
Real-time Stereo Visual Servoing for Rose Pruning with Robotic Arm

Hanz Cuevas-Velasquez1, Antonio-Javier Gallego2, Radim Tylecek1

Jochen Hemming3, Bart van Tuijl3, Angelo Mencarelli3 and Robert B. Fisher1

Abstract— The paper presents a working pipeline which
integrates hardware and software in an automated robotic rose
cutter. To the best of our knowledge, this is the first robot able
to prune rose bushes in a natural environment. Unlike similar
approaches like tree stem cutting, the proposed method does
not require to scan the full plant, have multiple cameras around
the bush, or assume that a stem does not move. It relies on a
single stereo camera mounted on the end-effector of the robot
and real-time visual servoing to navigate to the desired cutting
location on the stem. The evaluation of the whole pipeline shows
a good performance in a garden with unconstrained conditions,
where finding and approaching a specific location on a stem
is challenging due to occlusions caused by other stems and
dynamic changes caused by the wind.

I. INTRODUCTION

Gardening is a repetitive and human-intensive task, how-

ever, it is difficult to automate given the challenges that it

involves. These challenges are related to the unconstrained

environment in a real garden. There are simple gardening

tasks that have being automated like grass cutting [1], [2],

[3], stationary fruit harvesting [4] and plant irrigation [5].

Although these tasks can be considered solved and highly

commercialized, there are others that require more dexterity

in terms of manipulation and approach.

One of these complex jobs is rose pruning. A rose bush

require regular pruning in late winter or early spring to keep

it healthy, aesthetic and allow it to grow new and strong

roses. This job requires a person to cut stems according to

some gardening rules and be able to approach the stems in

different positions to cut them. As rose pruning is complex

and demanding, its automation is useful and helpful in garden

maintenance. The benefits go from small gardens at a house

to big ones, e.g. national gardens.

There are very few previous works on rose pruning robots,

with [6], [7] one of the few in the area. In these papers,

they localize cutting points on a branch by using a relation

between the diameter and the length of the branch. After

that, they use position based servoing to reach the points.

Unlike our approach, they cut only a single rose stem under

a controlled environment with constant light and background.

A close approach to rose pruning is tree pruning [8], [9],

[10]. [11] is the closest approach to our work. Here, the

authors model a grape vine using multiple stereo cameras

that surround the plant to find cutting points on stems. This

process is done in a controlled environment inside a box,

*Authors acknowledge the support of EU project TrimBot2020.
1School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB,

UK; 2Department of Software and Computing Systems, University of
Alicante, 03690 Alicante, Spain. 3Wageningen University & Research,
Greenhouse Horticulture, P.O. Box 644, 6700 AP, Wageningen, The Nether-
lands. Contact: hanz.c.v@ed.ac.uk

Fig. 1: Overview photo of the rose cutter robot.

which covers completely the whole plant from its surround-

ings, resulting in a constant illumination and background.

They, where they assume the stems are static, our approach

uses visual servoing to update constantly the target stem.

Rose pruning can be considered as lying in the research

field of precision agriculture, together with bush trimming

[12], and fruit harvesting [13]. In [12], they trim bushes based

on 3D shape fitting using an eye-in-hand arm robot. They

send all the cutting positions as programmed trajectories to

the robot without allowing any re-planning while approach-

ing the bush. In [13], they harvest tomatoes using an image

based visual servoing approach. They find the position of

the fruit based on their round shape and characteristic color.

Further work on fruit harvesting can be found in [14], [15].

Rose pruning and fruit harvesting share the same principle:

find key points where the robot should cut or pick a target.

Fruit harvesting can be considered an easier task given that

the targets usually have distinctive characteristics like color

and shape, making them easier to recognize. To prune a rose

bush, the robot has to find cutting points on a stem in a highly

populated1 and small space where all the stems look alike

and do not have any distinctive characteristic that shows the

location of the cutting point.

Our task can be seen as a special case of grasping based on

visual servoing. The difference to a normal grasping model

is that these methods usually work with big objects with a

defined body to grasp, whereas to prune a rose, the robot

has to be really precise to fit a thin stem into the cutting tool

(see Fig. 2).

To the best of our knowledge there is no robot able to

prune a complete rose bush in a natural environment. To

1Highly populated by stems.



prune a rose bush aesthetically and keep it healthy, a robot

has to cut its stems at a certain height from the ground.

Therefore, the robot should be able to locate the stems and

find where it should cut. Since the robot is supposed to

prune roses under bright sunlight, active light sensors are

not suitable, and laser scanners are expensive and limited by

their coverage. Thus, RGB stereo cameras suit well in this

task. Another important feature is robustness under changing

conditions. The robot should be robust to track the cutting

points when the stems are moved by the wind. Therefore,

close-loop control based on vision is used to update the

information while it approaches to the target.

Unlike normal grasping or fruit harvesting, having a proper

end-effector is important for rose pruning because stems are

thin and rose bushes are usually populated by many stems.

In addition, the tool must be light enough to be carried by

a small size mobile robot as end-effector. Currently there is

no pruner that can work and interact with a robot on the

market. For this reason, designing a tool capable of cutting

thin stems under program control is important for the success

of the process.

The paper presents a novel approach which is divided in

the following steps.

1) Scan the rose bush based on a pre-planned robot arm

trajectory to acquire a complete 3D description of the

bush in the form of a 3D pointcloud.

2) Segment the stems using an encoder-decoder CNN to

separate the stems from the background and leaves.

3) Evaluate the pointcloud and find cutting locations based

on the desired height.

4) Navigate towards the target stem location updating in

real-time the location of the current target.

5) If the end-effector reaches the desired target (stem),

send a signal to the cutting tool to cut it.

These steps result in not only a good estimation of the

cutting points but also a robust servoing under changing

conditions without compromising real-time target update and

execution. The navigation of the mobile robot is not part

of this pipeline because we assume the robot is already

positioned in front of the bush at cutting distance, and the

surface around it is approximately planar and horizontal as in

[16]. The proposed approach has the following contributions:

• A novel rose pruning pipeline based on stereo visual

servoing and real time target update.

• A real-time 2.5D servoing algorithm using pointcloud

and 2D images to locate stems and find cutting locations

on them.

• A dataset with more than 1200 labelled images of

rose stems used to train the encoder-decoder CNN to

segment rose bushes2.

• A novel cutting tool design for rose clipping that

works with small/medium size arm robots to cut bushes

with thin stems.

2The dataset is at: http://trimbot2020.webhosting.rug.nl/
resources/public-datasets/

II. ROBOT SETUP

This section describes the setup of the robot. Fig. 1 shows

an overview of the robot and its components. Although

the figure shows a specific design, the proposed pipeline is

more general and is not constrained to any type of robot or

stereo camera, making it flexible for a re-implementation on

different hardware.

A. Robot arm

The arm consists of a Kinova Jaco2 robot [17], a light-

weight manipulator with lower power consumption mounted

on a mobile robot; the details of the mobile robot base

can be found in [16]. The 6 rotational joints provide the

dexterity needed for the scanning and cutting actions. The

arm has a spherical wrist configuration rather than a curved

wrist. This configuration allows easier inverse kinematics

(IK) computation and smoother movements than the usual

curved wrist configuration.

B. Clipping tool

Market research started the design process of the clipping

tool to find readymade solutions to cut stems in a cluttered

environment. The commercially available Ciso pruner from

Bosch was chosen as the base because of its simple on-

off control system and the built in feedback mechanism, by

means of position switches, to sense whether the knife is

open or closed. The pruner is able to cut stems up to 14

mm in diameter and was mechanically modified in order

to mount it on the Kinova robot arm (Fig. 2). Because of

the ROS control architecture used for the main platform, a

Maxon motor controller (Epos 2, 24/5, Maxon Motor AG,

Switzerland) is used to drive the DC motor that opens and

closes the jaws of the knife. An in-house modified version

of the Maxon motor ROS wrapper epos harware [18], that

allows the reading of the digital I/O of Epos 2, is used

to control the motor and read out the state of the position

switches.

C. Stereo camera

On the last joint of the arm, on top of the clipping tool,

a custom stereo camera is mounted (Fig. 2). The camera

module is mechanically configured to not obstruct the cutting

action and to see as much of the scene as possible. The

stereo camera has a resolution of 752 × 480 px, a diagonal

FoV ≈ 68◦ and a baseline ≈ 3 cm. The stereo calibration

was done using Kalibr [19]. The camera uses as its global

coordinate the base frame of the robot. Figure 2 shows

that the camera housing has two pairs of stereo cameras

with different baselines, however, only the camera with the

smallest baseline is used because the cutter needs to get close

to the target.

III. METHOD

The proposed method is divided into 5 steps which can

be seen in Fig. 5. The following sections will describe each

step of the process individually.



Fig. 2: 3D design of the clipping tool. 1: 2 pairs of cameras in

a 3D printed housing, 2: DC motor, 3: gear box, 4: protective

cover, 5: drive lever of cutting blade, 6: position feedback

switches, 7: cutting blade.

A. Scanning

The pipeline starts by scanning a rose bush in a predefined

square shape trajectory, making a short pause at given poses

to avoid motion blur when recording an image pair. The

square trajectory has a size of 20 × 20 cm with a center

located at the cutting height h. This is the starting position

of the arm. The end-effector of the arm is ∼ 0.6 m away

from the bush. A sample of the images captured in each pose

can be seen in Fig. 3a. The scanning is performed because

a single viewpoint can only provide limited information due

to complex occlusions between stems. Also, a rose bush is

usually too big to be captured in a single shot by an eye-

in-hand camera. One can argue that the robot can be placed

far away from the plant to capture the whole bush at once,

however, the farther it gets, the more difficult it is for a stereo

matching algorithm to find the disparity of a single stem.

B. Stem detection

For each pose in the trajectory, a color image from the

left camera and a disparity map are obtained. The disparity

maps are computed by using Block Matching Stereo (BM).

Although BM is not as accurate as state-of-the-art methods

like Semi Global Block Matching (SGBM) or DispNet [20],

it is a faster approach. BM obtains the disparity maps in

real-time, whereas SGBM runs at ∼ 4 FPS and DispNet at

∼ 2 FPS3.

The image from the left camera is used as input to an

encoder-decoder CNN with residual connections to segment

the stems from the background, similar to [21]. The network

outputs a binary image where it assigns a value of 1 to all

the pixels that form part of a stem and 0 to the background.

This network outperforms most of the state-of-the-art seg-

mentations for the branch segmentation task [22]. The binary

output is used to mask the disparity image to obtain only

the disparities of the stems. This masked disparity is then

converted into a pointcloud. Figure 3c shows the pointcloud

of the bush after performing the segmentation and post-

processing.

3Under our setup (see Section IV).

C. Pointcloud post-processing

After segmenting the stems, each individual pointcloud

is downsampled using a Voxel Grid filter of size 0.1 mm.

Then, the pose of the pointclouds are transformed to the

global frame (robot base) and merged by accumulating all

the points. To make the cutting point localization process

faster, the merged pointcloud is spatially subsampled and

the noise removed. All the points that do not have at least

20 neighbors within a range of 0.5 mm are considered noise.

D. Cutting points localization

Here, the criterion to find the cutting point is based on

the height of the plant. Those stems with height above h

cm will become candidates to be pruned. This height varies

depending on the type of the rose. The cutting points (CP )

are found by creating a virtual plane at h cm above the

ground and finding all the points Ppc in the pointcloud (pc)

that are close to the plane (1).

Ppc = dist(pc, plane) < 1.5 cm (1)

where:

dist(pc, plane) =

∣

∣

∣

∣

~nplane

‖~nplane‖
·
(

pc− ~Pplane

)

∣

∣

∣

∣

(2)

Equation 1 outputs all the points Ppc in the bush that are

1.5 cm or closer to the desired height h.

The points Ppc are clustered to find the parts of the

plant where the cutting points are located. These points

are clustered based on distance using DBSCAN (Density

Based Spatial Clustering of Applications with Noise) [23].

DBSCAN is a density based clustering method, known to

work well with groups that are closely packed together and

where the number of clusters is not known beforehand. A

group of points is considered a cluster if the distance between

them is less than a threshold dcluster and the quantity of

points existing below this threshold is higher than a minimum

min p. A minimum number of points min p of 40 and a

dcluster = 0.8 cm was used in our configuration (these values

were found empirically).

A simple approach would choose the center of gravity of

those clusters as cutting points, however, it might lead to false

positives. This could happen for two main reasons. First, the

points inside a cluster might belong to a branching part of

the plant. Second, two stems that were really close might

get clustered together. In both cases, the cutting point would

be wrongly located between the middle of two stems. This

problem is tackled by dividing the clusters into horizontal

slices (7 in our implementation) and clustering each slice

with a distance threshold of dcluster = 0.5 cm and minimum

number of points of 5. In this way, thinner branches in the

cluster can be found. This second clustering will be called

sub-cluster. The cutting points are found by evaluating these

sub-clusters in the following way:

• If at least 4 of the upper slices have two sub-clusters,

this means that the cluster is located in a branching

section of the plant, therefore, two cutting points are



(a) Scanning trajectory at 9 stopping poses. From top to bottom, color images captured by the left camera, pointclouds of the rose bush,
branch segmentation network output, and the final masked pointclouds.

(b) Merged pointcloud without branch
segmentation.

(c) Merged pointcloud after segmenting
the stems with cutting points localized.

(d) Cutting points on the original point-
cloud of the bush.

Fig. 3: Scanning trajectory and pointcloud of the rose bush with cutting points (red dots).

generated. These two cutting points are the center of

gravity of the two sub-clusters that have the farthest

distance between each other (yellow slice in Fig. 4a).

This criteria aims to have two points in the cluster that

are far from each other so the cutting tool does not get

stuck between both stems.

• If all the upper slices are divided but there are at least

4 slices at the bottom part of the cluster that have not

been divided, the center of the bottom slice is chosen

as a cutting point (pink slice in Fig. 4b).

• If all the slices have one sub-cluster, the center of

gravity of the middle slice is chosen as cutting point.

Note that because DBSCAN relies on the distance between

points to form a cluster, it usually groups the points of a thorn

as part of the branch it belongs to; this is because the size

of the thorns are small (∼ 1.5 cm) and do not tend to grow

far from the branch.

E. Visual servoing

The robot starts the servoing by rotating the end-effector

45◦ for sideways cut following gardening rules. The arm

navigates to the stored cutting locations, starting with the

closest cutting point and ending with the farthest one. While

it navigates to the current cutting goal ~Pgoal, the visual

servoing looks for new cutting point candidates ~Pcan in

a neighborhood of radius 0.15 cm around ~Pgoal. If there

is any cutting point candidate in this radius, the goal gets

updated using a convex combination (3) between the current

goal position and the new goal. The convex combination is

weighted by a “blending” factor α ∈ (0, 1] with α = 0.1 in

our implementation. This combination guarantees a smoother

update of ~Pgoal by avoiding fast changes in position between

consecutive times (t, t + 1), where ~Pgoal(t + 1) is the new

goal and ~Pgoal(t) is the current goal.

~Pgoal(t+ 1) = α~Pcan(t) + (1− α)~Pgoal(t) (3)

The neighbors of the cutting goal are found by running a

process in parallel which captures the position of the arm

and pointcloud at the current time t, and outputs the positions

of the cutting points on the scene using the methods from

Section III-C, III-B and III-D (stem detection, Pointcloud

post-processing, Cutting points localization). This process

can be better appreciated in Fig. 5.

The navigation of the arm, from the start position to

a cutting point, is performed using proportional velocity

control. ROS MoveIt! software [24] is used to find the inverse

of the Jacobian J† to obtain the joint difference ∆q from

the distance ∆X; the ∆X is the distance between the end-

effector of the robot and the target ~Pgoal. For the approach, a

proportional controller is enough to have a smooth trajectory.

The proportional value K is not a constant but a dynamic

value that changes based on ∆X because the robot should

“decelerate” when it gets close to the cutting location and



(a)

(b)

Fig. 4: Clustering and slicing approach to find cutting points.

The first column shows the slices (colored) found inside a

cluster. The second column shows the resulting cutting points

after evaluating the slices. The red circles indicate the chosen

cutting points and the blue circles the center of gravity of

the cluster. (a) Shows the case where 6 out of 7 slices in

the cluster can be split in two, generating, in this way, two

cutting points. (b) Shows the case where the 4 bottom slices

of the cluster are not divided, which creates a cutting point

in the bottom slice.

E. Visual Servoing

Start

A. Scanning Pgoal=next target

Cut

C. Pointcloud

post-processing

D. Cutting point

localization

 at height ≈ h

Store

clipping sites

cutting points

pipeline

dist(tool, Pgoal)

< 0.1 cm

update

dist(Pgoal, Pcan)

< 0.15 cm

Pcan

yes no

Pgoal=Eq. 3

yes
no

cut. points

pipeline

B. Branch

detection

End
No next

target

Real-time

data

streamming

Fig. 5: Pipeline for cutting roses.

should increase the velocity when the end-effector is far from

the target. However, in practice, it is not desirable that only

the distance between the end-effector and the target controls

the value of K, specially because if ∆X is big, q̇ will have

an undesirable high speed. Thus, a maximum velocity must

be set to avoid this. Similarly, a lower bound is set to avoid

the velocity becoming 0 when the end-effector gets really

close to the target stem. Equation 4 shows how the velocity

of a joint qi is calculated.

q̇i =







10[deg
s
] if K∆qi > 10[deg

s
]

3[deg
s
] if K∆qi < 3[deg

s
]

K∆qi otherwise

(4)

Fig. 6: A sample of the rose bushes used in the evaluation.

Fig. 7: Rose bush after pruning. Figure 6 shows the plant

before being cut.

IV. EXPERIMENTS AND EVALUATION

The pruning pipeline was tested using several rose bushes.

This includes rose stems placed inside a pot and a real bush

in a garden. The thickness of the stems ranged between 0.6
to 1.0 cm. All the tests were performed outdoors in a garden,

meaning that the system was tested in an uncontrolled

environment. A sample of the plants used in the evaluation

is shown in Fig. 6 and the result of the rose pruning in Fig.7.

The system was tested using a Razer Blade 14 i7 with

8 cores and a GTX 1060 Nvidia GPU. The connection

between the software and hardware was done through the

Robot Operating System (ROS) [25].

Fold Precision Recall F1

0 0.8482 0.8228 0.8353
1 0.8120 0.8224 0.8171
2 0.8166 0.8265 0.8215

Macro Avg. 0.8256± 0.020 0.8239± 0.002 0.8246± 0.010

TABLE I: Pixel-wise branch detector results of the different

folds and macro averages.

A. Branch segmentation evaluation

The branch segmentation CNN was trained and evaluated

using our new dataset of rose bushes which consist of 1360

manually labelled images, each image with a size of 752×
480 px. A sample of the dataset can be seen in Fig. 8.

Fig. 8: A sample of the dataset collected to train the network.



The architecture of the branch segmentation CNN is

shown in Table II. The performance of the network was

evaluated using k-fold cross validation with k = 3, F1 score

for each fold and macro F1 for the whole network. Table I

and Fig. 3a show the results of the branch segmentation.

Input image size: 480×320 px

Number of layers: 4+4

Filters per layer: 128

Kernel size: 5×5

Normalization type: Standard

Data augmentation: 10 %

TABLE II: Branch segmentation CNN architecture.

B. Evaluation of cutting point detection from scanning

The accuracy of the scanning was measured by comparing

the total number of targets found after scanning a bush

and processing it (Section III-C, III-B and III-D) and the

real number of targets. This value is also compared against

the number of targets found by considering only the data

captured by a single pose. The number of cutting points

found by a single view was obtained by counting the total

cutting locations found for each view and averaging them

together. The real targets are the stems that exceed the desired

cutting height h. The heights used for the evaluation are 10,

15, 20, 25, and 30 cm. The data is taken by moving the

robotic arm in a square trajectory of 20 cm and stopping

at 18 locations. The data was captured using 19 different

bushes, each bush containing 3 to 4 cutting locations. The

total number of cutting locations was 60. Table III shows

that the fused and segmented pointcloud, after scanning the

bush, led to a detection accuracy of 90% (true positive rate).

However, if only one single pose (one single view) is used

to find the cutting locations, the accuracy drops to 30%. The

cutting points that were difficult to find were usually those

that belong to the stems at the back of the bush. It was caused

mostly by the dense population of stems and leaves covering

them.

Detected
cutting points

Detection
accuracy

Fused views from scanning 54 0.90

Single view (average) 17.89 0.30

TABLE III: Cutting point detection accuracy of targets found

(out of 60) after scanning and post-processing the pointcloud,

and the average cutting points found by a single view.

C. Visual servoing navigation quality

The quality of the visual servoing system was evaluated

by letting the robot navigate towards the cutting locations

after the scanning. This result was compared against a blind

navigation. The blind navigation gives the location of the

targets to the planner and moves the manipulator towards

them without updating the target position. A navigation is

considered successful if the robot reaches the target location

and the target stem gets into the cutter. The total number

of cutting locations found by the robot after scanning the

bush were 54 out of 60 real cutting locations. Therefore,

the evaluation of the visual servoing process was done using

only the 54 locations found by the scanning process. Table IV

shows that blind navigation is not sufficient to drive the end-

effector to the target location. In practice, the stem randomly

moves up to 2 cm sideways due to the combined effect of

external forces (like wind) and the interaction of the end-

effector with other connected parts of the bush.. This makes

the end-effector usually end up on one side of the stem. On

the other hand, our visual servoing approach is robust enough

to make the robot navigate and reach the cutting points 94%

of the time under dynamic conditions.

Reached points Accuracy

Visual servoing 51 0.94

Blind navigation 27 0.5

TABLE IV: Visual servoing and blind navigation results out

of 54 detected cutting targets.

V. CONCLUSIONS

The presented approach was designed to effectively cut

rose bushes in a garden in an unconstrained outdoor envi-

ronment with dynamic targets. The experimental evaluation

shows that the neural network is capable of segmenting the

stems of rose bushes from the background, even when the

background and the stems have similar color. This result also

demonstrates that the large dataset introduced in the paper

can indeed be used to successfully train a neural network to

segment branches of different type of roses.

The proposed target localization approach, which consists

of the combined process of stem detection, clustering and

pointcloud merging can successfully find the cutting points

90% of the times. These targets are found even when they

are occluded by other stems or leaves. This approach also

proves to be robust but fast enough to be used by the visual

servoing to update the target location on the fly.

The visual feedback is a key element to navigate in a

garden where the wind can change the position of the stems,

thus change the location of a target. The proposed visual ser-

voing performs a good navigation with an accuracy of 94%.

The combination of these steps results in a pipeline capable

of finding cutting points in stems that are occluded by other

stems or leaves and navigating towards them successfully in

∼ 12 secs with an average initial distance between the center

of the cutting tool and a target stem of 0.6 m.

Scanning the rose bush in a square path is a simple

yet effective to capture the structure of the plant. Different

scanning methods can be done to improve the scanned bush

model, like having different poses instead of a square shape

or scanning the bush by navigating around it, however this

will lead to further problems like localization and drifting.

This work is a significant step towards an automated

robotic rose pruning system with visual input as close-loop

feedback able to work in a real environment. Future work

will consider more gardening rules to prune rose bushes,

like cutting the stems above the bud eyes, crossing inward

branches and dead branches.



REFERENCES

[1] L. Bangyu and X. Fang, “Outdoor grass target recognition based on
gabor filter,” in 2017 IEEE 7th Annual International Conference on

CYBER Technology in Automation, Control, and Intelligent Systems

(CYBER). IEEE, 2017, pp. 432–435.

[2] A. Adeodu, I. Daniyan, T. Ebimoghan, and S. Akinola, “Development
of an embedded obstacle avoidance and path planning autonomous
solar grass cutting robot for semi-structured outdoor environment,”
in 2018 IEEE 7th International Conference on Adaptive Science &

Technology (ICAST). IEEE, 2018, pp. 1–11.

[3] Bosch, accessed on 19/07/2019. [online]. Available: https://www.
bosch-garden.com/gb/en/garden-tools/indego-home.jsp.

[4] Agrobot, accessed on 19/07/2019. [online]. Available: http://agrobot.
com/.

[5] R. H. Rafi, S. Das, N. Ahmed, I. Hossain, and S. T. Reza, “Design
& implementation of a line following robot for irrigation based
application,” in 2016 19th International Conference on Computer and

Information Technology (ICCIT). IEEE, 2016, pp. 480–483.

[6] C. Gürel, M. H. G. Zadeh, and A. Erden, “Rose stem branch point
detection and cutting point location for rose harvesting robot,” in The

17th International Conference on Machine Design and Production,

UMTIK 2016, 2016.

[7] C. GÜrel, M. H. G. Zadeh, and A. Erden, “Development and imple-
mentation of rose stem tracing using a stereo vision camera system
for rose harvesting robot,” in 8th International Conference on Image

Processing, Wavelet and Applications (IWW 2016), 2016.

[8] S. Paulin, T. Botterill, J. Lin, X. Chen, and R. Green, “A comparison
of sampling-based path planners for a grape vine pruning robot arm,”
in 2015 6th International Conference on Automation, Robotics and

Applications (ICARA). IEEE, 2015, pp. 98–103.

[9] S. Paulin, T. Botterill, X. Chen, and R. Green, “A specialised collision
detector for grape vines.”

[10] T. Botterill, R. Green, and S. Mills, “Finding a vine’s structure
by bottom-up parsing of cane edges,” in 2013 28th International

Conference on Image and Vision Computing New Zealand (IVCNZ

2013). IEEE, 2013, pp. 112–117.

[11] T. Botterill, S. Paulin, R. Green, S. Williams, J. Lin, V. Saxton,
S. Mills, X. Chen, and S. Corbett-Davies, “A robot system for pruning
grape vines,” Journal of Field Robotics, vol. 34, no. 6, pp. 1100–1122,
2017.

[12] D. Kaljaca, N. Mayer, B. Vroegindeweij, A. Mencarelli, E. van
Henten, and T. Brox, “Automated boxwood topiary trimming with
a robotic arm and integrated stereo vision,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2019.

[13] N. Correll, N. Arechiga, A. Bolger, M. Bollini, B. Charrow, A. Clay-
ton, F. Dominguez, K. Donahue, S. Dyar, L. Johnson, et al., “In-
door robot gardening: design and implementation,” Intelligent Service

Robotics, vol. 3, no. 4, pp. 219–232, 2010.

[14] P. Li, S.-h. Lee, and H.-Y. Hsu, “Review on fruit harvesting method
for potential use of automatic fruit harvesting systems,” Procedia

Engineering, vol. 23, pp. 351–366, 2011.

[15] C. W. Bac, E. J. van Henten, J. Hemming, and Y. Edan, “Harvesting
robots for high-value crops: State-of-the-art review and challenges
ahead,” Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.

[16] N. Strisciuglio, R. Tylecek, N. Petkov, P. Bieber, J. Hemming, E. van
Henten, T. Sattler, M. Pollefeys, T. Gevers, T. Brox, and R. B. Fisher,
“Trimbot2020: an outdoor robot for automatic gardening,” in 50th

International Symposium on Robotics. VDE Verlag GmbH - Berlin
- Offenbach, 2018.

[17] K. Robotics, accessed on 19/07/2019. [online]. Available: http://www.
kinovarobotics.com.

[18] M. Wills, accessed on 19/07/2019. [online]. Available: http://wiki.ros.
org/epos hardware.

[19] J. Maye, P. Furgale, and R. Siegwart, “Self-supervised calibration for
robotic systems,” in 2013 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2013, pp. 473–480.

[20] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and
depth boundaries with a generic network for disparity, optical flow or
scene flow estimation,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 614–630.

[21] J. Calvo-Zaragoza and A.-J. Gallego, “A selectional auto-encoder
approach for document image binarization,” Pattern Recognition,
vol. 86, pp. 37 – 47, 2019. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0031320318303091

[22] H. Cuevas-Velasquez, A.-J. Gallego, and R. B. Fisher, “Segmentation
and 3d reconstruction of rose plants from stereoscopic images,”
Computers and electronics in agriculture, 2020.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.”

[24] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE

Robotics Automation Magazine - IEEE ROBOT AUTOMAT, vol. 19,
pp. 18–19, 03 2012.

[25] M. Quigley, J. Faust, T. Foote, and J. Leibs, “Ros: an open-source
robot operating system.”


	INTRODUCTION
	ROBOT SETUP
	Robot arm
	Clipping tool
	Stereo camera

	METHOD
	Scanning
	Stem detection
	Pointcloud post-processing
	Cutting points localization
	Visual servoing

	Experiments and evaluation
	Branch segmentation evaluation
	Evaluation of cutting point detection from scanning
	Visual servoing navigation quality

	CONCLUSIONS
	References

