems. In [14] a Beowulf architecture dedicated to real-time processing of video streams for embedded98

vision systems is proposed and evaluated. The parallel programming model made use of is based on99

algorithmic skeletons [15]. Skeletons are higher-order program constructs that encapsulate common and100

recurring forms of parallelism to make them available to application developers. Skeleton-based parallel101

programming methodology offers a partially automated procedure for designing and implementing parallel102

applications for a specific domain such as image processing. An application developer provides a skeletal103

parallel program description, such as a task farm, and a set of application specific sequential functions104

to instantiate the skeleton. The system then makes use of a suite of tools that turn these descriptions105

into executable parallel code. The system in [14] was tested by implementing simple image processing106

algorithms such as a convolution mask and Sobel filter.107

In comparison to classical HPC applications, embedded computer vision on dedicated parallel machines108

will often be able to offer advantages such as mobile, real-time performance yet places demands on109

programmers if no high-level parallel programming models or environments are available such as skeletons110

or the SGE that we make use of in this work (see Section 3.1 for further details). If these tools are not111

available then programmers must explicitly take into account all low-level aspects of parallelism such as112
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task partitioning, data distribution, inter-node communication and load balancing. If developer expertise113

lies in (for example) image processing, rather than parallel programming, then accounting for these low-114

level considerations likely results in long and error-prone development cycles.115

In contrast to [14] here we perform task farming as opposed to low-level data parallelism involving116

geometric partitioning of images for image processing tasks. This results in a coarser level of abstraction117

that we apply to higher level computer vision problems involving much larger data sets where we do not118

regard real-time performance as a critical factor. It is for this reason that we consider the BSP model119

a good basis for our framework. The original BSP model considers computation and communication120

at the level of the entire program. The BSP model is able to achieve this abstraction by renouncing121

locality as a performance optimisation [16]. This in turn simplifies many aspects of algorithm design and122

implementation and does not adversely affect performance for most application domains. Low-level image123

processing however is an example domain for which locality might be critical so a BSP based framework124

is likely not the best choice there.125

Parallel and distributed computing systems are designed with performance in mind and significant126

previous work has been carried out developing approaches for performance modelling and prediction of127

applications running on HPC systems. In addition to the BSP inspired framework that we build on top128

of the SGE layer we also formulate application performance modelling allowing us to predict the run time129

performance of the parallel algorithms implemented with our framework. Application performance mod-130

elling involves assessing application performance through system modelling and is an established field [17].131

Several examples of where this approach has proven advantageous include: input and code optimisation132

[18], efficient scheduling [19] and post-installation performance verification [20]. The process of modelling133

itself can be generalised to three basic approaches; modelling based on analytic (mathematical) methods,134

(e.g. LoPC [21]), modelling based on tool support and simulation (e.g. DIMEMAS [22], PACE [23]), and135

a hybrid approach which uses elements of both (e.g. POEMS [24], Performance Prophet [25]). In this136

work we also choose a hybrid approach and combine basic analytical modelling inherited from the BSP137

model with traditional code profiling, details of our performance modelling approach are provided in the138

following section.139

3. Semi-synchronised task farming140

3.1. HPC experimental implementation141

In this work we make use of the Edinburgh Compute and Data Facility (ECDF) [26] to test the142

parallel implementations of the computer vision problems that we investigate. The ECDF is a Linux143

compute cluster that comprises of 130 IBM iDataPlex servers, each server node has two Intel Westmere144

quad-core processors sharing 24 GB of memory. The system uses Sun Grid Engine [13] (SGE) as a batch145

queueing system. By tackling computer vision problems through parallel computation with SGE we show146

that increasing the number of participating processors reduces the wall-clock time required for algorithms147

implemented under our semi-synchronised task farming framework (see Section 5 for experimental details).148

All algorithms are implemented in Matlab and computation times are recorded using the built-in Matlab149

command cputime. We report on the savings due to application speed up in terms of reduced execution150

time when running our parallel implementations using many processors compared to employing sequential151

implementations to perform the same tasks. Our parallel implementations make use of the Distributed152

Computing Engine (DCE) and Distributed Computing Toolbox (DCT) from MathWorks. These products153

offer a user-friendly method of parallel programming such that master-slave communication between154

cluster machines is hidden from the developer, allowing them to focus on domain specific aspects of each155

problem. Our task farming framework is language independent and we concede that problem instance156

wall-clock times can likely be reduced further by making use of (e.g.) an alternative compiled language.157

However the primary focus of the current work is to provide evidence that the proposed framework is158

able to formulate problems consistently and reduce wall-clock times predictably, compared to the related159

serial implementations, regardless of the language used. We leave a study of time critical applications160

benefiting from (e.g.) compiled languages like C/C++ to future work.161
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3.2. The Bulk Synchronous Parallel model162

The BSP model is a bridging model originally proposed in [7]. It is a style of parallel programming163

developed for general purpose parallelism, that is parallelism across all application areas and a wide range164

of architectures [27]. Intended to be employed for distributed-memory computing, the original model as-165

sumes a BSP machine consists of p identical processors. The related semi-synchronised farming framework166

we propose (Section 3.3) does not strictly enforce a homogeneous resource requirement in comparison.167

This enables our experimental setup, using IBM iDataPlex servers, to contain similar but not necessarily168

identical nodes. In accordance with the original BSP model we do assume homogeneous resources during169

our theoretical performance modelling for simplicity and we therefore leave a heterogeneous performance170

modelling treatment to future work. In the original BSP model, each processor has access to its own local171

memory and processors can typically communicate with each other through an all-to-all network. In this172

work we make the simplifying assumption that processes only contribute information to a global decision173

making process at the end of each set of tasks and therefore do not need to communicate with each other174

directly. A BSP algorithm consists of an arbitrary number of supersteps. During supersteps, no commu-175

nication between processors may occur and all processes, upon completing their current task must then176

wait at a barrier. Once all processes complete their current task a barrier synchronisation step occurs177

and then the next round of tasks (superstep) can begin. In this fashion a BSP computation proceeds in178

a series of global supersteps and we utilise these supersteps to model sets of parallel distributed tasks in179

our framework. To summarise, a superstep typically consists of three components:180

1. Concurrent computation: computation takes place on each of the participating processors p. Pro-181

cessors only make use of data stored in the local processor memory. Here we call each independent182

process a task. These tasks occur asynchronously of each other.183

2. Communication: Processors exchange data between each other. Our framework makes the sim-184

plifying assumption that tasks do not need to exchange data with each other individually yet the185

result of each local computation contributes to the following Barrier synchronisation step (global186

decision making). This assumption holds for each computer vision application that we investigate187

(see Section 5).188

3. Barrier synchronisation: When each task reaches this point (the barrier), it must wait until all other189

tasks have finished their required processing. Once all tasks have completed, we make a set of global190

decisions before the next superstep may begin (the next round of concurrent computation and so191

on).192

3.3. Proposed task farming framework193

As noted, our framework involves global communication between task sets during a post task-set-194

completion synchronisation step following a round of concurrent computation. The components and195

fundamental properties of the Bulk Synchronous Parallel (BSP) model provide a suitable basis for this196

framework. Namely moving from a sequential implementation to describe the use of parallelism with197

a BSP model requires only a bare minimum of extra information be supplied. BSP models are also198

independent of target architecture making a task farming framework based on BSP portable between199

distributed architectures. Finally the performance of a program distributed using a BSP based framework200

is predictable if a few simple parameters from the target program can be provided (e.g. task-length201

distribution parameters). This leads to a hybrid performance modelling technique capable of predicting202

the runtime of algorithms implemented with our framework.203

We solve large scale problems by sharing large data sets among multiple processors yet the semi-204

synchronised task farming framework, in consonance with a task parallelism model, involves only little205

inter-node communication between tasks running in parallel. However, similar to data parallelism models,206

the framework allows us to split these large data sets between compute nodes and perform independent207

calculations on participating processors in parallel. As the calculations within each task are independent,208

no information needs to be exchanged between nodes during task runtime and sharing of results is post-209

poned until all tasks in a set have completed. As discussed, once a set of tasks has been completed we are210

able to collate results and use this information to make decisions relating to how the following round of211

tasks should be formulated. The outputs from the final round of tasks are combined to provide the global212
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program output. This framework is formally defined in the following pseudocode and Figure 1 depicts213

the process in diagrammatic form.214

215

Let:
{I [t]
i }

Nt
i=1be the set of Nt input tasks at superstep t

{O[t]
i }

Nt
i=1be the set of Nt outputs gained from the tasks completed at superstep t

Input:
N0 tasks at superstep t = 0
terminate := 0

begin
while (NOT terminate)

parallel for i ∈ Nt
O

[t]
i = process(I [t]

i )
end
{I [t+1]
i=1 }

Nt+1
i=1 = recompute inputs({I [t]

i=1}
Nt
i=1 , {O

[t]
i=1}

Nt
i=1)

terminate ?= test termination criteria({O[t]
i }

Nt
i=1)

t = t+ 1
end
last = t

R = combine outputs({O[last]
i }Nlasti=1 )

end

Output:
R

The advantage of adding the BSP synchronisation step between task sets allows all tasks in a set216

the opportunity to collate and communicate information resulting from the completion of their collective217

execution. The collective results of a task set can influence decisions involving the form, model parameters218

and possibly the number of tasks making up the following task set input. Once formulated, the following219

set of tasks can be distributed to the participating processors. It is this process of dispatching multiple220

rounds of parallel independent tasks, where task formulation may be influenced by information from221

previous task set results, that we call semi-synchronised task farming. This approach allows us to find222

distributed solutions to non-trivial problems that require a level of communication between nodes during223

overall computation while retaining much of the simplicity of the standard task farming model. If all tasks224

within a task set take a similar amount of time to complete then it allows for simple modelling and task225

distribution. If however tasks exhibit completion times with high variance, then a smart scheduler (such226

as SGE) can still be used efficiently to ensure that load balancing is not problematic for our framework.227

The wall-clock time, now related to both the number of task sets and the number of available processors,228

is much improved over serial implementations.229

The synchronisation aspect allows us to solve problem decompositions that require a level of inter-230

node communication while retaining the main advantages of a standard task farming approach such as231

ease of implementation, level of achievable efficiency (on the assumption that individual tasks in a set232

require similar time to complete) and, given that existing serial code can often be used with minimal233

modification, users can produce solutions without requiring detailed knowledge of (e.g.) MPI techniques.234

We do however note that if tasks take widely different amounts of execution time then the total wall-clock235

time of a task set is governed by the slowest process.236
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Figure 1: Our semi-synchronised task farming framework. Light grey superstep nodes indicate task synchronisation and
collective global decisions based on information obtained from the previous set of distributed tasks. These decision points
influence the input data, form (and possibly the number) of the following set of distributed tasks. Each task in a task set is
distributed to an individual processor. The distributed tasks following each superstep are not regarded as having a particular
linear order (from left to right or otherwise) and may be mapped to processors in any way.

3.4. Simulation and analytical hybrid performance modelling237

We undertake simple performance modelling to evaluate the distributed job submission behaviour on238

a CPU cluster allowing prediction of the run time performance of algorithms realised with our framework.239

Performance modelling of distributed systems enables an understanding of code and machine behaviour240

and can be broadly split into two categories; analytical modelling and simulation based techniques. As241

previously mentioned, analytical models are typically developed through the manual inspection of source242

code and subsequent formulation of critical path execution time. This approach usually involves the243

implementation of a modelling framework (e.g. LoPC [21]) to reduce the work required by the performance244

modeller. Analytical approaches are effective yet often require manual analysis of source code necessitating245

knowledge of the task domain, implementation languages and communication paradigms.246

Here we follow a coarse grained alternative approach of simulation based performance modelling. Many247

simulation tools exist to support this form of performance modelling (e.g. the DIMEMAS project [22]).248

Such tools often involve replaying the code to be modelled instruction-by-instruction and the related use249

of machine resources can then be gathered by the simulator. More recent work such as the WARPP toolkit250

[28, 17] make use of larger computational events (as opposed to instruction based simulation) improving251

simulator scalability. Here we take a similar approach; instead of using single application instructions252

we model coarse grained computational blocks. We choose a coarse level of granularity by defining a253

computational block as one distributed task in our framework. We then obtain run times for these254

computational blocks through traditional code profiling. An additional advantage of this coarse-grained255

simulation is that hybrid models (combining analytical and simulation-based approaches) can be built.256

By combining these coarse-grained computational events with an analytical model typical of the Bulk257

Synchronous Parallel (BSP) [7] model we obtain a straightforward hybrid model capable of predicting258

application run-time for the algorithms that we implement using our task farming framework.259
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3.5. BSP cost in relation to task farming260

The cost of an algorithm represented by the BSP model is defined as follows. The cost of each261

superstep is determined by the sum of three terms; the cost of the longest running local task wi, the262

global communication cost g per message between processors where the number of messages sent or263

received by task i is hi and the cost of the barrier synchronisation at the end of each superstep is l (which264

may be negligible and therefore the term is dropped).265

The cost of one superstep for p processors is therefore:266

maxpi=1(wi) + maxpi=1(hig) + l (1)

We make standard simplifying assumptions that we have homogeneous processors and that tasks do267

not need to exchange data with each other individually or with the master node during each superstep268

thus ensuring that hi = 0 for all i. We assume homogeneous processors for simplicity during our cost269

treatment but note that in the current landscape of computation, heterogeneous resources are also com-270

mon. Although our framework is applicable to heterogeneous resources in practice, we leave a theoretical271

treatment of heterogeneous processor cost to future work (see Section 4 for related discussion of this272

point). It is common for Equation 1 to be written as w + hg + l where w and h are maxima and with273

our simplification this reduces further to w+ l. The cost of the algorithm then, is the sum of the costs of274

each superstep where S is the number of supersteps required.275

W +Hg + Sl =
S∑
s=0

ws + 0 + Sl (2)

3.6. Our hybrid BSP simulation276

We simulate total parallel algorithm execution times by firstly generating random trials to simulate277

individual distributed task timings. To simulate a real-world task set, we generate trials from a Gaussian278

distribution parametrised by the mean time required in practice for a single distributed task to complete279

and add these to the time cost of barrier synchronisation. Task timing distribution parameters are found280

through code profiling and making use of the Matlab function cputime. We assert that this is a reasonable281

method to simulate task timings as the task farming applications that we investigate all distribute sets of282

similar length tasks during each superstep. By specifying or observing the number of supersteps required283

for a given real-world computation and the number of distributed tasks required in each superstep, we are284

able to approximate the total time required by the parallel algorithm as:285

S∑
s=0

ws + Sl (3)

where ws is the longest running local task in superstep s, barrier synchronisation time cost is l and the286

total number of supersteps is S. In practice we run this simulation over many trials and look at the mean287

result for an algorithm that requires Ns distributed tasks during each superstep.288

3.6.1. Limitless CPU node model289

As a simple example we take a mean task length of wµ = 10 time units and a task length standard290

deviation of σ = 1, and simulate an application making use of only a single superstep. We find that, using291

the additional assumption of limitless computational nodes, as we increase the number of distributed292

tasks required in the superstep the difference between the longest task length ws and the mean task293

length wµ grows sub-linearly with the number of submitted distributed tasks N (Figure 2). From this294

simple example we are able to conclude that, not taking into account limited computational resources, if295

we have an application that benefits from increasing the number of distributed tasks during a superstep296

(e.g. by an order of magnitude - see for example Section 5.1), we can expect improved results for only a297

small increase in predicted wall-clock time cost.298

We can fit this simulated computation time accurately using the standard inverse complementary error299

function. The complementary error function erfc (also known as the Gaussian error function) provides300
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Figure 2: Predicted difference between maximum distributed task time and mean task time ws−wµ, where wµ = 10, σ = 1
for an algorithm distributing N tasks in one superstep.

us with an accurate predictor for the maximum job length ws increment over the mean job length wµ, in301

relation to the number of submitted jobs, that we are likely to observe assuming that the true job length302

distribution resembles a Gaussian distribution. The erfc function is often used in statistical analysis to303

predict behaviour of any sample with respect to the population mean. Here we fit our simulation data by304

applying the inverse erfc to
(

1
Ns

)
, where Ns is the number of submitted tasks in superstep s (see Figure305

2). The error function erf is defined as:306

erf(x) =
2√
π

∫ x

0

e−t
2
dt

Then the complementary error function, denoted erfc and its inverse erfc−1 are defined as:

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2
dt

erfc−1(1− x) = erf−1(x)

The model that empirically fits the simulation for mean task length wµ, with standard deviation σ307

distributing Ns tasks in parallel, lets us predict the maximum task time ws for superstep s as:308

ws = wµ +
(

1.4σ · erfc−1(
1
Ns

)
)

(4)

The scalar 1.4 is needed to fit our empirical data. We hypothesise that the true scalar value providing309

the best fit to our empirical curve here is
√

2 but we leave investigation of this to future work. In Figure310
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2 we use wµ = 10 and σ = 1 and simulate for various task set sizes Ns. If computational resources311

are not a limiting factor, then once we know the number of distributed tasks Ns required per superstep,312

and have estimates for wµ and σ we are able to approximate the expected time ws required for a single313

superstep of a given algorithm and, given the number of supersteps, the expected time required for the314

entire algorithm. This model is valid in cases where the number of available parallel worker processors is315

equal to or exceeds the number of tasks required per superstep. We have access to 130 iDataPlex servers316

with multiple CPUs, however in many practical applications this requirement will not hold (the number317

of tasks per superstep will exceed available participating worker nodes) therefore we also consider a finite318

CPU model in the following section.319

3.6.2. Finite CPU node model320

The previous simulation model does not take into account CPU worker node limits. In this section321

additional simulations are performed to explore the effect of capping the number of available CPU nodes322

K in relation to the number of submitted distributed tasks per superstep Ns. This allows us to fit a323

model that reflects our real distributed system pragmatically. In this case, we assume that Ns > K and324

therefore each CPU node is responsible for the computation of a number of tasks in sequence in order to325

complete a superstep. In our task farming framework under SGE, when a CPU worker node completes326

the computation of the current task then the next task from the set still waiting to be processed will be327

assigned to the finished core such that each core is continually utilised until all tasks have been processed.328

For each simulation trial, the maximum cumulative CPU computation time used by a worker node during329

a superstep; CPUs must now be found. This value is the maximal sum of task computation times330

assigned to an individual CPU. From this max cumulative computation time found during a superstep,331

we subtract wµ ·
(
Ns
K

)
where wµ is the mean task length, Ns is the number of parallel tasks making up the332

superstep and K is the number of participating processors. This effectively subtracts the mean amount333

of work we expect a CPU to perform per superstep. This mean amount of work per CPU is denoted334

CPUµ = wµ ·
(
Ns
K

)
. The resulting difference tells us how much more work, than the mean cumulative335

work, we expect the node assigned the most work to carry out. As a result, CPUs provides the time we336

expect the full superstep s to take to complete.337

The final point above holds because all CPU worker nodes must be allowed to finish their assigned338

cumulative task computation before it is possible to synchronise and conclude a superstep s. When339

accounting for a finite set of CPU worker nodes we therefore model the time it takes to complete a340

superstep s as the longest cumulative CPU computation time CPUs. When accounting for a fixed number341

of worker nodes K, the model that we find (approximately) empirically fits the simulation data is:342

CPUs =

{
wµ ·

(
Ns−mod(Ns,K)

K

)
+ wµ if mod(Ns,K) 6= 0

wµ ·
(
Ns
K

)
+ 1.4σ · erfc−1( 1

Ns
) if mod(Ns,K) = 0

(5)

We model CPUs as the mean computational work done at each worker, CPUµ plus some additional work343

that must be carried out by the CPU that has performed the most work in the current superstep. We344

model this additional work in the following way: when we consider a finite set of CPU worker nodes, the345

difference between the longest cumulative CPU computation time CPUs and the mean cumulative CPU346

computation time CPUµ is primarily influenced by: 1) how evenly the number of distributed tasks Ns are347

distributed to the number of participating CPU nodes K and 2) the mean task length wµ. Advanced task348

farm models (e.g. [29]) employ various strategies dictating how tasks should be distributed to workers.349

Here we take the simple approach that, on the assumption that tasks belonging to a task set have similar350

length, each task still waiting to be processed will be assigned in turn to the CPU worker node that finishes351

its current computational work load first. A consequence of this is that if the total number of distributed352

tasks Ns required by the superstep is exactly divisible by the number of participating CPU nodes K (i.e.353

mod(Ns,K) = 0) then, excluding cases involving extremely high task length variance σ2 in relation to354

wµ, each CPU will receive an identical number of tasks and therefore the difference between the longest355

cumulative CPU computation time CPUs and the mean time CPUµ will be small and only influenced356

by the number of tasks Ns and the task length variance σ2 in a similar fashion to the limitless worker357

node model. In such cases this small difference is once again accounted for using the erfc−1 function358
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as before (see Figure 2 and Equation 4). If, contrarily, the number of tasks Ns divided by the number359

of participating CPU nodes K leaves a remaining number of tasks that is small in relation to K (i.e.360

mod(Ns,K) � K) then, again assuming moderate task length variance σ2 in relation to wµ, the CPU361

node completing the most computational work will contain one more task than b
(
Ns
K

)
c. We account for362

this additional task in our model by adding the mean task length wµ (our additional task) to the mean363

cumulative work done, adjusted by the number of CPU worker nodes that are assigned an additional task364

such that they must complete b
(
Ns
K

)
c+ 1 tasks in total. This models the fact that the difference between365

CPUs and CPUµ will be greater when fewer worker nodes are assigned b
(
Ns
K

)
c+1 tasks to complete since366

the true mean work done per CPU will be close to wµ · b
(
Ns
K

)
c when many nodes are completing only367

b
(
Ns
K

)
c tasks. The difference between CPUs and CPUµ is therefore essentially linear in mean task length368

wµ once Ns, K and σ are known. Intuitively, if mod(Ns,K) is low but non-zero (e.g.) equal to one, then369

the single CPU that is assigned this extra task will be required to complete almost exactly one extra task370

length of work in comparison to the mean amount of work CPUµ ≈ wµ · b
(
Ns
K

)
c. As mod(Ns,K) grows,371

the value representing the mean amount of work done per CPU is adjusted accordingly. The special372

case where mod(Ns,K) = 0 we expect, as discussed previously, only adds a constant amount of excess373

work above the mean for large Ns similar to the case explored previously using an unbounded K (see374

Section 3.6.1). We validate this model using empirical simulation data for various K and task length wµ.375

A sample of these simulation and model prediction results, exploring simulated and predicted times for376

various K are found in Figure 3.377

(a) (b)

Figure 3: (a) We plot the model of the mean work we expect each CPU to carry out CPUµ (blue line) in terms of overall
(log-scale) computation time units for varying K processors. We show using empirical simulation (red line) how the longest
CPU queue CPUs deviates from this value in practice in relation to Ns and K. Our model prediction of the maximum work
carried out by a CPU: ’CPUs Model’ (circles plotted for every 10th K value) exhibits how our model is able to account
for this. Here we show a simulation distributing N = 250 tasks over one superstep with a mean task length of wµ = 1000,
σ = 1. (b) The difference found between model prediction of CPUs and empirical simulation for each value of K ∈ {1..250}.
We exhibit model prediction error of < 10 time units (Y-axis) when using a mean job length wµ = 1000 units for each value
of K explored. Our prediction makes small periodic errors but this error reduces further as K increases. For the number
of CPUs that we make use of in practice (e.g. > 20) we see an overall computation time prediction error of < 4 time units
when using wµ = 1000 units.
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4. Hybrid BSP model predictions378

In this section, we use our hybrid BSP model (introduced in Sections 3.6.1 and 3.6.2) to predict379

the expected run time of real-world applications that we distribute to our SGE cluster under our task380

farming framework. We present the results of submitting jobs under real network and Grid Engine loading381

conditions and compare job timing results with our predictions to test the validity of the models developed382

in Section 3.6.383

We submit various application configurations to our SGE cluster that involve distributing Ns = 20,384

40 and 100 tasks during each superstep in applications making use of S = 5, 10 and 30 supersteps. The385

applications that we utilise for testing our model contain parallel tasks with cost durations of comparable386

length by design. Details of the applications we experiment with are given in Section 5. To calculate true387

overall application time cost we record individual parallel task run times and are therefore able to find the388

longest running (highest cost) task within each superstep. We then sum the times required for the longest389

running task ws in each superstep s such that
S∑
s=0

ws + Sl provides the total time needed to execute the390

parallel application in practice, assuming that all tasks within a superstep are able to run in parallel.391

With regard to the sample applications that we investigate during this experiment we find that the time392

cost for the barrier synchronisation steps l are negligible in practice and therefore we neglect these in the393

runtime calculation. Although barrier synchronisation is negligible in the sample application investigated394

here, we note that this is certainly not always the case and we therefore choose not to oversimplify the395

model.396

We perform repeated trials (n = 10) for each application configuration tested. Here we provide detail397

of a configuration distributing Ns = 20 tasks during each of 10 supersteps as an example. In this example,398

we measure mean total real-world cost to be
9∑
s=0

ws = 123.06 minutes of parallel computation time with399

an average task length of wµ = 462.9 seconds (∼ 8 minutes), and a mean parallel task length standard400

deviation of σ = 107.13 seconds. The recorded individual task times, across all 10 supersteps from one401

trial, are shown in Figure 4. Examining the real-world run times of the distributed tasks highlights a402

slightly heavy-tailed distribution for the particular application employed in this experiment. This typically403

results in several long runtime outliers that contribute to the total runtime cost using our overall runtime404

calculation method. For expository purposes we also fit a GEV (Generalised Extreme Value) model to405

the data here, providing a reasonable fit (i.e. resulting in a slightly lower BIC value of 2343.39 compared406

to the Gaussian BIC of 2446.78 for this data set). In future work we plan to re-examine our hybrid model407

using (e.g.) a GEV distribution in place of our current Gaussian timing model to predict run times in408

cases where this provides a better fit to the independent task times. We also note that one potential route409

towards accounting for heterogeneous participating processors p during runtime prediction would involve410

making use of mixture distributions (e.g. a mixed GEV distribution). We leave more sophisticated task411

time distribution fitting to future work. We obtain individual runtime costs by profiling the application412

(detailed in Section 5.1) through the use of the Matlab function cputime. By additionally including Sun413

Grid Engine queueing (non-working) time, mean wall-clock time for the application run in this example414

was 173.46 minutes (non-working time is attributed to sharing the SGE cluster with other users).415

Using the distributed task model that we introduce in Equation 5, and assuming that we have sufficient416

participating processors K to accommodate 20 tasks in parallel, we predict the maximum work performed417

by a single processor in a superstep to be CPUs = 669.86 seconds for this example (an underestimation,418

the mean value found in practice across n = 10 trials for this configuration is 738.37 seconds of CPU time).419

Using S = 10 supersteps the total runtime predicted by our model for this experiment is therefore 111.6420

minutes. This results in a slight underestimation of the true mean total cost by 11.4 minutes (∼ 10%) for421

this distributed configuration. This underestimation is probably explained by the slightly non-Gaussian422

distribution observed in Figure 4. Results for the predicted and measured job completion times for the423

distributed configurations investigated in this way are summarised in Tables 1 and 2. In Table 2 we present424

measured and predicted overall computation time and note that the difference between measured time425

and our model prediction is always within 11% of the true value. Our approximate model provides a simple426

yet moderately accurate method for predicting the amount of computational work required by applications427

12



Figure 4: Individual parallel task timings across all 10 supersteps from one trial.

formulated under our task farming framework and distributed to Sun Grid Engine, or other queue based,428

cluster systems. For completeness we contrast the computational time required to mean wall-clock time429

used by the cluster in practice. We note in general wall-clock time is significantly larger than required430

computational time however we find that wall-clock time is subject to high variance between trials as we431

have little control over multi-user cluster wall-clock time. This is due to the queueing aspect of sharing432

the SGE cluster with other users.433

Table 1: Parameter sets used for four different sets of distributed application experiments varying the number of distributed
tasks (Ns) and supersteps (S).

# CPU
nodes (K)

Tasks per
superstep (Ns)

Supersteps (S)

Model prediction (eq. 5) 20 20 10

Measured timing set 1 20 20 10

Model prediction (eq. 5) 20 20 30

Measured timing set 2 20 20 30

Model prediction (eq. 5) 20 40 05

Measured timing set 3 20 40 05

Model prediction (eq. 5) 20 100 05

Measured timing set 4 20 100 05

5. Example semi-synchronised task farming applications434

We introduce three computationally demanding computer vision problems and propose solutions im-435

plemented using our semi-synchronised task farming framework. We focus on simple farming applications436

13



Table 2: Distributed application measured timing results and BSP model predictions for four sets of distributed tasks with
rows corresponding to Table 1. We obtain the predicted overall computation time by taking the product of the predicted ws
and the number of supersteps (S). The difference between our overall computation time model predictions and measured
results are always within 11% of the true value.

True wµ (sec) Task time σ Predicted ws (eq. 5)
and True ws (sec)

Overall
computation time (min)

Wall-clock time
(min)

Model prediction (eq. 5) N/A N/A (462.0 + 207.86)=669.86 (669.86 sec ·10) = 111.6 N/A

Measured timing set 1 462.0 107.13 738.37 123.06 173.46

Model prediction (eq. 5) N/A N/A (348.17 + 168.02)=516.19 (516.19 sec ·30) = 258.1 N/A

Measured timing set 2 348.17 86.60 740.0 287.4 434.08

Model prediction (eq. 5) N/A N/A (57.1 + 19.8)=76.9 (76.8 sec ·5) = 6.40 N/A

Measured timing set 3 57.1 8.95 91.3 6.89 41.3

Model prediction (eq. 5) N/A N/A (214.4 + 96.46)=310.86 (310.86 sec ·5) = 25.9 N/A

Measured timing set 4 214.4 37.83 353.6 27.3 133.0

that are able to benefit from performing many tasks in parallel yet require some form of communication437

between rounds of parallel tasks (supersteps). As described previously, these parallel task sets and syn-438

chronisation steps make up a larger computational process. The example applications that we study here439

all share the following properties:440

• Large input data set. Our input data sets are large relative to the number of model parameters and441

control options that dictate the data processing procedures.442

• Large number of tasks. The number of tasks N that make up the overall computational process is443

large and may not be known in advance. Each application launches sets of tasks that are processed444

in parallel. All tasks in a synchronised superstep must complete before the following round of tasks445

can begin. Task parameters are defined by fixed model parameters and potentially information446

resulting from the completion of previous task sets.447

• Task independence. Each task is defined by model parameters, the global input data and potentially448

the task set results from the previous superstep. For tasks that are contained in the same superstep,449

no dependencies exist between superstep members.450

5.1. Application 1: Multi-view point cloud registration451

5.1.1. Multi-view registration452

3D surface registration can be considered one of the crucial stages of reconstructing 3D object models453

using information obtained from range images captured from differing object viewpoints. Point corre-454

spondences between range images and view order are typically unknown. Aligning pairs of these depth455

images is a well studied problem that has resulted in fast and usually reliable algorithms. The generalised456

problem of globally aligning multiple partial object surfaces is a more complex task that has received457

less attention yet remains a fundamental part of extracting complete models from multiple 3D surface458

measurements for many useful applications such as robot navigation and object reconstruction. This is459

the multi-view registration problem.460

Early solutions to the multi-view registration problem typically proposed defining one view position as461

an anchor point and then progressively aligning overlapping range scans in a pairwise fashion such that ap-462

plying the rigid transforms found at each pairwise step in a chain brings each additional viewpoint into the463

coordinate frame of the anchor scan, thus obtaining a complete object model. Although straightforward464

and fairly computationally inexpensive, this technique often results in registration error accumulation465

and propagation. In an attempt to address this issue more recent work [30, 31, 32] proposes various466

techniques for aligning all surface viewpoints simultaneously in an attempt to reduce errors and make use467

of information from all views concurrently. Performing view registration in this fashion is typically able468

to improve alignment quality by distributing registration errors evenly between overlapping range views.469

Considering all views simultaneously does however typically incur increased computational cost as these470
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approaches must, at each iteration, compute the registration error between each range view and some471

form of reference. A solution to the multi-view registration problem, capable of handling large data sets,472

consisting of many viewpoints, therefore provides a good candidate for a parallelised implementation.473

In this paper we present our approach for the simultaneous global registration of depth sensor data from474

many viewpoints, represented by multiple dense point clouds [33], implemented in the Semi-synchronised475

task farming framework described in Section 3. This framework allows us to process large numbers of476

range images per object reconstruction whilst retaining the accurate high quality view alignment results477

typical of simultaneous registration approaches.478

Figure 5: Our multi-view registration method. Stages of the algorithm within the dashed line area are distributed to our
cluster in parallel.

5.1.2. Simultaneous registration using task farming479

Given many partial object views represented by point clouds with a typical set of seed positions480

providing a coarse alignment initialisation, we construct a kernel-based density function of the point data481

to determine an estimation of the sampled surface. Using this surface estimate we define an energy482

function that implicitly considers the position of all viewpoints simultaneously. We use this estimation of483

the sampled surface to perform an energy minimisation in the scan pose transform space, on each scan484

in parallel, to align each viewpoint to the object surface estimate and implicitly, to each other. After485

alignment, we recompute the energy function and then re-minimise all scan positions. This process is486

repeated to convergence. Figure 5 outlines this approach, for more details see [33].487

Since range viewpoints are aligned in parallel we are able to accommodate many view sets without488

increasing the wall-clock time, unlike typical serial solutions. Utilising many object viewpoints affords489

benefits over sparse sets of views for the task of object reconstruction such as better object surface490

coverage, hole filling and reconstructed object detail improvement.491

For N view-points we define N independent parallel tasks in each superstep and in each of these492

tasks we use the current pose of the remaining N − 1 scans for the purpose of computing a surface493

estimate and a related energy function. We allow the final, active scan to move in the transform space by494

searching for optimal pose parameters. Each parallel task assigns a different view-point as the active scan.495

Independently evaluating the position of each moving scan in relation to the inferred surface and therefore496

minimising our energy function brings the active view into better alignment. After this minimisation has497

taken place for each viewpoint in parallel, we have N sets of optimal rigid transform parameters; 3498

translation (θx, θy, θz) and 3 rotation (θα, θβ , θγ) parameters that bring each view into alignment with499

the estimated surface (and therefore the other views). Once each independent task has found a set500

of rigid transform parameters (reached the superstep synchronisation barrier), we apply the transform501

parameters found for each view, thus bringing the entire set into better alignment with one another,502

completing our barrier synchronisation step. We then redistribute the tasks to perform a re-estimation503

of the sampled surface, using the new view-point positions, for each view in parallel. This typically504

results in a tighter, more accurate, estimation of the surface. We iterate this process for S supersteps505

until viewpoint registration convergence has been reached. Convergence can be identified by looking at506

residual point alignment error or the magnitude of the transforms being found by each task optimisation.507

In practice convergence is usually reached within S = 10 supersteps however for the purposes of the timing508

experiments in Section 4 we use up to S = 30 supersteps.509
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This optimisation algorithm can be summarised as follows: we define {Vi} as the set of N individual510

point sets Vi and Si as the collective surface estimate found using the points in point sets Vj where511

j = 1 . . . N and j 6= i. We define our energy function E(·) to evaluate the alignment of 3D points x ∈ Vi in512

relation to surface estimate Si. Therefore E(Vi, Si) evaluates the current pose of point set Vi in relation513

to how well registered it is with surface estimate Si. We perform minimisation in the transform space of514

Vi, evaluating how well the viewpoint is aligned to our surface estimate Si at each iteration step. This515

minimisation lets us find optimal pose parameters θi for each Vi in parallel. We use these parameters to516

apply pose transformations Tθi to each point set Vi. This transform optimally aligns point set Vi with the517

related current surface estimate. In parallel we align each point set Vi to the surface estimate provided518

by Si. By doing this we implicitly register each viewpoint with all others. We then re-estimate Si from519

the resulting new poses of {Vi}, and iterate this process to convergence. This algorithm is described using520

the following pseudocode:521

Input: Range scans V1, . . . , VN
begin

converged := 0
while (NOT converged)

parallel for i=1 . . . N
Si = estimate surface(

⋃N
j=1
j 6=i

Vj)

θi = arg max
θ

E(Tθ(Vi), Si))

end
parallel for i=1 . . . N

Vi = Tθi(Vi)
end
converged = test convergence(V1, . . . , VN )

end
end

Figure 6: Top: A planar slice of our energy function through coarsely aligned partial scans (Stanford bunny data set)
Bottom: our energy function approximating the underlying surface defined by the coarsely aligned range scans. A zoom of
the slice region shows surface function values that are represented by colours increasing from deep blue to red. We align
each partial view point cloud with this surface estimate in parallel.
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5.1.3. Experimental setup522

We evaluate this parallel alignment strategy quantitatively on synthetic and real range sensor data523

where we find that we have competitive registration accuracy with existing frameworks for this task. See524

[33] for registration accuracy results. Here we evaluate application speed up due to parallelisation. As525

discussed we are able to register all views simultaneously by taking advantage of many cluster nodes, and526

thus distribute the work. Here we explore various distributed task and superstep configurations and look527

at the performance gained by making use of a distributed system compared to performing the work on a528

single node. In the case of the single CPU experiments we register each scan serially using an individual529

cluster node and then find the related surface estimates once rigid transforms have been found for all530

scans. Figure 6 shows a partial example midway through alignment.531

We record runtime results as follows: for Single CPU results no job queueing is involved as the532

algorithm performs the registration of each scan in series until completion. The time reported is the total533

time required to register N viewpoints in series over S supersteps. For the parallel distributed experiments534

we measure the time taken in two ways. As discussed in Section 3.1, the distributed system we make535

use of employs a multi-user job queueing system. Firstly we measure the wall-clock time by recording536

the total real-world time required from the point of submitting our work to the job queue until the job537

is complete (when the registration of all viewpoints Vi has converged in this case). Here job queueing538

(non-working) time cost may be incurred by each individual distributed task, (the alignment of a single539

view Vi to the related surface estimate to find the optimal pose transform Tθi). In Table 3 this timing540

result is referred to as “ECDF wall-clock time”. The second distributed timing measure excludes this541

queueing (non-working) time and for each superstep finding the maximum task length of an individual542

distributed task (scan alignment) in a similar measurement process to that outlined in Section 4. The543

time reported for this second metric is then the sum of the maximum task lengths over the total number of544

supersteps, we call this the “Distributed ideal time”. We consider this to be an accurate assessment of the545

computation time required, as each superstep must wait for all member distributed tasks to finish before546

it may apply the global synchronisation step and then launch the following set of distributed tasks. This547

second metric excludes real-world queueing time. Furthermore, for this experiment, we have sufficient548

worker nodes to process all distributed tasks in a superstep concurrently (true in the case of our current549

HPC cluster). These measurements allow us to compare the optimal theoretical performance gain to550

real-world speed up, achieved in practice on our multi-user system.551

5.1.4. Performance evaluation552

The success of employing an HPC system to solve computationally demanding problems resulting from553

large real-world data sets depends on the system architecture (e.g. number of available processors) and554

algorithmic design. The performance of an algorithm on an HPC system can be evaluated by calculating555

the speedup provided over a single node or single CPU system. Here we use speedup Sp and efficiency556

Ep (Equations 6 and 7) to show the improvement we achieve by formulating computer vision problems557

under our task farming framework. Assuming that the speed of processors and the network is constant;558

then speedup [34, 35] is often defined as:559

Sp =
T1

Tp
(6)

where p is the number of participating processors, T1 is the computational time needed for sequential560

algorithm execution and Tp is the execution time required by the parallel algorithm when making use561

of p processors. Ideal (linear) speedup is obtained in the case Sp = p. Although super linear speedup562

is possible in some cases (e.g. due to cache effects in multi-core systems), when using task farming and563

an HPC cluster we consider linear speedup as ideal scalability. In the linear speedup case, doubling the564

number of processors p will double the speedup Sp (halving the required execution time Tp). The second,565

related performance metric we make use of is efficiency (Equation 7). The Ep metric, typically in range566

[0..1] attempts to estimate how well utilised p processors are when solving the problem at hand compared567

to how much time is spent on activities such as processor communication and synchronisation.568
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Ep =
Sp
p

=
T1

pTp
(7)

For our viewpoint registration algorithm Table 3 shows that, in experiments performing only a single569

superstep (surface estimation), when we compare the serial and distributed computation times (excluding570

job queueing time) we are able to achieve significant speed up in each case (where here p = 5, 20 and571

T1, T5 and T20 timings are in minutes) with S5 = 37.26
8.74 = 4.26 and S20 = 95.38

7.74 = 12.32. We note that572

the experiment aligning fewer viewpoints, using fewer nodes (|{Vi}| = 5, p = 5, S = 1) achieves a result573

closer to optimal speedup (and efficiency). We reason that a longer maximum task time (the superstep574

time) is likely to be observed for the larger experiment (|{Vi}| = 20, p = 20, S = 1) as it contains more575

distributed tasks per superstep. This point holds in practice here and was explored during our predictive576

model formulation and related scalability experiments in Section 3.3. Table 3 also shows the same task set577

sizes (|{Vi}| = 5, 20) but with multiple supersteps (S = 5), which achieve slightly improved speedup and578

efficiency performance: S5 = 176.06
39.12 = 4.50 and S20 = 835.02

52.40 = 15.94. Again our hybrid model predictions579

come within 10% of the measured values in each case and we include ECDF wall-clock time results in the580

distributed experiments for completeness. The time required to align 20 range image viewpoints over 5581

supersteps using our simultaneous method can be effectively reduced from ∼ 14 hours to fifty minutes.582

Table 3: Multi-view registration algorithm timing results: single CPU vs distributed cluster.

Single CPU
(min)

Distributed ECDF
wall-clock time (min)

Distributed ECDF
ideal time (min)

Model prediction
(min) (Eq. 5) Sp

5 views 1 superstep 37.26 10.77 8.74 8.37 4.26

20 views 1 superstep 95.38 10.89 7.74 8.28 12.32

5 views 5 supersteps 176.06 49.22 39.12 36.06 4.50

20 views 5 supersteps 835.02 185.94 52.40 49.37 15.94

5.2. Application 2: Feature selection583

5.2.1. Feature selection for classification584

The aim of feature selection in computer vision and pattern recognition problems is to obtain a585

small subset of a larger full set of features which gives e.g. accurate classification. The benefits of feature586

selection are to reduce the dimensionality of data which decreases the classification time and decreases the587

chance of over-fitting during training. Besides, it is important to eliminate irrelevant, redundant features588

and even the features which might cause inaccurate classification. Popular computer vision applications589

which utilise feature selection are face recognition [36], trajectory analysis [37], image segmentation [38],590

gesture recognition [39], and medical image processing [40]. In general, feature selection consists of feature591

subset generation, feature subset evaluation, a stopping criteria and validation of results using the selected592

final subset [41, 42].593

Feature subset evaluation can be in terms of a criterion such as maximising a performance criterion.594

The iterations continue until the value of the performance criterion is accepted which is often when adding595

additional features reduces performance. Feature subset generation can be divided into two categories596

[43]; filters and wrappers. The filter approaches do not use a learning algorithm and are usually faster597

and computationally efficient. Filter approaches rank the features and evaluate them in terms of their598

goodness / relevance such as using distance, consistency, and mutual information between a feature and599

the class labels [44]. On the other hand, wrapper methods use a learning algorithm to evaluate the600

quality of the feature subset. Wrappers are usually superior in accuracy when compared to filters [45].601

In this study, we use the Sequential Forward Feature Selection (SFFS) algorithm (Section 5.2.2) which is602
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a wrapper method with a parallel schema that suits the semi-synchronised task farming framework that603

we have introduced (Section 3, Figure 1).604

Figure 7: Steps of feature selection (adapted from [42]). The dashed box contains the stages where we evaluate the candidate
feature subsets independently and in parallel, using our task farming framework.

5.2.2. Sequential Forward Feature Selection605

The forward feature selection procedure begins with an empty feature subset. In the first iteration,606

it initialises the feature subset by trying features one by one and evaluates the subset in terms of the607

performance criterion. At the end of the first iteration, the first best feature is selected. In subsequent608

iterations, the subset of features that is selected in the previous iteration is extended by one of the609

remaining features. Hence, in the second iteration the feature subsets have two features to be evaluated.610

After all feature subsets are evaluated, the current best result of the new subset is compared with the611

previous iterations best result and, using the stopping criteria, a decision is made to continue to a third612

iteration or to stop selecting features in order to validate the results. If the decision is to continue, then613

a similar procedure iterates to produce three features in the candidate subset for the third iteration, four614

features for the fourth iteration and so on.615

5.2.3. Sequential Forward Feature Selection (SFFS) using task farming616

Similar to many other wrapper approaches, the SFFS procedure is computationally expensive especially617

if the number of features is large, the learning algorithm has a high time complexity and the required618

number of iterations is large. Therefore, efficient implementations of this method are needed for many619

computer vision applications. The procedure that we use to accelerate SFFS is based on the semi-620

synchronised task farming framework that we present above (See Figure 7: the dashed box shows where621

we apply task farming). In this context, in each superstep, we first build the subsets and then distribute622

each subset as a parallel task to be processed using the learning algorithm. After all the distributed623

tasks finish (the superstep conclusion) we collect them to find the current best criterion value and the624

feature corresponding to it. The new best feature is selected and becomes a member of all following625

feature subsets. During this task synchronisation stage, we also apply the stopping criteria to decide if626

we are going to continue to select features or not. If the decision is to continue, the new feature subsets627

are built and the new tasks are distributed. At the following iteration, the number of distributed tasks628

is one less than the previous iteration. This distribute-and-collate procedure continues until the value629

of the performance criterion decreases compared to the previous iteration. When this value decreases630

the decision to stop expanding the feature subset is made and the SFFS process is complete. A formal631

description of our SFFS algorithm using semi-synchronised task farming is as follows:632

633

Input: N features {fi} = F , Evaluation function E
Output: The selected features S, S ⊆ F
begin
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converged := 0
S := {}
while (NOT converged)

parallel for fi ∈ F
evaluate ei = E(S ∪ {fi})

end
select j = arg max

i
(ei)

S = S ∪ {fj}
F = F \ {fj}

converged = E(S)
?
≤ E(S \ {fj})

end
end

5.2.4. Experimental setup634

The presented feature selection procedure, formulated under our task farming framework, was tested635

using a fish trajectory dataset which has 3102 trajectories in total. In this dataset 3043 trajectories are636

normal (show typical behaviour) while 59 of them are rare behaviours. There are in total 179 trajectory637

description features which are obtained from the curvature scale space [46], moment descriptors [47],638

velocity, acceleration, angle, central distance functions [46] and vicinity [48] etc. of trajectories. The aim639

is to select the feature subset which can best distinguish normal and rare trajectories with high class640

accuracy. The learning algorithm that we utilise is based on affinity propagation and class labels (see [37]641

for details). The experiments were performed using 9-fold cross validation which constructs the training642

and testing sets randomly while maintaining an even distribution of normal and abnormal trajectories643

between folds. Table 4 displays the best feature subset performance after a new feature is selected in each644

iteration. The performance metric is the average trajectory class classification accuracy. The total number645

of features that were chosen for each fold were 3,2,2,6,2,5,2,3 and 2 respectively and feature selection stops646

when the observed average classification accuracy is lower than the previous superstep (iteration). The647

final (best) criterion value for each fold are shown by shaded cells in Table 4.648

Table 4: The results of applying distributed Sequential Forward Feature Selection to a 9-fold real-world fish trajectory
dataset. The table shows average trajectory-class classification accuracies during training for the best performing feature
subset of each length, for each fold. Shaded values show the best criteria value found for each fold and the following criteria
value (to the right of the best value) shows the value found when an additional feature is added (producing a lower criterion
value by definition, hence the algorithm terminates).

Feature subset
cardinality

(# Supersteps)
1 2 3 4 5 6 7

Fold

1 0.9467 0.9482 0.9497 0.9305

2 0.9527 0.9689 0.9586

3 0.9305 0.9749 0.9734

4 0.8677 0.8841 0.9169 0.9481 0.9585 0.9588 0.9567

5 0.8649 0.9586 0.9481

6 0.9567 0.9675 0.9704 0.9734 0.9749 0.9689

7 0.9438 0.9689 0.9585

8 0.9201 0.9689 0.9808 0.9567

9 0.9645 0.9822 0.9438

To evaluate the speed and efficiency of our distributed SFFS algorithm using our task farming frame-649
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work we compare it to sequential SFFS performed on a single compute node and again make use of speedup650

and efficiency metrics (Section 5.1.4). We test both implementations by varying the total feature pool651

size ∈ {10, 20, 50, 100, 179} and cap the number of potential new features added to the optimal feature652

subset by limiting the number of superstep (feature selection) rounds to 2, 6 and 10.653

During each feature selection superstep, we employ the learning algorithm: affinity propagation and654

class labels (see [37] for details). The results are presented in Table 5 in terms of processing time (min-655

utes). We compare the results obtained using a single CPU (sequential SFFS) to the distributed SFFS656

implementation again recording both the case including SGE queueing (ECDF wall-clock time) and the657

case where it is disregarded (Ideal ECDF time). Discounting the SGE queueing time effectively assumes658

that we have a sufficient number of cluster nodes available to process all feature subset tasks in parallel.659

Table 5: Feature selection algorithm training time results (in minutes): single CPU vs distributed cluster. Our timing
model accurately predicts expected ideal distributed time and we again display large speedup Sp gains over the single
CPU implementation. The difference between predicted and measured time grows for the large feature set experiments
(e.g. 100,179) where we gain the largest speedup Sp. One application specific cause for this discrepancy involves the
particular image processing features extracted. When experimenting with more features (100,179) we include the extraction
of computationally expensive image features that result in long individual task times. These outliers do not significantly
effect superstep mean task length wµ but do however increase the ECDF ideal time by providing large ws. Re-examining
our hybrid model with a non-Gaussian individual task time distribution may help to improve these estimates. We again
include wall-clock time for completeness.

Single CPU
(min)

Distributed ECDF
wall-clock time (min)

Distributed ECDF
ideal time (min)

Model prediction (Eq. 5)
(min)

Sp

10 features 2 superstep 162 31 19 18.45 8.53

10 features 6 supersteps 412 75 55 56.14 7.49

10 features 10 supersteps 322 153 132 156.32 2.44

20 features 2 superstep 323 35 18 18.01 17.94

20 features 6 supersteps 888 113 86 76.40 10.33

20 features 10 supersteps 951 211 172 184.36 5.53

50 features 2 superstep 1045 79 45 30.91 23.22

50 features 6 supersteps 1975 217 123 93.70 16.05

50 features 10 supersteps 3111 526 248 249.11 12.54

100 features 2 superstep 1749 132 60 33.80 29.15

100 features 6 supersteps 4023 417 170 107.22 23.66

100 features 10 supersteps 6493 957 303 208.53 21.43

179 features 2 superstep 2548 314 189 76.24 13.48

179 features 6 supersteps 6788 1027 276 233.53 24.60

179 features 10 supersteps 11712 2354 436 380.40 26.86

5.2.5. Performance evaluation660

The results in Table 5 show that formulating this problem under our task farming framework is again661

worthwhile, speeding up the completion times of our SFFS application significantly. This is especially true662

in the cases where the cardinality of the total feature pool (number of parallel tasks) is large i.e where F =663

50, 100, and 179. The single CPU implementation is slower than distributed SFFS in every case, even when664

taking into account the SGE queueing time. The performance of our distributed SFFS implementation665

achieves a speedup of Sp ∈ [2 . . . 30] (see Table 5) over the serial timings with the assumption that sufficient666

compute nodes are available to process all distributed tasks in parallel. When the SGE queueing time667

is included we achieve Sp ∈ [2 . . . 13] (not shown). In practice this allows us to evaluate a feature set668

containing e.g. 179 features to find an optimal feature subset during training for the purpose of fish669

trajectory classification in ∼ 7 hours (excluding queueing time) in comparison to the corresponding serial670

computation that took 195 hours (>1 week) to complete. Determining optimal feature subsets in this671

way allows us to construct a fish trajectory classification system capable of > 95% accuracy on over 3000672

trajectories during the training stage.673

21



5.3. Application 3: Hierarchical classification674

5.3.1. Hierarchical classification method675

The final application that we implement under our task farming framework is a hierarchical classifi-676

cation algorithm called the Balance-Guaranteed Optimised Tree (BGOT). The BGOT is a classification677

method that has been shown to perform well when handling data points originating from imbalanced678

classes [49]. We use BGOT here for the task of object classification. Using hierarchical classification, data679

to be classified is pushed down a tree path according to a decision made at each tree node (a classifier)680

[50, 51]. This effectively narrows down the classes that a sample is believed to belong to. Each tree leaf681

node represents a single class and a data point reaching a leaf is assigned to that class. During the training682

phase, the BGOT method selects effective subsets of predefined image features used at each node of the683

tree with the goal of maximising the mean classification accuracy among classes arriving at that node.684

This increases the weight of minority and under represented classes.685

The BGOT algorithm applies two strategies to help control classification error [52]: 1) apply more686

accurate classifiers at a higher tree level (earlier) and leave less certain decisions until deeper levels and687

2) keep the hierarchical tree balanced to minimise the maximum tree depth. A hierarchical classifier hhier688

is designed as a structured node set. Nodes are defined as triples: Nodet = {IDt, F̃t, Ĉt}, where IDt689

is a unique node number, F̃t ⊆ {f1, ..., fm} is a feature subset (chosen by a feature selection procedure690

[53]) that is found to be effective for classifying Ĉt (a subset of classes). For the classification task we use691

the m-class SVM classifier [54]. An example classification hierarchy with 15 classes is shown in Figure 8.692

Each node, identified as IDt, illustrates the class separation decision Ĉt made at that node. The example693

BGOT is capable of classifying 15 classes by making use of 7 classifier nodes and a tree-depth of 3 levels.694

The first level splits the set of classes into two groups.695

Figure 8: A classification tree automatically generated by our BGOT algorithm. The hierarchical classification strategy uses
7 node classifiers to classify 15 classes (C1, ..., C15).

5.3.2. Generating the hierarchical tree696

The tree building algorithm chooses the image feature subset that maximises the average classification697

accuracy for images belonging to the aforementioned two groups. Each class set is then split into two698

subsets and a new node in the tree is created for each subset. This procedure continues until all nodes699

contain at most four classes. The automatically generated hierarchical tree (BGOT) chooses the best class700

set split by exhaustively searching all possible combinations of class splits that maintain a balanced tree701

(an equal number of classes assigned to each of two child nodes). As a result, there are two parameter702

sets to search over when building the tree: 1) all possible 2-partitions of the classes at each node, 2) the703

related optimal feature subset in terms of classification performance. This dual parameter search results704

in a computationally demanding process and suggests that a parallel approach using our framework would705

prove advantageous. Parallelising feature subset selection is discussed previously (Section 5.2) so here we706
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focus on the tree construction technique, involving the designation of image classes to tree nodes, that we707

realise under our task farming framework.708

5.3.3. Generating a BGOT using semi-synchronised task farming709

In this section, we focus on the part of BGOT generation involving the binary split procedure that710

finds the best class subset split by exhaustively searching all possible combinations of class subsets. At711

each non-leaf tree node, the set of classes are split into two groups and a SVM classifier [55] is trained to712

separate samples between these two groups. Finding an optimal class split is exponentially complex and713

sensitive to the number of classes. In the example provided there are
(
15
8

)
= 6435 possible combinations714

to divide the 15 classes (at the top level) into two subsets of cardinality 7 and 8 which then require715

an additional
(
8
4

)
= 70 and

(
7
4

)
= 35 combinations to split the tree at the following level. On average716

the classifier quality of a subset split takes over two minutes to evaluate therefore > 250 CPU-hours are717

required if we wish to run the entire exhaustive evaluation process on a single compute node. This process718

is therefore a good candidate to make use of our parallel framework.719

More formally, our tree generation algorithm can be described as follows:720

Input: class C1 to Cn
begin
c := {C1, ..., Cn}
level := 0
featureSet := FeatureSelection(c)
construct(c, level)

end
proc construct(c, n) ≡

if n > MAXDEPTH
exit

end
comment: Evaluate classification accuracy on each split of classes c in parallel
parallel for {binary splits of c}

r = evaluate(c, featureSet)
end
comment: The ChooseSplit function finds the optimal class subset pair based on the set of r evaluations
[cLeft, cRight] := ChooseSplit({r})
comment: The maximum leaf node subset size is set to 4 to limit max tree depth
if size(|cLeft|) > 4

construct(cLeft, n+ 1)
end
if size(|cRight|) > 4

construct(cRight, n+ 1)
end

end

A schematic of the program flow is illustrated in Figure 9. Firstly the algorithm splits the current set721

of classes c into all combinations of pairs of disjoint subsets with size |c|2 and then sends each combination722

to the performance evaluation stage. After evaluating all of the possible splits, the best subset pair, in723

terms of classification accuracy, is chosen and this split is used to construct two new child tree nodes.724

This procedure is iterated for both child branches until the stopping criterion is satisfied. Each subset725

classification accuracy performance evaluation at a given tree level is independent of every other split, and726

the evaluation tasks do not need to communicate. Furthermore, all tasks have the same work-flow yet have727

varying input: the subset class member combination. As a result, we find this process a good candidate728

for our semi-synchronized task farming framework and our HPC cluster. We assign each combination of729

class set split to a distributed parallel task. Each pair of subsets is then evaluated with an accuracy score730

in parallel (the accuracy score for each distributed task is found by taking the mean classification accuracy731

of the two subsets assigned to the task). After all distributed tasks in a superstep have concluded, we732
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collect all of the mean accuracy scores and select the class split with the highest score (our superstep733

conclusion). Given True Positive and False Negative classifications, the mean accuracy (recall rate) per734

distributed task is defined as:735

AR =
1
|c|

|c|∑
j=1

(
True Positivej

True Positivej + False Negativej
) (8)

where |c| is the number of image classes.736

Figure 9: The algorithm to generate our balanced hierarchical classification tree (BGOT). At each tree level, we select the
optimal disjoint and balanced class subset split by exhaustively searching all possible splitting combinations. Each set of
algorithm stages within a dashed area represents a superstep that is distributed to our cluster in parallel.

5.3.4. Experimental setup737

We perform species classification experiments using 6875 fish images with a 5-fold cross validation738

procedure. The training and testing sets are isolated such that fish images from the same trajectory739

sequence (containing the same fish) are not used during both training and testing. We extract 66 different740

image features for the classification task. These features are a combination of colour, shape and texture741

properties in varying local spatial areas of the fish images such as the tail/head/upper/lower body area,742

as well as collecting features from the entire fish body area. Sequential Forward Feature Selection (SFFS)743

is applied to find an optimal feature subset to provide input for the classification task. We use an SVM744

variant for the classification task. Since SVMs were originally developed for the binary classification745

problem, we introduce a one-vs-one strategy with a voting mechanism to convert the binary SVM into746

a multi-class classifier [54]. The mechanism is based on a classify-and-vote procedure. Specifically, each747

class is trained in a set of binary classifiers against each other class individually. The optimal BGOT748

24



result found is shown in Figure 8, where 15 classes are classified using a tree of depth three. See [49] for749

further species classification details.750

5.3.5. Performance evaluation751

We explore the computational time requirements for executing our BGOT algorithm in a similar752

fashion to the previous applications deployed under our task farming framework. The most expensive753

superstep for this application is (by far) the initial superstep, involving the evaluation of
(
15
8

)
= 6435754

possible pairs of image class subset splits. This initial step is therefore the section of the application755

that we focus our timing evaluation on during this experiment. As each subset split takes on average756

∼ 2 minutes of computational time to evaluate we choose to perform the evaluation of a number of757

subset combinations in each distributed task. Explicitly we evaluate the time and efficiency performance758

using experiments involving the distribution of 1, 25, 50 and 100 tasks in parallel for this large initial759

superstep. Using 15 image classes, this results in assigning 6435
1 , 6435

25 , 6435
50 and 6435

100 subset evaluations760

to each distributed parallel task during each experiment respectively. We focus here on timing results761

from the initial large superstep and therefore find that queueing (non-working) time will be minimal and762

therefore display ECDF ideal time and not wall-clock time in Table 6. We show the ECDF ideal time763

metric (defined in Section 5.1.3) in Table 6 and note that we are again able to significantly decrease the764

required processing time in relation to the single computational node case by increasing the number of765

p processors invoked. By increasing the number of tasks distributed in parallel in the superstep (and766

therefore reducing the number of subset evaluations assigned to each task) we reduce the ECDF ideal767

time (and therefore increase our speedup metric) in a near linear fashion achieving speedup metrics of768

S25 = 14.7130, S50 = 27.9121 and S100 = 46.4207 in practice. While increasing the number of parallel769

tasks reduces both the ECDF ideal time (and wall-clock time) metrics in the case of the experiments770

performed here we expect to find a limit to the efficiency of doing this in practice. We see from Table 6771

that our efficiency metric (defined in Section 5.1.3) begins to drop as we increase the number of parallel772

tasks (and therefore processors invoked p). For example, using our current multi-user SGE cluster, it is773

doubtful that assigning only a single two minute SVM evaluation to each distributed task would provide774

further improvement as, given that we do not have access to 6435 processors in parallel, queueing time in775

practice would likely begin to counteract the linear speedup improvement we observe in the experiments776

performed here. We leave finding the optimal trade-off between speedup and efficiency (i.e. the optimal777

number of image class subset evaluations to assign per distributed task) to future work.778

By applying our task farming framework to this problem we are able to effectively evaluate > 6500779

BGOT graphs and find the graph configuration that is able to classify 15 species of fish with the highest780

accuracy. Using our task farming approach reduces the time needed in practice for this evaluation from781

> 260 hours (using a single compute node) to under 6 hours when making use of an SGE cluster (p = 100).782

By distributing this process with our task farming framework we have been able to easily experiment with783

and extend our species classification system (e.g. to include further fish species) even although this784

involves BGOT re-evaluation that would prove extremely time-consuming if only a serial implementation785

were available.786

Table 6: We generate BGOTs whilst varying the number of potential graph node subset evaluations per distributed task
(node). We are able to improve speedup by increasing the number of participating processors p at the cost of efficiency. The
difference between our model predictions and measured computational time costs are within ∼ 10% of the true value.

CPUs (K)
Distributed ECDF
ideal time (hours)

Model prediction (Eq. 5)
(hours)

Sp Ep

6435 subset evaluations per node 1 260.42 N/A 1.00 1.00

257 subset evaluations per node 25 18.70 20.89 14.71 0.59

128 subset evaluations per node 50 9.33 10.23 27.91 0.56

64 subset evaluations per node 100 5.61 5.64 46.42 0.46
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6. Discussion787

In this paper, we formulate a semi-synchronised task farming framework for solving computationally788

intensive problems where independent problem components can be distributed across an HPC cluster.789

Results are collated to inform following rounds of task distribution, eventually leading to a global problem790

solution. Our contributions include the development of a model to predict overall application completion791

time for problems that are formulated using our framework. We validate this model using simulation and792

experimental results and find it to be sufficiently accurate, providing a simple tool that can be utilised793

when planning the time requirements of computationally expensive applications. Further to this we study794

the performance enhancement obtained by utilising our framework in practice to guide the algorithmic795

design of several computationally expensive computer vision problems and compare the throughput using796

our framework with that of solutions making use of only a single compute node. In each example provided797

we find near linear speedup improvements in the number of participating processors p over the related798

serial implementations. Also, in the case of each real-world problem investigated, we are able to provide799

model predictions for computation time that are typically within ∼ 10% of the execution time required800

in practice.801

Based on our experimental results we show that processing large data sets using algorithms formulated802

with our framework, and deployed on an HPC cluster, obtain significant time saving over single node803

computation due to vast gains in terms of speedup. We note that in practice the human effort required804

to move from an original serial algorithm implementation to a distributed task farming application is805

very reasonable. By making use of SGE to handle the task queueing system and allowing developers to806

concentrate on domain specific problem aspects we are typically able to completely convert a serial code807

on the order of days. By also employing user-friendly languages for parallel programming, master-slave808

communication is also hidden from the developer allowing them to again focus solely on domain specific809

problems.810

Distributed computing on HPC clusters offers an attractive option for our framework when compared811

to expensive integrated mainframe solutions. The main advantages of HPC clustering include distributed812

robustness and the ease of cluster scalability. When using an HPC cluster to accelerate the rate that we813

are able to solve computationally expensive problems the factors of data set size and algorithm design814

play important roles in determining the degree of success in parallelising an application. Our framework815

allows the performance of a distributed program on a given architecture to be predictable. Using our816

framework and simple timing parameters from the algorithm under evaluation allow us to reason about817

program design at an early stage.818

All implementation examples presented in this work make use of Matlab and we find that the pre-819

requisites for writing parallel code under the Distributed Computing Toolbox (DCT) from MathWorks820

are relatively low. There is no need for the developer to instruct cluster machines how to communicate,821

which part of the code to execute and how to assemble end results. We find that this provides a straight-822

forward and intuitive approach to parallelising computationally demanding applications in a reasonable823

time frame. Parallelisation under this simple task farming framework results in potentially huge time824

savings without requiring extensive task or data parallelism knowledge. Possible extentions and inter-825

esting avenues of future work include implementing solutions using our framework with faster compiled826

languages (e.g. C/C++) and applying such solutions to time critical applications. Additionally, extending827

our performance modelling treatment, to account for heterogeneous processors, would likely improve the828

model predictive power. Related extentions might take the form of re-examining individual task time829

fitting using more sophisticated distributions to improve modelling in the heterogeneous processor case830

(e.g. employing distribution mixtures). Finally during the experimental work performed here it was831

noted that in practice there is often contention between speedup and efficiency. In future we aim to find832

optimal-trade-off generalisations from the specific cases presented here. In sunmmary this work highlights833

a range of demanding vision applications that a straightforward parallelisation strategy such as ours can834

contribute to solving, whilst offering vast computational time savings.835
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