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Abstract 25 

We address two questions concerning eye guidance during visual search in naturalistic 26 

scenes. First, search has been described as a task in which visual salience is unimportant. 27 

Here, we revisit this question by using a letter-in-scene search task that minimizes any 28 

confounding effects that may arise from scene guidance. Second, we investigate how 29 

important the different regions of the visual field are for different sub-processes of search 30 

(target localization, verification). In Experiment 1, we manipulated both the salience (low vs. 31 

high) and the size (small vs. large) of the target letter (a “T”), and we implemented a foveal 32 

scotoma (radius: 1º) in half of the trials. In Experiment 2, observers searched for high- and 33 

low-salience targets either with full vision, or with a central or peripheral scotoma (radius: 34 

2.5º). In both experiments, we found main effects of salience with better performance for 35 

high-salience targets. In Experiment 1, search was faster for large than for small targets and 36 

high salience helped more for small targets. When searching with a foveal scotoma, 37 

performance was relatively unimpaired regardless of the target’s salience and size. In 38 

Experiment 2, both visual-field manipulations led to search time costs, but the peripheral 39 

scotoma was much more detrimental than the central scotoma. Peripheral vision proved to be 40 

important for target localization, and central vision for target verification. Salience affected 41 

eye movement guidance to the target in both central and peripheral vision. Collectively, the 42 

results lend support for search models that incorporate salience for predicting eye-movement 43 

behavior. 44 
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1 Introduction 51 

In search for a specific target object in a naturalistic scene, we use selective attention 52 

to deploy our limited attentional resources as well as our eyes to candidate targets. This 53 

deployment is guided by knowledge of the basic features of the target and, when possible, by 54 

the rules that govern the placement of that target in a scene (Wolfe, 2015). Here, we 55 

investigate the causal influence of bottom-up visual salience on gaze guidance during scene 56 

search. To this end, we manipulate the salience and size of context-free targets within scenes. 57 

Moreover, we explore the importance of foveal vision (Experiment 1) and central vs. 58 

peripheral vision (Experiment 2) for the task. We found that search was more efficient for 59 

high salience than for low salience targets. Salience affected eye movement guidance to the 60 

target in both central and peripheral vision. 61 

It is widely agreed that eye movements in naturalistic scenes are controlled by both 62 

bottom-up (stimulus-driven) and top-down (task-driven, context-driven, or goal-driven) 63 

factors (Malcolm, Groen, & Baker, 2016). Research on bottom-up control has been 64 

dominated by salience-driven approaches, in which a saliency map is computed using low-65 

level image features to guide task independent gaze allocation (Borji & Itti, 2013; Borji, 66 

Sihite, & Itti, 2013a for reviews). The first computational model of this kind was Itti, Koch, 67 

and Niebur’s (1998) implementation of Koch and Ullman’s (1985) computational 68 

architecture based on the Feature Integration Theory (FIT, Treisman & Gelade, 1980). FIT 69 

explains human behavior in visual search tasks involving covert shifts of attention. Extending 70 

this research, the saliency model was introduced as a model of covert and overt orienting in 71 

search (Itti & Koch, 2000; Itti et al., 1998). According to simulations by Itti and Koch (2000), 72 

the saliency model performed similarly to, or better than, human searchers looking for 73 

oriented lines amongst distractor lines or for a camouflaged tank in a natural environment. 74 

Still, when observers are given a visual search task (or a task altogether), top-down 75 

influences on attention and eye guidance are often believed to dominate (Koehler, Guo, 76 

Zhang, & Eckstein, 2014).  77 

Few empirical studies have investigated the role of target salience in search within 78 

natural scenes. Whereas some studies manipulated the salience of the target object (Foulsham 79 

& Underwood, 2007; Underwood, Templeman, Lamming, & Foulsham, 2008), others used 80 

low salience targets that were presented along with high salience distractors (Henderson, 81 

Malcolm, & Schandl, 2009; Underwood, Foulsham, van Loon, Humphreys, & Bloyce, 2006) 82 

or distractors that were either high or low in salience (Underwood & Foulsham, 2006). 83 



 

 4 

One of these search tasks required observers to indicate whether or not there was a 84 

piece of fruit in the scene (Underwood et al., 2006). If present, the piece of fruit was always a 85 

low-salience object, according to the saliency model by Itti and Koch (2000). Some of the 86 

scenes also included a high-salience object, which served as a distractor. There was little 87 

attentional capture by the distractor. However, when there was a high-salience distractor 88 

present, then the low-salience target was fixated later than when it was absent, and near 89 

distractors were more disruptive than those furthest from the target. The authors concluded 90 

that the purpose of inspection can provide a cognitive override that renders visual salience 91 

secondary. The key finding that the most salient region is neglected in favor of a completely 92 

non-salient target was replicated in a subsequent study by different authors (Henderson et al., 93 

2009).  94 

Underwood and Foulsham (2006) had subjects search for a small gray rubber ball, 95 

which was inserted into half of the scenes. This target was of very low visual salience. 96 

Beyond that, the visual salience and semantic congruency of two non-target objects were 97 

manipulated. The authors summarized that search was unaffected by salience or congruency. 98 

On closer inspection, the data showed an unexpected interaction. When both non-target 99 

objects were congruent with the overall meaning of the scene, fixation of the more salient of 100 

them was slow, rather than fast. Presumably, the inspection of a bright object had low priority 101 

when the task required the detection of a small dark target (Underwood & Foulsham, 2006).  102 

Foulsham and Underwood (2007) manipulated the visual salience of the target 103 

directly by comparing medium and low saliency target objects; objects were again chosen 104 

based on their saliency model ranks. The authors excluded high saliency targets based on the 105 

argument that natural search is often performed in situations where the target is not the most 106 

salient object. There was little evidence that visual salience was important in eye guidance 107 

during either category or instance search. Underwood et al. (2008) employed a comparative 108 

visual search task, in which target objects were manipulated regarding their visual 109 

conspicuity (i.e., salience) and semantic congruency. Manual reaction times and eye 110 

movement guidance to the target were not affected by visual salience. 111 

Foulsham and Underwood (2011) used a slightly different approach: rather than 112 

manipulating scenes and objects, they used the predictions of the saliency model by Itti and 113 

Koch (2000) to select target regions that were either salient or non-salient. As would be 114 

predicted by the saliency model, behavioral search times were shorter for highly salient 115 

regions than either low-salient regions or control regions. Control regions and low-salient 116 

regions did not differ reliably. Interestingly, salience did not affect the process of localizing 117 
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the target region in space, as indexed by the latency to first fixation on the region. This 118 

implies that the subsequent verification process (is this the target?) took longer when the 119 

region was low in salience, and that this effect was large enough to affect total search time. In 120 

a second experiment, peripheral filtering of low-level features was expected to modify the 121 

effect of target saliency on search, but this was not the case (Foulsham & Underwood, 2011). 122 

The main problem with identifying the causal contribution of visual salience to gaze 123 

guidance is an inherent correlation with higher-order factors such as objects and semantics 124 

(Henderson, Brockmole, Castelhano, & Mack, 2007; Nuthmann & Henderson, 2010; Stoll, 125 

Thrun, Nuthmann, & Einhäuser, 2015). In the studies reviewed above, effects of salience 126 

were assessed between different objects or scenes, which potentially introduces additional 127 

confounds. To address these issues, we used context-free letter targets rather than 128 

contextually relevant search targets. In two experiments, observers searched for a black letter 129 

“T” embedded in grayscale photographs of real-world scenes. We used our Target 130 

Embedding Algorithm (T.E.A., Clayden, Fisher, & Nuthmann, 2020)
1
 to generate within-131 

scene manipulations of target salience (low vs. high) and—in Experiment 1—also target size 132 

(small vs. large). Our approach minimizes any confounding effects that may arise from 133 

various forms of scene guidance (semantic, syntactic, and episodic guidance; Biederman, 134 

Mezzanotte, & Rabinowitz, 1982; Henderson & Ferreira, 2004). Specifically, using context-135 

free targets prevents observers from using their knowledge about the likely positions of 136 

targets to guide their attention and eye movements. Moreover, by inserting the targets in an 137 

algorithmic manner via image processing techniques, we also minimized artefacts that may 138 

otherwise occur due to post hoc editing of scenes.  139 

Saliency maps translate physical properties of the stimulus such as luminance, 140 

orientation, color, and size into saliency values. Since these stimulus dimensions have 141 

different characteristics, combining them is a non-trivial problem (Itti & Koch, 1999). The 142 

size feature is typically accounted for in an implicit manner by incorporating multiple spatial 143 

scales of processing. In this way, saliency models attempt to account for size over image 144 

regions and not over objects, which is a limiting factor of this approach (Borji, Sihite, & Itti, 145 

2013b). Borji et al. addressed this issue by asking observers to choose which object (out of 146 

two in a given image) stands out the most based on its low-level features. Both saliency and 147 

object size were important for selecting the object. Observers’ judgments were well described 148 

by a linear combination of the two variables in an integrated model of saliency and object 149 

                                                 
1
 The code for the T.E.A. is available at https://github.com/AdamClayden93/tea.  

https://github.com/AdamClayden93/tea
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size. Moreover, previous investigations of object-based selection in scenes found independent 150 

effects of object size and object-based salience on fixation probability, with large objects and 151 

highly salient objects being more frequently selected for fixation (Nuthmann, Schütz, & 152 

Einhäuser, 2020; Stoll et al., 2015). Regarding visual search, in previous work we 153 

manipulated target size whilst controlling for target salience by probing the scene for 154 

locations of median salience (Clayden et al., 2020). In these experiments, we observed better 155 

search performance for larger targets. Extending this research, we designed Experiment 1 to 156 

assess the independent contributions of target salience and target size, as well as their 157 

interaction. 158 

If our vision was the same throughout the visual field, visual search would be easy 159 

most of the time. However, foveal and extrafoveal vision differ, owing to our foveated visual 160 

systems (Rosenholtz, 2016). Saliency models, as well as theories of search, oftentimes ignore 161 

that visual acuity declines systematically from the fovea into the periphery. Of course, there 162 

are notable exceptions. For example, Itti (2006) added a gaze-contingent foveation filter to a 163 

variant of the saliency model, and the Target Acquisition Model (Zelinsky, 2008) as well as 164 

the MASC model (Adeli, Vitu, & Zelinsky, 2017) implement a fixation-by-fixation retina 165 

transformation of the search image. Previous research has shown that foveal vision is less 166 

important and peripheral vision is more important for scene search than previously thought 167 

(Clayden et al., 2020; McIlreavy, Fiser, & Bex, 2012; Nuthmann, 2014). Here, we extend this 168 

research by assessing the role target salience plays in foveal vision (Experiment 1) and 169 

central vs. peripheral vision (Experiment 2).  170 

In visual search, guidance by basic features can be bottom-up or top-down (Wolfe, 171 

2015). Bottom-up guidance is stimulus-driven, based on local differences. Here, we tested the 172 

independent and combined effects of target salience and size during active eye-movement 173 

search. Top-down guidance is user-driven, based on the observer’s understanding of the task. 174 

In our experiments, on each trial participants were asked to look for the letter “T”. Given that 175 

letters are overlearned categories, observers were expected to use top-down guidance to 176 

deploy attention to the target.  177 

Any model where salience is combined with target knowledge would predict that 178 

search should be more efficient for high salience than for low salience targets. Clearly, results 179 

from most of the studies reviewed above did not lend support to this hypothesis. Here, we 180 

revisit the question by using a task that emphasizes feature guidance and minimizes the role 181 

of scene guidance. Moreover, Experiment 1 allowed us to assess the independent effects of 182 

target salience and size.  183 
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In our experiments, search with normal, non-degraded vision was compared to search 184 

with a foveal scotoma (radius: 1º) in Experiment 1, and to central and peripheral scotomas 185 

(radius: 2.5º) in Experiment 2. When searching with a foveal scotoma, we have found 186 

performance to be relatively unimpaired regardless of the target’s size (Clayden et al., 2020). 187 

In Experiment 1, we explored whether foveal vision would gain a more prominent role if the 188 

target’s salience was reduced, along with its size. In Experiment 2, we expect the peripheral 189 

scotoma to be more detrimental than the central scotoma (cf. Nuthmann, 2014). Analyzing 190 

sub-processes of search will allow us to test the assumption of a central-peripheral dichotomy 191 

according to which central vision is mainly for seeing (decoding or recognizing) and 192 

peripheral vision is mainly for looking (selecting) (Zhaoping, 2019). Applied to the target 193 

acquisition task that we used, we should find peripheral vision to be important for target 194 

localization, and central vision for verification. Thus, we expect the peripheral scotoma to 195 

selectively impair target localization, and the central scotoma to impair target verification 196 

only (cf. Nuthmann, 2014). Beyond that, the simulated scotomas allow us to assess the effect 197 

of target salience in peripheral and central vision.  198 

2 General Method 199 

2.1 Participants 200 

Thirty-two participants (10 males) between the ages of 18 and 27 (mean age 21 years) 201 

participated in Experiment 1. Thirty-six participants (7 males) between the ages of 18 and 27 202 

(mean age 21 years) participated in Experiment 2. All participants had normal or corrected-203 

to-normal vision by self-report. They gave their written consent prior to the experiment and 204 

either received study credit or were paid at a rate of £7 per hour for their participation, which 205 

lasted about one hour. The experiments were approved by the Psychology Research Ethics 206 

Committee of the University of Edinburgh and conformed to the Declaration of Helsinki. 207 

2.2 Apparatus 208 

Working with gaze-contingent displays requires minimizing the latency of the system 209 

(Loschky & Wolverton, 2007; Saunders & Woods, 2014). Moreover, gaze-contingent 210 

manipulations of foveal vision call for eye-tracking equipment with high spatial accuracy and 211 

precision (Geringswald, Baumgartner, & Pollmann, 2013). Participants’ eye movements were 212 

recorded binocularly with an SR Research EyeLink 1000 Desktop mount system with high 213 

accuracy (0.15º best, 0.25-0.5º typical) and high precision (0.01º RMS). The Eyelink 1000 214 

was equipped with the 2000 Hz camera upgrade, allowing for binocular recordings at a 215 
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sampling rate of 1000 Hz per eye. Stimuli were presented on a 21-inch CRT monitor with a 216 

refresh rate of 140 Hz at a viewing distance of 90 cm, taking up a 24.8º  18.6º (width  217 

height) field of view. A chin and forehead rest was used to keep the participants’ head 218 

position stable.  219 

The experiments were programmed in MATLAB 2013a (The MathWorks, Natick, 220 

MA) using the OpenGL-based Psychophysics Toolbox 3 (PTB-3, Brainard, 1997; Kleiner, 221 

Brainard, & Pelli, 2007) which incorporates the EyeLink Toolbox extensions (F. W. 222 

Cornelissen, Peters, & Palmer, 2002). A game controller was used to record participants’ 223 

behavioral responses. 224 

2.3 Stimulus Materials 225 

In both experiments, we used 120 grayscale images of naturalistic scenes (800  600 226 

pixels), which came from a variety of categories; 98 of these photographs were previously 227 

used as colored images in Nuthmann (2014). Additional images were used as practice scenes.  228 

The search target was always the letter “T”, which was inserted into the scene by 229 

using the Target Embedding Algorithm (T.E.A.) introduced by Clayden et al. (2020). 230 

Specifically, the T was inserted in sans-serif style; that is, consisting of two bars. The 231 

dimensions of these two bars are parameterized by length and width. For the small target 232 

letter, the horizontal bar was 13 pixels in length and two pixels in width, whereas the vertical 233 

bar was 16 pixels in length and three pixels in width. For the large target letter, the horizontal 234 

bar was 33 pixels in length and four pixels in width, whereas the vertical bar was 40 pixels in 235 

length and five pixels in width. 236 

To determine suitable positions for low- and high-salience targets, we inserted the T 237 

into every possible location of the original scene image and calculated how much it would 238 

stand out from the scene background. To this end, a rectangular region that was slightly 239 

larger than the target was moved pixel-by-pixel through the image. Using the larger 240 

dimension of the target letter (i.e., its height) as a reference, the region’s size was determined 241 

by adding a constant buffer of 3 pixels to either side (plus one pixel to center the region on 242 

the current position). As a result, the region size was 23  23 pixels for small target letters 243 

and 47  47 pixels for large target letters.  244 

As a measure of visual salience, we used a version of root-mean-square (RMS) 245 

contrast: the standard deviation of luminance values of all pixels in the evaluated region was 246 

divided by the mean luminance of the image (Bex & Makous, 2002; Nuthmann & Einhäuser, 247 

2015; Reinagel & Zador, 1999). First, the RMS contrast Mo was calculated for the evaluation 248 
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box at each position in the image, see Appendix A for the mathematical details of the 249 

calculations. Next, the black target letter was inserted at a given position by replacing pixel 250 

values of the original image by the pixel values of the target. Following target insertion, the 251 

RMS contrast Mw was computed for the evaluation box comprising the T. Afterwards, the 252 

contrast change value ΔC = Mw – Mo was computed to quantify the visual salience of the 253 

target letter at a given location within the scene. 254 

To provide an example, in Figure 1 the evaluation box is centered on image position 255 

(r,c) = (125, 85), with (r,c) denoting the rows and columns of the image. For the large target, 256 

we obtain Mo = 0.118 and Mw = 0.583, with ΔC = 0.464. Thus, adding a black T to a 257 

relatively bright region of the image leads to a relatively large change in local contrast. For 258 

the example image used in Figures 1 and 2, our GitHub page (see footnote 1) shows a 259 

dynamic visualization of the contrast calculations for all possible target positions.  260 

 261 

 262 

Figure 1. Target Embedding Algorithm. In this example, the squared evaluation box (in red) 263 

is positioned at (r,c) = (125, 85) in all panels. The local RMS contrast is calculated both 264 

without the target letter (Mo, top row) and with the target letter inserted (Mw, bottom row), for 265 
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both the small target (left column) and the large target (right column). Cimg denotes the mean 266 

luminance of the image, without the target letter (top row) or with (bottom row). The outer 267 

rectangle (in red) marks the region of the image border that was not considered for target 268 

insertion. 269 

 270 

Calculating ΔC at each pixel in the image yields a map comprising of the contrast 271 

difference values within the image. The contrast difference map was calculated separately for 272 

small and large targets (Figure 2). Afterwards, the two resultant maps were summed together. 273 

This allowed us to compute a single location for both target sizes, as the values of the two 274 

difference maps varied slightly. The summed difference map was then probed by our 275 

algorithm to locate suitable pixel (i.e., potential target) positions. The criteria for choosing the 276 

low and high salient regions were the lower and upper quartile changes in local contrast when 277 

inserting the letter into the scene. If the exact value for the lower or upper quartile of the 278 

distribution did not exist in the summed contrast difference map, the closest existing value 279 

was used. Candidate locations were tested against two exclusion criteria (Clayden et al., 280 

2020). In the experiments, participants started their search at the center of the scene, with a 281 

foveal or central scotoma blocking their view on many of the trials. Therefore, locations 282 

within 3º from the center were excluded. To avoid truncation of the letter, locations at image 283 

boundaries were also excluded (Figure 1, Figure 2). If there was more than one possible 284 

target location left, one was selected at random as the location of the target for that scene 285 

image and salience condition. The resulting distributions of target positions reveal broad 286 

coverage (Figure B1). For further validation, each target’s eccentricity was calculated as the 287 

Euclidean distance between target position and image center. Mean eccentricities did not 288 

differ for low- and high-salience targets, t(119) = -0.32, p = .746.  289 

 290 
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 291 

Figure 2. Algorithmic target placement at low and high salient regions within the scene. Left: 292 

Contrast difference maps for the small and large target size used in Experiment 1, for the 293 

example scene used in Figure 1 and Figure 7. Right: Summed contrast difference map 294 

(bottom) and the distribution of the map’s values (top). Two vertical lines were added to the 295 

histogram to mark the lower (light blue) and upper (salmon) quartiles of the distribution. 296 

These values were used to determine suitable positions for low- and high-salience targets in 297 

the scene image. For the example image, the final target positions are marked with colored 298 

dots in the summed contrast difference map. For visualization purposes, the values of a given 299 

map were scaled to the same range (i.e., to [0,1]). 300 

 301 

2.4 Creation of Gaze-Contingent Scotomas 302 

In Experiment 1, we implemented a foveal scotoma; in Experiment 2, we contrasted a 303 

central scotoma with a peripheral scotoma. For the foveal and central scotomas, we used a 304 

gaze-contingent technique that was originally introduced by Rayner and Bertera (1979) for 305 

sentence reading. The authors referred to their implementation as moving mask; other terms 306 
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include simulated scotoma (Bertera, 1988). When applied to scene viewing, the moving mask 307 

paradigm is analogous to viewing the scene with a “blindspot”: information in the center of 308 

vision is blocked from view, while information outside the window is unaltered (Miellet, 309 

Zhou, He, Rodger, & Caldara, 2010; Nuthmann, 2014). As in our previous study (Clayden et 310 

al., 2020), the foveal scotoma in Experiment 1 was a symmetric circular gray mask with a 311 

radius of 1º to completely obscure foveal vision (see Figure 3 below). The central scotoma 312 

(Experiment 2) had a radius of 2.5º, thereby eliminating both foveal and part of parafoveal 313 

vision (Figure 7b below). For the peripheral scotoma (Experiment 2), we used the gaze-314 

contingent moving window technique (McConkie & Rayner, 1975, for reading). Applied to 315 

scene viewing, the moving window paradigm is analogous to viewing the scene through a 316 

“spotlight”: a defined region in the center of vision contains unaltered scene content, whilst 317 

the scene content outside the window is blocked from view (Caldara, Zhou, & Miellet, 2010; 318 

Nuthmann, 2014). Our central and peripheral scotomas had equal radii (2.5º) and so were 319 

inverse manipulations of one another (Figure 7 below). To avoid sharp-boundary scotomas, 320 

the perimeter of the gray circular mask or window was slightly faded through low-pass 321 

filtering (Clayden et al., 2020). 322 

The general idea underlying our scotoma implementation is to mix a foreground 323 

image and a background image via a mask image (van Diepen, De Graef, & Van Rensbergen, 324 

1994). The foreground image is formed by the experimental stimulus; that is, by the current 325 

scene image. The background image defines the content of the masked area. In the present 326 

experiments, the background image was a monochrome image (gray, RGB-value: 128, 128, 327 

128), which implies that the moving scotomas were drawn in that color (Clayden et al., 328 

2020). The mask image defines the type, shape, and size of the gaze-contingent scotoma. It 329 

was a normalized grayscale image, where pixel values of 255 (white) represent portions of 330 

the foreground image that show through while values of 0 (black) are masked and therefore 331 

replaced by the corresponding background image pixels. For the foveal and the central 332 

scotoma, a circular 0-center, 255-surround map formed the mask. For the peripheral scotoma, 333 

an inverted mask was used; that is, a circular 255-center, 0-surround map. To avoid sharp-334 

boundary scotomas, the perimeter of the circular mask or window was slightly faded through 335 

low-pass filtering (Clayden et al., 2020). 336 

To minimize the latency of the measurement system, we used an eye tracker with a 337 

binocular sampling rate of 1000 Hz and fast online access of new gaze samples. Specifically, 338 

the eye tracker computed a new gaze position every millisecond and made it available in less 339 

than 2 ms. Moreover, PTB-3 for MATLAB offers fast creation of gaze-contingent scotomas 340 
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using texture-mapping and OpenGL (Open Graphics Library). This technique provides 341 

various blending operations that enable image combinations to take place via an image’s 342 

alpha channel (see Duchowski & Çöltekin, 2007, for details on the general technique). The 343 

mask image served as the alpha mask for blending of the foreground and background images. 344 

To obtain a composite rendering of the scene image with the scotoma, three textures were 345 

created—for the foreground image, background image, and mask image, respectively. During 346 

the search trial, the center of the mask texture was translated to the coordinates of the current 347 

gaze position. Thus, gaze contingency was realized by moving the mask across the stimulus. 348 

This solution avoids the need for computationally expensive real-time image synthesis.  349 

Since scene images typically occupy the entire monitor space, a full refresh cycle is 350 

required to update the screen. In the experiments, the stimuli were displayed on a 140-Hz 351 

CRT monitor, which means that it took 7.14 ms for one refresh cycle to complete. 352 

Throughout the experimental trial, gaze position was continuously evaluated online. The 353 

algorithm first checked whether new valid binocular gaze samples were available. If that was 354 

the case, the center of the mask was re-aligned with the average horizontal and vertical 355 

position of the two eyes (Nuthmann, 2013, for discussion). Even with a state-of-the-art 356 

system, small temporal delays in updating the display contingent on the participant’s gaze are 357 

unavoidable. Any mismatch between gaze position and scotoma position that may result 358 

should be largest during a saccade and right after a saccade. However, observers are blind to 359 

mismatches during this period, due to saccadic suppression and the time needed for 360 

perception to be restored (McConkie & Loschky, 2002). 361 

2.5 Procedure 362 

At the beginning of the experiment, the eye tracker was calibrated using a series of 363 

nine fixed targets distributed around the display, followed by a 9-point accuracy test. At the 364 

start of each trial, a fixation cross was presented at the center of the screen for 600 ms and 365 

acted as a fixation check. The fixation check was judged successful if gaze position, averaged 366 

across both eyes, consistently remained within an area of 40  40 pixels (1.24º  1.24º) for 367 

200 ms. If this condition was not met, the fixation check timed out after 500 ms. In this case, 368 

the fixation check procedure was either repeated or replaced by another calibration 369 

procedure. If the fixation check was successful, the scene image appeared on the screen. 370 

Once subjects had found the target letter, they were instructed to fixate their gaze on it and 371 

press a button on the controller to end the trial (cf. Clayden et al., 2020; Glaholt, Rayner, & 372 

Reingold, 2012; Nuthmann, 2014). Trials timed-out 15 s after stimulus presentation if no 373 
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response was made. There was an inter-trial interval of 1 s before the next fixation cross was 374 

presented. 375 

2.6 Data Analysis 376 

The SR Research Data Viewer software with default settings was used to convert the 377 

raw data obtained by the eye tracker into a fixation sequence matrix. Data from the right eye 378 

were analyzed. The behavioral and eye-movement data were further processed and analyzed 379 

using the R system for statistical computing (R Development Core Team). Figures were 380 

created using MATLAB (Figures 1 – 3 and 7) or the ggplot2 package (version 3.2.1; 381 

Wickham, 2016) supplied in R (remaining figures). The T.E.A. was programmed in 382 

MATLAB.  383 

Analyses of fixation durations and saccade lengths excluded fixations that were 384 

interrupted with blinks. Analysis of fixation durations disregarded the initial, central fixation 385 

in a trial. However, its duration was analyzed separately as search initiation time. The button 386 

press terminating the search took place during the last fixation in a trial. Therefore, the last 387 

fixation was also excluded from analysis of fixation durations. However, its duration 388 

contributed to the measurement of verification time. Fixation durations that are very short or 389 

very long are typically discarded, based on the assumption that they are not determined by 390 

on-line cognitive processes (Inhoff & Radach, 1998). In the present study, this precaution 391 

was not followed because the presence of a foveal scotoma may affect eye movements (e.g., 392 

fixations were predicted to be longer than normal). 393 

Distributions of continuous response variables were positively skewed. In this case, 394 

variables are oftentimes transformed to produce model residuals that are more normally 395 

distributed. To find a suitable transformation, the optimal -coefficient for the Box-Cox 396 

power transformation (Box & Cox, 1964) was estimated using the boxcox function of the R 397 

package MASS (Venables & Ripley, 2002) with y() = (y

 – 1)/ if   0 and log(y) if  = 0. 398 

For all continuous dependent variables, the optimal  was different from 1, making 399 

transformations appropriate. Whenever  was close to 0, a log transformation was chosen. 400 

We analyzed both untransformed and transformed data. As a default, we report the results for 401 

the raw untransformed data and additionally supply the results for the transformed data when 402 

they differ from the analysis of the untransformed data. 403 

2.7 Statistical Analysis using Mixed Models 404 

We used linear mixed-effects models (LMM) for analyzing continuous response 405 
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variables, specifically search time and its three subcomponents, saccade amplitude, and 406 

fixation duration. Search accuracy was analyzed using binomial generalized linear mixed-407 

effects models (GLMM). A technical introduction to both types of mixed models is provided 408 

by Demidenko (2013). The analyses were conducted with the R package lme4 (version 1.1.-409 

23; Bates, Maechler, Bolker, & Walker, 2015). Separate (G)LMMs were estimated for each 410 

dependent variable.  411 

Search accuracy was assessed through a binary variable; in a given trial, the search 412 

target was correctly located (1) or not (0). In the GLMM, the resulting probabilities were 413 

modeled through a link function (Bolker et al., 2009). For binary data, there are three 414 

common choices for link functions: logit, probit, and complementary log-log (Demidenko, 415 

2013). For our analyses we used the logit transformation of the probability, which is the 416 

default for the glmer function in the R package lme4. Thus, in a binomial GLMM parameter 417 

estimates are obtained on the log-odds or logit scale, which is symmetric around zero, 418 

corresponding to a probability of 0.5, and ranges from negative to positive infinity (Jaeger, 419 

2008).  420 

A mixed-effects model contains both fixed-effects and random-effects terms (Bates et 421 

al., 2015). Since mixed models are regression techniques, factors of the experimental design 422 

usually enter the model as contrasts (Schad, Vasishth, Hohenstein, & Kliegl, 2020). For 423 

Experiment 1, to specify the contrasts simple coding (also known as deviation coding or 424 

effects coding) was used for all three factors of the experimental design (-0.5/ +0.5). The 425 

reference levels were small size, low salience, and no scotoma. The mixed-model equation is 426 

provided in Appendix C. 427 

For Experiment 2, simple coding was used for the 2-level factor target salience. For 428 

the 3-level factor scotoma type, contrasts were chosen such that they tested hypotheses about 429 

the expected pattern of means. More generally, the different scotomas were expected to affect 430 

overall task difficulty, which may lead to differences in search performance and global eye 431 

movement measures. For example, search times were expected to be longest for search with a 432 

peripheral scotoma. In this case, factor levels were ordered accordingly (no scotoma, central 433 

scotoma, peripheral scotoma) and backward difference (BWD) coding (also known as sliding 434 

differences or repeated contrasts) was used to compare the mean of the dependent variable 435 

for one level of the ordered factor with the mean of the dependent variable for the prior 436 

adjacent level (Venables & Ripley, 2002). Moreover, we reasoned that a specific type of 437 

scotoma may selectively impair a specific sub-process of search. To test these more specific 438 

hypotheses, simple coding was used. The no-scotoma control condition served as reference 439 
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level, which allowed us to test whether there were any differences between the central 440 

scotoma and the control condition or between the peripheral scotoma and the control 441 

condition. Simple coding and backward difference coding yield centered contrasts, in which 442 

case the model intercept reflects the grand mean of the dependent variable. 443 

The mixed models included subjects and scene items as crossed random factors. The 444 

overall mean for each subject and scene item was estimated as a random intercept. In 445 

principle, the variance-covariance matrix of the random effects not only includes random 446 

intercepts but also random slopes, as well as correlations between intercepts and slopes (Barr, 447 

Levy, Scheepers, & Tily, 2013). Random slopes estimate the degree to which each fixed 448 

effect varies across subjects and/or scene items. For example, the by-item random slope for 449 

salience captures whether scene items vary in the extent to which target salience affects 450 

search performance and/or eye-movement parameters (see Nuthmann, Einhäuser, & Schütz, 451 

2017, for an example). 452 

To select an optimal random-effects structure for (G)LMMs, we pursued a data-453 

driven approach using backward model selection. To minimize the risk of Type I error, we 454 

started with the maximal random-effects structure justified by the design (Barr et al., 2013). 455 

For Experiment 1, where the same contrast coding was used for all dependent variables, the 456 

maximal variance-covariance matrix of the random effects is provided in Appendix C. Across 457 

experiments, none of these maximal models converged (maximal number of iterations: 10
6
). 458 

For LMMs, the maximal random-effects structure was backwards-reduced using the step 459 

function of the R package lmerTest (version 3.1-2; Kuznetsova, Brockhoff, & Christensen, 460 

2017). If the final fitted model returned by the algorithm had convergence issues, we 461 

proceeded to fit zero-correlation parameter (zcp) models in which the random slopes are 462 

retained but the correlation parameters are set to zero (Matuschek, Kliegl, Vasishth, Baayen, 463 

& Bates, 2017; Seedorff, Oleson, & McMurray, 2019). The full random-effects structure of 464 

the zcpLMM required 16 (Experiment 1) and 12 (Experiment 2) variance components to be 465 

estimated. This random-effects structure was evaluated and backwards-reduced to arrive at 466 

the model that was justified by the data.  467 

Model non-convergence tends to be a much larger issue with GLMMs than with 468 

LMMs (Seedorff et al., 2019). Indeed, the GLMMs we report are random intercept models 469 

because random slope models did not converge. 470 

For parameter optimization, the bobyqa optimizer was used for LMMs, and a 471 

combination of Nelder-Mead and bobyqa for GLMMs. LMMs were estimated using the 472 

restricted maximum likelihood criterion. GLMMs were fit by Laplace approximation. For the 473 
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coded contrasts, coefficient estimates (b) and their standard errors (SE) along with the 474 

corresponding t-values (LMM: t = b/SE) or z-values (GLMM: z = b/SE) are reported. For 475 

GLMMs, p-values are additionally provided. For LMMs, a two-tailed criterion (|t| > 1.96) 476 

was used to determine significance at the alpha level of .05 (Baayen, Davidson, & Bates, 477 

2008).  478 

In the (G)LMM analyses, data from individual trials (subject–item combinations) 479 

were considered. For the data depicted in Figures 4, 5, 8, and 9, means were calculated for 480 

each subject, and these were then averaged across subjects. Result figures display the data on 481 

their original scale. When using the T.E.A. to prepare the stimulus material, for one of the 482 

photographs the different versions were not saved into the correct folders on the lab computer 483 

due to human error. For three additional scenes, participants had difficulty finding the low-484 

salience target. These four scenes were therefore excluded from analysis.  485 

3 Experiment 1 486 

3.1 Design 487 

Experiment 1 had a 2 × 2 × 2 within-subjects design with 2-level factor target size 488 

(small vs. large), 2-level factor target salience (low vs. high) and 2-level factor foveal 489 

scotoma (absent vs. present), see Figure 3. Small targets were 0.41º in size (letter width), and 490 

large targets 1.08º
2
. Scene locations for low- and high-salience targets were algorithmically 491 

determined, as described above, at the lower and upper quartile level of salience change. The 492 

factor scotoma refers to the implementation of a visual field manipulation. In the scotoma 493 

condition, foveal vision was blocked by a gaze-contingent moving mask. This was contrasted 494 

with a normal-vision control condition. 495 

 496 

                                                 
2
 Compared to the five target sizes that were tested in the two experiments of Clayden et al. 

(2020), our small targets correspond to their intermediate targets whereas our large targets 

correspond to their large targets. 
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 497 

Figure 3. Four foveal-scotoma conditions for one of the scenes used in Experiment 1. Left 498 

column: low-salience targets, right column: high-salience targets; top row: small targets, 499 

bottom row: large targets. The gray disk in the center of the image is the foveal mask that 500 

moved concomitantly with the participant’s gaze. In the figure, the foveal scotoma is 501 

highlighted with a red circle. In the experiment, each observer searched each scene in one of 502 

the size × salience conditions only, either with or without a simulated foveal scotoma. 503 

 504 

The 120 scenes used in the experiment were assigned to eight lists of 15 scenes each. 505 

The scene lists were rotated over participants, such that a given participant was exposed to a 506 

list for only one of the eight experimental conditions created by the 2 × 2 × 2 design. There 507 

were eight groups of four participants, and each group of participants was exposed to unique 508 

combinations of list and experimental condition. To summarize, participants viewed each of 509 

the 120 scene items once, with 15 scenes in each of the eight experimental conditions. Across 510 

the 32 participants, each scene item appeared in each condition four times. 511 

The visual field manipulation was blocked so that participants completed two blocks 512 

of trials in the experiment: in one block observers’ foveal vision was available, in the other 513 
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block it was obstructed by a simulated foveal scotoma. Each block started with four practice 514 

trials, one for each target salience × size condition. The order of blocks was counterbalanced 515 

across subjects. Within a block, scenes were presented randomly.  516 

3.2 Results 517 

In a first step, we analyzed different measures of search accuracy as indicators of 518 

search efficiency. For correct trials, we then analyzed search time and its subcomponents. 519 

Finally, we examined saccade amplitude and fixation duration across the viewing period. 520 

3.2.1 Search accuracy 521 

The first set of analyses examined the likelihood of finding the target letter in the 522 

scene. Performance for each experimental condition was divided into probabilities of “hit,” 523 

“miss,” and “timeout” cases (Clayden et al., 2020; Nuthmann, 2014). If the participant had 524 

not responded within 15 s, the trial was coded as a “timeout.” A response was scored as a 525 

“hit” if the participant indicated to have located the target by button press and their gaze was 526 

within the rectangular area of interest (AOI) comprising the target; otherwise, the response 527 

was scored as a “miss.” The AOI was 2.9º  2.9º in size (Clayden et al., 2020). It was the 528 

same for both target sizes and included a buffer, following recommendations by Holmqvist 529 

and Andersson (2017). 530 

There was a significant effect of scotoma on the probability of “hitting” the target 531 

such that participants were less likely to correctly locate and accept the target when foveal 532 

vision was not available, b = -0.70, SE = 0.13, z = -5.49, p < .001 (Figure 4, left column). 533 

Moreover, search accuracy was significantly higher for large as compared to small targets, b 534 

= 0.41, SE = 0.13, z = 3.22, p = 0.001, and it was higher for high-salience compared to low-535 

salience targets, b = 0.56, SE = 0.13, z = 4.43, p < .001. Only one of the interactions was 536 

significant (Table 1). Specifically, there was a significant size × salience interaction, b = -537 

0.73, SE = 0.25, z = -2.87, p = 0.004, indicating that the salience effect was smaller for large 538 

as compared to small targets. As a matter of fact, the data displayed in Figure 4 suggest that 539 

the effect of one variable was absent for the easier condition of the other variable. To test this 540 

explicitly, we specified a post-hoc GLMM using dummy coded variables with the following 541 

reference levels: large targets, high-salience targets, foveal scotoma. The simple effect for 542 

target size, representing the size effect for high-salience targets, was not significant, b = 0.10, 543 

SE = 0.24, z = 0.41, p = 0.685. The simple effect for target salience, representing the salience 544 

effect for large targets, was also not significant (b = -0.07, SE = 0.23, z = -0.31, p = 0.754). 545 
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However, the size × salience interaction was significant, b = -1.05, SE = 0.31, z = -3.37, p < 546 

.001. 547 

When searching with a scotoma, the probability of missing the target was increased, b 548 

= 0.72, SE = 0.14, z = 5.00, p < .001. Timeout probability was low, with no timeouts for large 549 

high-salience targets; no statistical analysis was performed.  550 

 551 

 552 

Figure 4. Measures of search accuracy for Experiment 1. Top row: small targets, bottom row: 553 

large targets. Each column presents means obtained for a designated dependent variable (see 554 

text for definitions). In each panel, data are shown for low- and high-salience targets during 555 

visual search with a simulated foveal scotoma (red) or without one (black). Data points are 556 
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binomial proportions, error bars are 95% binomial proportion confidence intervals (Wilson, 557 

1927). 558 

-------------------------------- 559 

Table 1 about here 560 

-------------------------------- 561 

3.2.2 Search time and its subcomponents 562 

Search time is the time taken from scene onset to participants’ button press 563 

terminating the search. Participants’ gaze data were used to split search time into three 564 

subcomponents: search initiation time, scanning time, and verification time (e.g., Clayden et 565 

al., 2020; Malcolm & Henderson, 2009; Nuthmann, 2014; Nuthmann & Malcolm, 2016). 566 

Search initiation time is the interval between scene onset and the initiation of the first saccade 567 

(i.e., initial saccade latency). Scanning time is the time from the first eye movement until the 568 

participant’s gaze enters the target’s area of interest. Verification time is the time from first 569 

entering the target interest area until the participant confirms their decision via button press. 570 

While the scanning time measure reflects the process of localizing the target in space, 571 

verification time reflects the time needed to decide that the fixated object is the target 572 

(Malcolm & Henderson, 2009). Longer scanning times indicate weaker target guidance. Long 573 

verification times tend to include instances in which observers fixated the target but then 574 

continued searching before returning to it (Castelhano, Pollatsek, & Cave, 2008; Clayden et 575 

al., 2020; Rutishauser & Koch, 2007; Zhaoping & Frith, 2011; Zhaoping & Guyader, 2007). 576 

Moreover, in the absence of foveal or central vision the eyes may move off the target to 577 

unmask it and then process it in parafoveal or peripheral vision (Clayden et al., 2020; 578 

Nuthmann, 2014). In both cases, there will be off-target fixations between the first and final 579 

fixation on the target, the number of which appears to depend on the difficulty of the search 580 

(Clayden et al., 2020; Rutishauser & Koch, 2007). 581 

We manipulated both the target’s size and its salience to explore how the effects 582 

combine. Specifically, if high salience helps more for small targets, we should observe an 583 

interaction between target size and target salience. In previous letter-in-scene search 584 

experiments, in which target size was varied, we found that the verification process was 585 

slowed down when foveal vision was not available, whereas the actual search process, 586 

indexed by scanning time, remained unaffected (Clayden et al., 2020). Moreover, we tested 587 

whether the importance of foveal vision to target verification depended on the size of the 588 

target, but the data remained ambiguous (Clayden et al., 2020). With the present experiment, 589 
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we wanted to test whether the availability of foveal vision during target verification was more 590 

important if the target’s salience was reduced, along with its size. If that were the case, the 591 

foveal scotoma should be more detrimental for low-salience than for high-salience targets, 592 

and it should be most detrimental for targets that are small and low in salience. 593 

The analysis of search times showed a significant effect of target size with faster 594 

searches for large as compared to small targets, b = -927.79, SE = 99.45, t = -9.33. The effect 595 

of target salience was also significant, with shorter search times for high-salience as 596 

compared to low-salience targets, b = -1230.15, SE = 121.26, t = -10.14. There was also a 597 

significant interaction between target size and salience such that the salience effect was 598 

smaller for large targets, b = 958.04, SE = 166.65, t = 5.75. Analyses of the three sub-599 

processes of search showed the same pattern of results (Table 1). The only exception was a 600 

non-significant target size × salience interaction for search initiation time, b = -9.33, SE = 601 

6.88, t = -1.35. 602 

The presence of a foveal scotoma had a significant effect on search initiation and 603 

verification, with both sub-processes of search being slowed down (Table 1). Importantly, 604 

scanning time was not prolonged when searching with a foveal scotoma, b = -16.72, SE = 605 

46.4, t = -0.36. Button-press search times are the sum of search initiation, scanning, and 606 

verification times. For the untransformed data, the search-time difference between the foveal 607 

scotoma and the control condition was not significant, b = 149.09, SE = 81.54, t = 1.83. For 608 

the transformed data, however, the effect of scotoma was significant, b = 0.003, SE = 0.001, t 609 

= 3.84; it was qualified by a significant scotoma × salience interaction such that the 610 

detrimental effect of a foveal scotoma was larger for high-salience targets, b = 0.002, SE = 611 

0.001, t = 3.16.  612 

For none of the dependent variables was there a significant scotoma × size interaction 613 

(Table 1). There was no significant scotoma × salience interaction for search initiation, 614 

scanning, and verification times (Table 1). The three-way interaction was not significant for 615 

any of the dependent variables (Table 1). 616 

 617 
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 618 

Figure 5. Search time and its three epochs for Experiment 1. Each panel displays the means 619 

for a designated dependent variable (see panel title); note the different y-axis scales for the 620 

different measures. Targets differed in visual salience (x-axis) and size (small: dashed line, 621 

large: solid line). Observers searched the scene either with a simulated foveal scotoma (red 622 

line) or without one (black line). Search times are the sum of search initiation, scanning, and 623 

verification times. Error bars are within-subjects standard errors, using the Cousineau-Morey 624 

method (Cousineau, 2005; Morey, 2008). 625 

 626 

3.2.3 Saccade amplitudes and fixation durations 627 

Saccade amplitudes and fixation durations were analyzed to characterize eye-628 

movement behavior during visual search (Figure 6). During scene search with a simulated 629 

foveal scotoma, we expected to observe larger saccade amplitudes and longer fixation 630 

durations (Clayden et al., 2020; Nuthmann, 2014). Moreover, in previous experiments we 631 

found an increase in target size to be associated with shorter saccade amplitudes and shorter 632 

fixation durations (Clayden et al., 2020). 633 

For saccade amplitudes we observed a significant effect of scotoma, with longer 634 

saccades when searching with a foveal scotoma than without (b = 0.40, SE = 0.08, t = 4.89, 635 

Figure 6, top row). There was also a significant effect of target size with shorter saccade 636 

amplitudes for large as compared to small targets, b = -0.43, SE = 0.06, t = -6.96. In addition, 637 
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there was a significant effect of target salience with shorter saccade amplitudes for high-638 

salience as compared to low-salience targets, b = -0.57, SE = 0.10, t = -5.99. The interaction 639 

between target size and scotoma was significant, b = -0.26, SE = 0.12, t = -2.11, indicating 640 

that the size effect was larger (i.e., more negative) with a foveal scotoma than without. For 641 

the transformed data, however, this interaction was not significant, b = -0.07, SE = 0.04, t = -642 

1.76. Thus, the interaction was transformed away, making it non-interpretable (Loftus, 1978; 643 

Wagenmakers, Krypotos, Criss, & Iverson, 2012). None of the other interactions were 644 

significant (Table 1). 645 

The analysis of fixation durations revealed a similar pattern of results. There was a 646 

significant effect of scotoma, with longer fixation durations when searching with a foveal 647 

scotoma than without (b = 19.85, SE = 3.88, t = 5.12, Figure 6, bottom row). There was also a 648 

significant effect of target size with shorter fixation durations for large as compared to small 649 

targets, b = -9.49, SE = 2.55, t = -3.72. In addition, there was a significant effect of target 650 

salience with shorter fixation durations for high-salience as compared to low-salience targets, 651 

b = -20.01, SE = 2.86, t = -6.99. Furthermore, there was a significant size × salience 652 

interaction, b = 7.68, SE = 3.52, t = 2.18, which was absent for the transformed data, b = 653 

0.08, SE = 0.05, t = 1.71. Moreover, there was a significant scotoma × salience interaction, b 654 

= 7.09, SE = 3.52, t = 2.02, indicating that the salience effect was smaller with a foveal 655 

scotoma than without. None of the other interactions were significant (Table 1). 656 

 657 
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 658 

Figure 6. Mean saccade amplitudes (top row) and fixation durations (bottom row) for small 659 

targets (left column) as opposed to large targets (right column) in Experiment 1. In each 660 

panel, data are presented for low- and high-salience targets during visual search with or 661 

without a simulated foveal scotoma. Error bars are within-subjects standard errors. 662 

 663 

4 Experiment 2 664 

4.1 Design 665 

In Experiment 2, we dropped the manipulation of target size and instead used the 666 

small targets from Experiment 1 throughout. As in Experiment 1, we manipulated the visual 667 

salience of the target letter (low vs. high). This was crossed with another visual field 668 

manipulation: observers searched for the target with a central or peripheral scotoma, for 669 

which the normal-vision control condition provided a baseline (Figure 7). Compared with the 670 

foveal scotoma in Experiment 1 (radius: 1º), the central scotoma in Experiment 2 had a larger 671 

radius (2.5º). The central scotoma was contrasted with the inverse manipulation of a 672 

peripheral scotoma with the same radius. In the visual-cognition literature, central vision is 673 

defined as extending to about 5º from fixation, with peripheral vision being everything 674 

beyond 5º (Loschky, Szaffarczyk, Beugnet, Young, & Boucart, 2019). Technically, our 675 
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central scotoma did not completely cover central vision, and our peripheral scotoma obscured 676 

more than peripheral vision. 677 

 678 

 679 

Figure 7. Scotoma conditions used in Experiment 2. Observers searched the scene either with 680 

full vision (control condition), or with a central or peripheral scotoma (radius: 2.5º). Note that 681 

the colored borders match the colors used to distinguish the scotoma-type conditions in 682 

Figures 7 to 10. Search targets varied in visual salience; the example scene used for this 683 

figure includes the high-salience target. 684 

 685 

To facilitate comparisons across experiments, we used the same scenes with the same 686 

locations for low- and high-salience targets as in Experiment 1. A given participant saw each 687 

of the 120 scene items once, with 20 scenes in each of the six experimental conditions. The 688 

visual field manipulation was blocked so that participants completed three blocks of trials in 689 

the experiment. Each block started with four practice trials, two for each target salience 690 

condition. The order of blocks was counterbalanced across subjects. Within a block, scenes 691 

were presented randomly.  692 

4.2 Results 693 

4.2.1 Search accuracy 694 

The type of the simulated scotoma affected the probability of “hitting” the target, with 695 

highest probabilities in the no-scotoma control condition and lowest probabilities for the 696 

central scotoma (Figure 8a). The effect of scotoma type on search accuracy was tested using 697 

backward difference coding (Table 2). The GLMM results substantiated that search accuracy 698 

was significantly reduced for the peripheral scotoma condition (P) compared to the no-699 

scotoma control condition (No), P-No: b = -1.44, SE = 0.14, z = -10.19, p < .001. For the 700 

central scotoma (C), search accuracy was lower than for the peripheral scotoma, C-P: b = -701 

0.77, SE = 0.13, z = -6.01, p < .001. As in Experiment 1, there was a significant main effect 702 
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of target salience on search accuracy, with better performance for high-salience than for low-703 

salience targets, b = 1.21, SE = 0.10, z = 11.94, p < .001. The salience effect was significantly 704 

reduced for the peripheral scotoma compared to the no-scotoma control condition, salience × 705 

P-No interaction: b = -0.62, SE = 0.27, z = -2.31, p = 0.021. The salience effect was 706 

significantly increased for the central scotoma compared to the peripheral scotoma, salience × 707 

C-P interaction: b = 0.74, SE = 0.19, z = 3.82, p < .001.  708 

The drop in performance for search with a peripheral scotoma was due to an increase 709 

in timed out trials (Figure 8b). The further loss in performance when searching with a central 710 

scotoma originated from two sources. On the one hand, there were more timed out trials than 711 

in the control condition but fewer than with a peripheral scotoma (Figure 8b). On the other 712 

hand, the probability of missing the target was increased (Figure 8c). 713 

 714 

 715 

Figure 8. Measures of search accuracy for Experiment 2. Each panel presents means obtained 716 

for a designated dependent variable, which is specified in the panel title. Data are shown for 717 

low- and high-salience targets and for different scotoma types (red: central scotoma, blue: 718 

peripheral scotoma, black: no-scotoma control condition). Data points are binomial 719 

proportions, error bars are 95% binomial proportion confidence intervals (Wilson, 1927). 720 
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4.2.2 Search time and its subcomponents 724 

Trials with correct responses were analyzed further. The type of the simulated 725 

scotoma affected button-press search times, which were shortest in the no-scotoma control 726 

condition and longest when searching with a peripheral scotoma (Figure 9a). The effect of 727 

scotoma type on search times was tested using backward difference coding. Search times 728 

were significantly longer during search with a central scotoma than during search without a 729 

scotoma, C-No: b = 756.36, SE = 117.71, t = 6.43. Search times were further increased for 730 

the peripheral scotoma compared to the central scotoma, P-C: b = 2995.29, SE = 214.97, t = 731 

13.93. Moreover, there was a significant main effect of target salience with shorter search 732 

times for high-salience compared to low-salience targets, b = -1523.04, SE = 156.45, t = -733 

9.74. The salience effect was significantly increased for the central scotoma compared to the 734 

no-scotoma control condition, salience × C-No interaction: b = -707.37, SE = 227.02, t = -735 

3.12. The salience effect was significantly reduced for the peripheral scotoma compared to 736 

the central scotoma, salience × P-C interaction: b = 1761.53, SE = 354.56, t = 4.97.  737 

Based on participants’ gaze data, button-pressed search times were decomposed into 738 

search initiation, scanning, and verification times (Figure 9b, c, d). To evaluate the effect of 739 

scotoma type, we used simple coding with the no-scotoma control condition as the reference 740 

level. For search with a peripheral scotoma, search initiation time was significantly increased, 741 

b = 81.99, SE = 7.43, t = 11.03. Search initiation times were also increased for the central 742 

scotoma; this effect was significant for the untransformed data, b = 17.09, SE = 8.18, t = 2.09, 743 

but not for the transformed data, b = 2.16, SE = 1.16, t = 1.86. Moreover, there was a 744 

significant main effect of target salience with shorter search initiation times for high-salience 745 

compared to low-salience targets, b = -8.62, SE = 3.77, t = -2.29. The two interactions 746 

involving salience were not significant (Table 2).  747 

Scanning time was significantly prolonged when searching with a peripheral scotoma, 748 

b = 3725.53, SE = 187.46, t = 19.87. For the central scotoma, there was a numerical increase 749 

in scanning time which was not significant, b = 85.21, SE = 108.27, t = 0.79; for the 750 

transformed data, however, it was significant, b = 0.14, SE = 0.06, t = 2.38. Scanning times 751 

were shorter for high-salience compared to low-salience targets, b = -1043.68, SE = 124.55, t 752 

= -8.38. The effect of target salience was significantly reduced for the peripheral scotoma, b 753 

= 978.91, SE = 304.12, t = 3.22, but not for the central scotoma, b = 6.18, SE = 209.5, t = 754 

0.03. 755 
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Verification time was significantly prolonged when searching with a central scotoma, 756 

b = 564.89, SE = 98.63, t = 5.73, but not when searching with a peripheral scotoma, b = -757 

36.76, SE = 64.28, t = -0.57. Verification times were shorter for high-salience compared to 758 

low-salience targets, b = -442.75, SE = 63.09, t = -7.02. This effect was significantly 759 

increased for the central scotoma, b = -660.97, SE = 172.18, t = -3.84, but not for the 760 

peripheral scotoma, b = 54.2, SE = 84.33, t = 0.64. 761 

 762 

 763 

Figure 9. Search time and its three epochs for Experiment 2. Each panel displays the means 764 

for a designated dependent variable (see panel title); note the different y-axis scales for the 765 

different measures. Results are presented for low- and high-salience targets and for different 766 

scotoma types (red: central scotoma, blue: peripheral scotoma, black: no-scotoma control 767 

condition). Error bars are within-subjects standard errors, using the Cousineau-Morey method 768 

(Cousineau, 2005; Morey, 2008). 769 

 770 

4.2.3 Saccade amplitudes and fixation durations 771 

Moving-window studies that implemented something akin to our peripheral scotoma 772 

have consistently reported shorter saccade amplitudes and longer fixation durations than in a 773 

normal vision control condition (e.g., Loschky & McConkie, 2002; Nuthmann, 2014). By 774 
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contrast, masking or degrading central vision tends to increase both saccade amplitudes and 775 

fixation durations (Miellet et al., 2010; Nuthmann, 2014). 776 

The present data replicate the “windowing effect” on saccade amplitudes. Compared 777 

to the no-scotoma control condition, saccade amplitudes were significantly longer when 778 

searching with a central scotoma, b = 1.6, SE = 0.15, t = 10.63, and significantly shorter when 779 

searching with a peripheral scotoma, b = -2.2, SE = 0.1, t = -21.7. Moreover, as in 780 

Experiment 1 there was a significant main effect of target salience with shorter saccade 781 

amplitudes for high-salience compared to low-salience targets, b = -0.42, SE = 0.06, t = -6.5. 782 

There was also a significant salience × peripheral scotoma interaction, b = 0.43, SE = 0.08, t 783 

= 5.27, indicating that the effect of target salience was reduced for the peripheral scotoma. 784 

The interaction between salience and central scotoma was not significant (Table 2).  785 

The type of the simulated scotoma also affected fixation durations, which were 786 

shortest in the no-scotoma control condition and longest when searching with a peripheral 787 

scotoma (Figure 10b). The effect of scotoma type on fixation durations was tested using 788 

backward difference coding (Table 2). The LMM results substantiated that fixation durations 789 

were significantly longer during search with a central scotoma than during search without a 790 

scotoma, C-No: b = 17.09, SE = 4.5, t = 3.8. For the peripheral scotoma, fixation durations 791 

were significantly increased compared to the central scotoma, P-C: b = 18.79, SE = 6.33, t = 792 

2.97. As in Experiment 1, there was also a significant main effect of target salience with 793 

shorter fixation durations for high-salience compared to low-salience targets, b = -12.24, SE 794 

= 2.12, t = -5.78. The salience effect was significantly reduced for the central scotoma 795 

compared to the no-scotoma control condition, salience × C-No interaction: b = 11.58, SE = 796 

4.07, t = 2.85. The salience effect was further reduced for the peripheral scotoma compared to 797 

the central scotoma, salience × P-C interaction: b = 10.29, SE = 4.23, t = 2.43. 798 

 799 
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 800 

Figure 10. Mean saccade amplitudes (a) and fixation durations (b) in Experiment 2 as a 801 

function of target salience and scotoma type, red: central scotoma, blue: peripheral scotoma, 802 

black: no-scotoma control condition. Error bars are within-subjects standard errors. 803 

 804 

4.2.4 Control analyses 805 

With a peripheral scotoma, the target was not visible to the observer during their 806 

initial fixation at the center of the scene. During most subsequent valid fixations, the target 807 

remained invisible as it was outside the window in which scene content was available. Thus, 808 

search initiation times, saccade amplitudes, and fixation durations should be unaffected by 809 

target salience in this condition. To test this explicitly, we specified additional LMMs using 810 

dummy coding and the peripheral scotoma as reference level. In such a model, the simple 811 

effect for target salience represents the salience effect for the peripheral scotoma. No 812 

significant salience effects were found (search initiation times: b = -0.52, SE = 6.32, t = -813 

0.08; saccade amplitudes: b = -0.03, SE = 0.04, t = -0.87; fixation durations: b = -0.02, SE = 814 

0.01, t = -1.64). 815 

Results from existing studies suggest that visual information within both foveal, 816 

parafoveal, and peripheral vision can influence fixation duration (Einhäuser, Atzert, & 817 

Nuthmann, 2020, for review). Therefore, an additional analysis explored whether effects of 818 

target salience on fixation duration arise from both central and peripheral processing. For 819 

each individual fixation, we determined whether the target was inside or outside the circular 820 
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window that was used to create the two scotomas. As an approximation, the midpoint of the 821 

target was used for this evaluation. For the central scotoma, the target was visible if it was 822 

outside the window (see Figure 7b), and invisible if it was inside the window. Conversely, for 823 

the peripheral scotoma the target was visible if it was inside the window, and invisible if it 824 

was outside the window (see Figure 7c). We expected target salience to only modulate 825 

fixation durations if the target was visible. The data are consistent with this prediction. For 826 

the central scotoma, the salience effect was present when the target was outside the window 827 

(Figure 11a), whereas it was absent when the target was inside the window (Figure 11b). For 828 

the peripheral scotoma, a salience effect emerged if the target was inside the window (Figure 829 

11b), whereas it was absent when the target was outside the window (Figure 11a). For the no-830 

scotoma control condition, where the target was always present, the salience effect was 831 

present for both types of fixations. Interestingly, the data also suggest that fixation durations 832 

during search with the central scotoma were not elevated when the target was visible in the 833 

periphery (Figure 11a). Given the post-hoc nature of this explorative analysis, no formal 834 

statistical analyses were conducted. The number of cases in which the target was outside the 835 

window during the fixation amounted to 88% (see Figure 11 for a breakdown). This is why 836 

the analysis of all valid fixations yielded no salience effect for the peripheral scotoma and a 837 

reduced salience effect for the central scotoma (Figure 10b). 838 

 839 

 840 

Figure 11. Mean fixation durations in Experiment 2 as a function of target salience, scotoma 841 

type, and whether the target was outside (a) or inside (b) the scotoma window that moved 842 
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with the participants’ eyes. Error bars are within-subjects standard errors. N = number of 843 

observations for a given scotoma-type condition.  844 

 845 

5 General Discussion 846 

Previous research on visual search has demonstrated that eye guidance by visual 847 

salience can be moderated, or even completely overridden by top-down guidance (Einhäuser, 848 

Rutishauser, & Koch, 2008; Henderson et al., 2009; Underwood & Foulsham, 2006). 849 

Accordingly, the role of visual salience has been marginalized in the literature on active 850 

search through eye movements. Using a letter-in-scene search task we demonstrate in two 851 

experiments that visual salience can affect both the process of localizing the target in space 852 

and the process of accepting the target as the target. Moreover, in Experiment 1 we found an 853 

interaction between target salience and size, and that foveal vision was relatively unimportant 854 

even for small low-salience targets. Results from Experiment 2 showed that salience affected 855 

eye guidance during search in both central and peripheral vision. 856 

The role visual salience plays during search was first investigated using simple 857 

displays which observers are asked to search covertly; that is, without making eye 858 

movements (Wolfe, 2015, for review). A complementary approach is to record eye 859 

movements during visual search for a target in relatively large and dense arrays (Rutishauser 860 

& Koch, 2007). Using this approach, Zhaoping and Guyader (2007) compared two efficient 861 

simple feature search tasks with two inefficient search tasks. The inefficient search tasks 862 

varied in difficulty due to differences in target-distractor-similarity. Scanning times were 863 

longer for the inefficient searches than for efficient pop-out searches. For the two inefficient 864 

searches, the authors observed differences in verification time (dubbed eye-to-hand latency) 865 

but not scanning time. Thus, visual salience can affect target localization and verification in 866 

densely packed arrays of simple stimuli, in a manner that is specific to the respective task 867 

(see also Zhaoping & Frith, 2011). 868 

Investigating the causal influence of features on gaze guidance during scene search 869 

requires one to use an experimental approach in which objects or regions in natural scenes are 870 

manipulated (Foulsham & Underwood, 2007). In the studies reviewed in the Introduction, the 871 

approach has been to select targets based on the output from versions of a popular saliency 872 

map model. When manipulating properties of real-world objects in naturalistic scenes, it is 873 

impossible to exert perfect experimental control over relevant dimensions. Therefore, the 874 

possibility exists that—in some existing scene sets—visual salience is confounded with other 875 
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variables like object size, eccentricity and semantic congruency. To address these issues, we 876 

used the T.E.A. (Clayden et al., 2020) to parametrically manipulate target salience and size in 877 

a letter-in-scene search task. In this task, the location of the target is not predicted by the 878 

meaning of the scene or by the identity of objects in the scene. Our task still approximates 879 

natural behavior because there are real-world searches for which there is minimal guidance 880 

by scene context (e.g., search for a fly). Moreover, scene processing and object identification 881 

are not totally suppressed when searching for a “T” overlaid onto the scene (T. H. W. 882 

Cornelissen & Võ, 2017). One caveat regarding generalizing from letter search to object 883 

search in scenes is that the letter targets tend to violate the physical rules of the scene 884 

environment in which they appear, such as gravity and surface reflectance. Additionally, 885 

although we used images of naturalistic scenes to improve the ecological validity of the 886 

search task, these scenes are still two-dimensional static representations of the environment, 887 

and so generalization to the natural world should be made with caution. 888 

In both of our experiments, we found main effects of salience with faster search times 889 

for high-salience than for low-salience targets. Existing research has provided inconsistent 890 

results in this regard. On the one hand, null effects were found in studies in which targets 891 

were real objects in composed scene photographs (Foulsham & Underwood, 2007; 892 

Underwood et al., 2008). On the other hand, salience did affect search times when scene 893 

cutouts were used as targets (Foulsham & Underwood, 2011, Experiment 1). In the latter 894 

study, salience affected verification time only, but not the latency to first fixation on the 895 

target (i.e., search initiation time plus scanning time). In contrast, our results demonstrate that 896 

visual salience can facilitate both eye-movement guidance to the target as well as target 897 

verification. The different results may be due to differences in the task requirements. We 898 

used a target acquisition task (Zelinsky, 2008) whereas Foulsham and Underwood (2011) 899 

required observers to decide about the presence/absence of the target. Moreover, their targets 900 

were much bigger (6º squares) than ours. These design features may also account for the fact 901 

that their mean verification times were more than twice as long as scanning times.  902 

Using context-free targets in our experiments implied that scene context and semantic 903 

relationships could not facilitate search guidance. An alternative approach is to disrupt scene 904 

context by “scrambling” the images (Biederman, 1972). In a study by Foulsham, Alan, and 905 

Kingstone (2011), observers searched for contextually relevant targets against intact or 906 

scrambled scene backgrounds. Correlational analyses suggested that more salient targets were 907 

fixated more quickly in scrambled scenes only.  908 
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In sum, our results provide an existence proof that eye guidance by visual salience is 909 

possible during active search in naturalistic scenes. Depending on the specific task demands, 910 

this bottom-up guidance can be moderated or completely overridden by top-down guidance 911 

(Einhäuser et al., 2008; Foulsham & Underwood, 2007; Henderson et al., 2007, 2009; 912 

Underwood & Foulsham, 2006; Underwood et al., 2006, 2008).  913 

In Experiment 1, we also manipulated the size of the target and found that large 914 

targets were easier and faster to find than small targets (cf. Clayden et al., 2020). As a novel 915 

result, we not only found independent effects of target salience and size, but also an 916 

interaction between the two variables. For search accuracy, the salience effect was only 917 

present for small targets, and the size effect was only present for low-salience targets. For 918 

scanning times, verification times, and search times, the interaction implied that the effect of 919 

target salience was larger for small than for large targets (Figure 5). Future work could 920 

involve testing whether the size  salience interaction generalizes from letter search to object-921 

based fixation selection in scenes (cf. Nuthmann et al., 2020; Stoll et al., 2015). More 922 

generally, our results lend support to the view that saliency models may be enhanced by 923 

addressing the size feature more explicitly (Borji et al., 2013b). 924 

The results for the foveal, central, and peripheral scotomas tell us how important the 925 

different regions of the visual field are for visual search and its sub-processes. During search 926 

with any type of scotoma, observers were significantly less likely to find the target than with 927 

normal vision. However, when the target was found despite the presence of a simulated 928 

foveal scotoma (Experiment 1), search times were not much elevated (Figure 5a, Table 1). In 929 

contrast, the presence of a central or peripheral scotoma (Experiment 2) led to clear search 930 

time costs (Figure 9a, Table 2). As expected, the peripheral scotoma was much more 931 

detrimental than the central scotoma, confirming that eye movements are guided by 932 

peripheral vision. Analyzing sub-processes of search allowed for testing the assumption of a 933 

central-peripheral dichotomy according to which peripheral vision is mainly for selecting or 934 

looking, while central vision is mainly for seeing or recognizing (Zhaoping, 2019). In 935 

Experiment 1, we found that verification times, but not scanning times were significantly 936 

prolonged when searching with a foveal scotoma (see also Clayden et al., 2020). In 937 

Experiment 2, we found that scanning times were prolonged for the peripheral but not for the 938 

central scotoma, whereas verification times were prolonged for the central scotoma but not 939 

for the peripheral scotoma (cf. Nuthmann, 2014). Collectively, the data highlight the 940 

importance of peripheral vision for target localization, and the importance of foveal and 941 
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central vision for target verification. This pattern of results is consistent with the central-942 

peripheral dichotomy (Zhaoping, 2019).  943 

The interaction between salience and type of scotoma informs us about the role target 944 

salience plays in central and peripheral vision (Experiment 2). A central question concerned 945 

the degree to which target salience affects localization in the periphery and verification in 946 

central vision. In the normal vision baseline condition, both scanning and verification time 947 

showed a significant advantage for high-salience targets.  948 

By comparison, the peripheral scotoma weakened the effect of target salience on 949 

scanning time (Figure 9c) and also total search time (Figure 9a). This finding is different 950 

from results by Foulsham and Underwood (2011). In their Experiment 2, the authors used a 951 

gaze-contingent 6º square window to selectively remove image features from the periphery. 952 

They tested three image features that are important for saccade target selection under the 953 

saliency map hypothesis: (1) color, (2) high-spatial frequency information, and (3) contrast 954 

(i.e., the contrast of the image was globally lowered). If saliency in peripheral vision was 955 

guiding eye movements towards the target, then peripheral filtering should eliminate or at 956 

least diminish the effect of target salience. Contrary to these predictions, the authors found a 957 

significant salience effect on the latency to first fixate the target in all three filtering 958 

conditions. Unfortunately, their Experiment 2 lacked a full-vision control condition. 959 

Moreover, the filtering manipulations left some of the saliency map representation intact. By 960 

comparison, the peripheral scotoma in our Experiment 2 blocked out peripheral vision 961 

completely. Compared with the no-scotoma control condition, we observed a greatly 962 

diminished effect of target salience during target localization, as indexed by scanning time 963 

(Figure 9c). Our results therefore suggest that salience in peripheral vision was guiding eye 964 

movements towards the target. 965 

The central scotoma increased the effect of target salience on verification time (Figure 966 

9d, Table 2). Compared with the no-scotoma control condition, mean target verification times 967 

were not only elevated, but they also showed a significantly increased effect of target 968 

salience. Thus, our results not only suggest that central vision benefits target verification (cf. 969 

Nuthmann, 2014), but also that this sub-process of search is influenced by target salience. 970 

The increase in the salience effect for verification times was large enough to produce an 971 

increased salience effect on total search time as well (Figure 9a, Table 2). 972 

The data from both experiments replicate the well-known “windowing effect” on 973 

saccade amplitudes, which reflects a tendency to fixate more locations in the non-degraded 974 

scene area than the degraded area (Loschky & McConkie, 2002; Miellet et al., 2010; 975 
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Nuthmann, 2014; Reingold & Loschky, 2002). Moreover, the present results replicate the 976 

finding that fixation durations are elevated in the presence of an artificial scotoma (Clayden 977 

et al., 2020; Miellet et al., 2010; Nuthmann, 2014). In our experiments, we experimentally 978 

manipulated properties of the search target, and our analysis of saccade amplitudes and 979 

fixation durations considered the entire search period. On a given fixation, the target was 980 

situated in either foveal, central, or peripheral vision, where it could be obscured by a 981 

simulated scotoma or not. In Experiment 1, global eye-movement parameters were affected 982 

by target properties such that large targets and high-salience targets were associated with 983 

shorter saccade amplitudes and shorter fixation durations; for target size, similar results were 984 

obtained by Clayden et al. (2020). Interestingly, significant effects of target size and salience 985 

were already present for the duration of the very first fixation, measured as search initiation 986 

time (Figure 5b, Table 1). Previous research has demonstrated that the “story,” or gist of a 987 

scene can be gleaned from it within around 100 ms of the onset of a scene (Oliva, 2005; 988 

Potter, 1975). Scene gist is typically perceived without recognizing any individual object. 989 

Therefore, we tentatively propose that observers, during the first glance of the scene, may 990 

form a hypothesis about the scene’s search difficulty in terms of target size and salience, and 991 

globally adjust their fixation durations and saccade amplitudes accordingly.  992 

In Experiment 2, we replicated effects of target salience on saccade amplitudes, 993 

fixation durations, and search initiation times (Table 2). Interestingly, the results for the 994 

scotoma conditions in both experiments provide clues about necessary conditions for these 995 

effects to occur. The peripheral scotoma in Experiment 2 prevented observers from analyzing 996 

the scene gist and covered the target during most fixations, including the very first. In this 997 

condition, no differences for low- and high-salience targets were observed for saccade 998 

amplitudes and search initiation times; the same was true for fixation durations, as long as the 999 

target was outside the window in which scene content was visible. For saccade amplitudes, 1000 

the effect of target salience was unchanged when searching with a foveal scotoma 1001 

(Experiment 1) or with a central scotoma (Experiment 2). For fixation durations, the effect of 1002 

target salience was reduced when searching with a foveal scotoma. For the central scotoma, 1003 

the salience effect was present when the target was visible (outside the scotoma), and absent 1004 

when it was not visible due to being masked by the scotoma. When all valid fixations were 1005 

analyzed together, the salience effect was therefore smaller in the central-scotoma condition 1006 

than in the no-scotoma control condition. Collectively, the data suggest that the salience 1007 

effect on fixation durations arises from both foveal, central, and peripheral processing. 1008 
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Moreover, peripheral vision needs to be intact to observe effects of target salience on saccade 1009 

amplitudes. 1010 

6 Conclusions 1011 

Methodologically, reliably disentangling stimulus-driven and task-driven influences 1012 

on human behavior requires researchers to exert experimental control over relevant stimulus 1013 

dimensions, which is challenging when working with images of naturalistic scenes. Here, we 1014 

placed context-free targets within scenes using the T.E.A. (Clayden et al., 2020), which 1015 

allowed us to manipulate their salience and size parametrically. When using these stimuli for 1016 

a target acquisition task in two experiments, clear effects of target salience on search 1017 

performance and eye-movement parameters were found. Moreover, the results obtained in 1018 

different simulated scotoma conditions lend further support to the central-peripheral 1019 

dichotomy (Zhaoping, 2019).  1020 
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Tables 1275 

Table 1 1276 

Linear and generalized linear mixed models (LLM and GLMM respectively) for Experiment 1: Means (b), standard errors (SE), and test 1277 

statistics (LLMs: t-values; GLMMs: z-values and p-values) for fixed effects 1278 

  Intercept Target  

size 
Target 

salience 
Foveal 

scotoma 
Size  

Salience 
Size  

Scotoma 
Salience  

Scotoma 
Size  

Salience  

Scotoma 
Probability correct b 2.71 0.41 0.56 -0.7 -0.73 0.08 0.1 -0.67 

 SE 0.15 0.13 0.13 0.13 0.25 0.25 0.25 0.51 

 z 18.35 3.22 4.43 -5.49 -2.87 0.32 0.38 -1.32 

 p < .001 0.001 < .001 < .001 0.004 0.746 0.704 0.186 

Search time b 2086.33 -927.79 -1230.15 149.09 958.04 -62.7 75.1 -251.91 

 SE 112.75 99.45 121.26 81.54 166.65 101.36 128.17 202.45 

 t 18.5 -9.33 -10.14 1.83 5.75 -0.62 0.59 -1.24 

Search initiation time b 269.41 -9.02 -19.83 38.14 -9.33 -8.04 -11.61 0.35 

 SE 8.35 3.44 4.1 12.1 6.88 6.88 6.87 13.76 

 t 32.26 -2.62 -4.84 3.15 -1.35 -1.17 -1.69 0.03 

Scanning time b 1127.95 -723.15 -968.64 -16.72 768.16 6.73 185.87 -296.28 

 SE 71.43 80.07 104.24 46.4 135.65 92.8 92.7 185.42 

 t 15.79 -9.03 -9.29 -0.36 5.66 0.07 2.01 -1.6 

Verification time b 677.29 -178.51 -225.95 118.25 172.78 -60.1 -92.32 42.14 

 SE 69.39 36.97 37.34 45.73 64.39 50.45 57.28 100.78 

 t 9.76 -4.83 -6.05 2.59 2.68 -1.19 -1.61 0.42 

Saccade amplitude b 5.3 -0.43 -0.57 0.4 -0.22 -0.26 0.01 -0.4 

 SE 0.11 0.06 0.1 0.08 0.12 0.12 0.12 0.24 

 t 49.19 -6.96 -5.99 4.89 -1.81 -2.11 0.04 -1.63 

Fixation duration b 204.56 -9.49 -20.01 19.85 7.68 7.85 7.09 3.63 

 SE 4.1 2.55 2.86 3.88 3.52 4.09 3.52 9.69 

 t 49.85 -3.72 -6.99 5.12 2.18 1.92 2.02 0.37 

Note: Non-significant coefficients are set in bold (LLMs: |t| < 1.96; GLMMs: p > .05). See text for further details.  1279 
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Table 2 1280 

Linear and generalized linear mixed models (LLM and GLMM respectively) for Experiment 2: Means (b), standard errors (SE), and test 1281 

statistics (LLMs: t-values; GLMMs: z-values and p-values) for fixed effects 1282 

Dependent variable Contrast 

coding 

(scotoma 

type) 

Reference 

level 

Scot 1 

(definition) 

Scot 2 

(definition) 
 Intercept Target  

salience 
Scot 1 Scot 2 Salience  

Scot 1 
Salience  

Scot 2 

Probability correct BWD No – P – C P - No C - P b 1.76 1.21 -1.44 -0.77 -0.62 0.74 

     SE 0.15 0.1 0.14 0.13 0.27 0.19 

     z 11.9 11.94 -10.19 -6.01 -2.31 3.82 

     p < .001 < .001 < .001 < .001 0.021 < .001 

Search time BWD No – C – P C - No P - C b 3932.88 -1523.04 756.36 2995.29 -707.37 1761.53 

     SE 123.55 156.45 117.71 214.97 227.02 354.56 

     t 31.83 -9.74 6.43 13.93 -3.12 4.97 

Search initiation time simple no scotoma C - No P - No b 273.21 -8.62 17.09 81.99 4.06 12.85 

     SE 6.83 3.77 8.18 7.43 8.91 9.45 

     t 39.98 -2.29 2.09 11.03 0.46 1.36 

Scanning time simple no scotoma C - No P - No b 2709.84 -1043.68 85.21 3725.53 6.18 978.91 

     SE 92.54 124.55 108.27 187.46 209.5 304.12 

     t 29.28 -8.38 0.79 19.87 0.03 3.22 

Verification time simple no scotoma C - No P - No b 910.92 -442.75 564.89 -36.76 -660.97 54.2 

     SE 59.84 63.09 98.63 64.28 172.18 84.33 

     t 15.22 -7.02 5.73 -0.57 -3.84 0.64 

Saccade amplitude simple no scotoma C - No P - No b 4.87 -0.42 1.6 -2.2 -0.18 0.43 

     SE 0.1 0.06 0.15 0.1 0.16 0.08 

     t 47.11 -6.5 10.63 -21.7 -1.16 5.27 

Fixation duration BWD No – C – P C - No P - C b 211.77 -12.24 17.09 18.79 11.58 10.29 

     SE 3.82 2.12 4.5 6.33 4.07 4.23 

     t 55.42 -5.78 3.8 2.97 2.85 2.43 

Note: Non-significant coefficients are set in bold (LLMs: |t| < 1.96; GLMMs: p > .05). See text for further details. 1283 
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Appendix A 1284 

Mathematical Definition of Local Contrast 1285 

 1286 

As a measure of visual salience, the root-mean-square (RMS) contrast was calculated as 1287 

𝑅𝑀𝑆(𝑅, 𝐶) =
1

𝑝̅𝐼𝑚𝑔
√

1

((2𝐿 + 1)2 − 1)
∑ ∑ (𝑝(𝑟, 𝑐) − 𝑝̅(𝑅, 𝐶))

2
𝐶+𝐿

𝑐=𝐶−𝐿

𝑅+𝐿

𝑟=𝑅−𝐿

 

where L is either 11 (patch width 23) or 23 (patch width 47), p(r,c) is the pixel value at row r 1288 

and column c, 𝑝̅(𝑅, 𝐶) is the mean of the patch calculated as 1289 

𝑝̅(𝑅, 𝐶) =
1

(2𝐿 + 1)2
∑ ∑ 𝑝(𝑟, 𝑐)

𝐶+𝐿

𝑐=𝐶−𝐿

𝑅+𝐿

𝑟=𝑅−𝐿

 

and 𝑝̅𝐼𝑚𝑔 is the mean of the image. 1290 

 1291 

  1292 
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Appendix B 1293 

Distribution of Search Targets in the Scenes 1294 

 1295 

 1296 

Figure B1. Positions of search targets in the 120 scenes used in Experiments 1 and 2. The 1297 

light blue dots represent the positions of the low-salience targets, whereas the salmon dots 1298 

represent the positions of the high-salience targets. The cross is the central fixation cross, and 1299 

the circle with solid perimeter represents the central viewing area (radius 3º).  1300 

  1301 

low

high

Target salience
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Appendix C 1302 

Mixed-Model Specification for Experiment 1 1303 

 1304 

The mixed-model equation for the 2 × 2 × 2 within-subjects design of Experiment 1 is  1305 

𝑦𝑠𝑖 = 𝛽0  +  𝑏𝑠0 + 𝑏𝑖0 +∑(𝛽𝑘  +  𝑏𝑠𝑘 + 𝑏𝑖𝑘)𝑥𝑘𝑠𝑖 + 𝑒𝑠𝑖

7

𝑘=1

 

where y denotes the dependent variable, β denotes fixed effects, b denotes random effects, 1306 

and e denotes the residuals. The index s represents subjects (1 ≤ s ≤ Nsub), whereas the index i 1307 

represents images/items (1 ≤ i ≤ Nitems). The index k identifies the intercept and the contrasts: 1308 

k = 0, intercept; k = 1, target size; k = 2, target salience; k = 3, foveal scotoma; k = 4, size  1309 

salience; k = 5, size  scotoma; k = 6, salience  scotoma; k = 7, size  salience  scotoma.  1310 

For the maximal random effects structure, the variance-covariance matrix for by-1311 

subject random effects is given by 1312 

Φ𝑠 =

(

 
 
 
 
 
 

𝑣𝑎𝑟(𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠0, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠0) 𝑣𝑎𝑟(𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠1, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠1, ) 𝑣𝑎𝑟(𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠2, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠2) 𝑣𝑎𝑟(𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠3, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠3) 𝑣𝑎𝑟(𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠4, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠4) 𝑣𝑎𝑟(𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠5, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠5) 𝑣𝑎𝑟(𝑏𝑠6) 𝑐𝑜𝑣(𝑏𝑠6, 𝑏𝑠7)

𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠0) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠1) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠2) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠3) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠4) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠5) 𝑐𝑜𝑣(𝑏𝑠7, 𝑏𝑠6) 𝑣𝑎𝑟(𝑏𝑠7) )

 
 
 
 
 
 

, 1313 

where var(.) denotes the variance and cov(.,.) the covariance matrix. Similarly, the variance-1314 

covariance matrix for by-item random effects is given by 1315 

Φ𝑖 =

(

 

𝑣𝑎𝑟(𝑏𝑖0)

𝑐𝑜𝑣(𝑏𝑖1, 𝑏𝑖0) 𝑣𝑎𝑟(𝑏𝑖1)

⋮ ⋮ ⋱
𝑐𝑜𝑣(𝑏𝑖7, 𝑏𝑖0) 𝑐𝑜𝑣(𝑏𝑖7, 𝑏𝑖1) ⋯ 𝑣𝑎𝑟(𝑏𝑖7))

 . 1316 

In summary, the fixed-effects structure includes seven contrasts (three main effects, 1317 

three two-way interactions, one three-way interaction). Consequently, the maximal random-1318 

effects structure would require estimating 72 parameters (by subject: random intercept, 7 1319 

random slopes, 28 correlation terms; by item: same as by subject). 1320 

 1321 


