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Abstract—Face-based behaviometrics focus on dynamic bi-
ological signatures generated from face behaviors, which are
informative and subject-specific for identity recognition. Most
existing face behaviometrics rely on 2D visual features and thus
are sensitive to pose or intensity variations. This paper presents
a dual-modality behaviometrics algorithm (talking-metrics) that
integrates 3D video and audio cues from a human face speaking
a passphrase. Static and dynamic 3D face features are extracted
algorithmically and audio features are transformed through a
few learning models. We concatenate the top 18 discriminative
3D visual-audio features to represent the bi-modality and uti-
lize an linear discrimant analysis (LDA) classifier for identity
recognition. The experiments were conducted on a new publicly
released dataset (S3DFM). Both qualitative feature distributions
and quantitative comparison results show the feasibility of the
proposed pipeline and the superiority over using each modality
independently. A 98.5% cross-validation recognition rate over 60
subjects and 10 trials was achieved. An anti-spoofing test also
demonstrates the robustness of the proposed method.

I. INTRODUCTION

Face and speech biometrics are active topics in the fields of
information security and forensics. The combination of dual
biological modalities boosts biometric accuracy and especially
increases spoofing resistance due to information compensation.
In speech-related biometrics, the traits of speakers can be
abstractly represented using either dynamic facial or audio
features. 2D face biometrics have made great progress, with
recognition rates approaching the level of human perception.
However, a common inherent weakness with 2D face biomet-
rics is sensitivity to head pose, scale, and intensity-related
effects. Audio streams also suffer from interference from noisy
backgrounds. In this paper, we combine 3D speech-related
face metrics with audio metrics to give dual-modality “talking-
metrics”. The speech behavior creates a collaborative and
text-guided facial modality. Compared with spontaneous facial
expressions, speech has better repeatability and privacy, with
the spoken text as a “passphrase”. Additionally, 3D image
information allows for real geometry-level biometrics, which
are inherently robust against scale and pose. Compared with
each individual modality, the dual-modality from the talking
behavior is a promising approach for enhancing quantitative
recognition accuracy and qualitative spoofing resistance.

A. Related Works

Visual-audio cooperative information has been exploited
in applications including biometrics, speech recognition [1],
person diarization [2], emotion recognition [3], and voice
activity detection [4]. In the field of visual-audio dual-modality
biometrics, the general pipelines follow three stages including
raw feature extraction, feature fusion for joint representation,
and identity decision. Modality fusion [5] can be categorized
as feature-level (early) [6], [7], classifier-level (intermediate)
[8], [9], [10], [11] or score/decision-level (late) [12], [13], [14]
fusion. Existing visual-audio biometrics algorithms are listed
in Table I. Note that all the algorithms used 2D intensity videos
plus audio streams, while we focus on 3D shape videos.

Some joint visual-audio representations concatenate
intensity-level visual features with audio features using a
summation or maximum rule, while others train a deep
fusion model, such as the cross-modal prediction model [10]
or the joint Boltzmann machine model [11]. Quantitatively,
some algorithms achieve nearly perfect results (higher than
95%) by using more audio or intensity information (more
passwords, more face profiles, integrating teeth modality).
We also achieve nearly perfect recognition rate (98.5%) and
EER (1.33%) when only using the same password across 600
samples from 60 subjects. Qualitatively, the 3D face modality
inherently benefits from less-sensitivity to the issues faced by
the intensity modality, and it has been demonstrated that 3D
face behaviors are even more informative and discriminative
when describing a subject [15]. Thus, the dual-modality
combining 3D facial dynamics and audio has more potential
resistance to artificial spoofing, such as mask or voice play
attacks. However, biometrics via 3D visual-audio modalities
are a less-explored yet promising field.

In this paper, we propose a novel behaviometrics algorithm
(talking-metrics) based on 3D visual-audio joint modalities
generated from a 3D talking face.

Section II presents the proposed dual-modality behavio-
metrics that combine 3D talking face measurements with
learned audio features for better accuracy and higher spoofing
resistance, when compared to each modality as stand-alone.
The pipeline consists of feature extraction from 3D talking
face videos and synchronized audio streams, refined 3D visual-
audio joint representation, feature training and identity classi-



TABLE I
DATA MODALITIES AND PERFORMANCE OF EXISTING VISUAL-AUDIO BIOMETRICS ALGORITHMS

Method/Year Data modality Subjects Samples/Subject Performance (%)
[12]/2007 indoor & outdoor face IM + audio 116 4 IM + 2 audio TAR 97.5*; FAR 0.4*
[8]/2008 multi-profile face IM + multi-password audio 210 5 RR 96.7*
[6]/2009 face IV + audio 43 10 EER 5.9*
[7]/2010 open web TV shots + audio 10 40 RR 65.0*
[9]/2010 face IV + audio 43 10 RR 97.5
[13]/2010 face, teeth IM and audio 50 20 EER 1.6
[14]/2013 face IV + audio 88 12 RR 90.0*
[11]/2017 61 hours text-dependent & independent IV-audio 100 60 RR 98.0
Ours/2018 Speech-related 3D dynamic face video + audio 60 10 RR 98.5; EER 1.33
Note: IM-Intensity Image; IV-Intensity Video; RR-Recognition Rate. *Estimated from publication graphs.

fication.
Section II-A presents the first publicly available dataset

about Speech-related 3D Face Motions - S3DFM Dataset1.
The dataset consists of 600 2D-3D videos and audio sequences
from 60 subjects, each with 10 repeatable samples.

Section III shows the experimental results conducted on
the proposed S3DFM Dataset. The proposed pipeline achieves
nearly perfect (98.5%) cross-validated recognition rates over
10 trials each by 60 subjects even with each speaking the
same passphrase. It outperforms other biometrics pipelines
based on individual 3D talking face, audio, and 2D visual-
audio combined modalities.

II. PROPOSED METHOD

A. Overview

The proposed 3D visual-audio beheviometrics pipeline (as
shown in Fig.1) has two main stages: (1) 3D visual-audio
feature extraction; (2) unknown speaker recognition via pre-
trained detectors. The visual-audio joint feature representation
consists of static and dynamic 3D visual and audio feature
extraction. A 3D talking face is represented using features con-
structed from the facial geometric structure and local shapes.
The audio samples are originally represented as MFCCs. We
train a generic Gaussian mixture based universal background
model (GMM-UBM) and estimate a Total Variability matrix,
which is then used for transforming each raw audio feature
(MFCCs) into a higher-level feature in turn [16]. A subset of
the concentrated visual-audio features are selected for use in
another LDA classifier. More details follow below.

B. 3D Visual Representation

Given a 3D point cloud video and a pixel-wise registered
2D intensity video of a talking face, the 3D visual features are
extracted from static (eyes and nose) and dynamic (mouth)
regions of the 3D video, guided by the 2D intensity video.
This is to avoid the influence from the noisy 3D video. The
features are 3D distances between 3D facial landmarks (FLM)
and principal curvatures (PC) of the 3D FLMs. They represent
both static 3D facial geometry and talking-related 3D facial
dynamics.

1http: //groups.inf.ed.ac.uk/trimbot2020/DYNAMICFACES

TABLE II
SPEECH-RELATED 3D DYNAMIC FACIAL PRIMITIVES.

Frame-level 3D Dynamic Facial Primitives
Mouth width DD1

Mouth opening DD2

Max and min PCs of left mouth corner DC1, DC2

Max and min PCs of right mouth corner DC3, DC4

Max and min PCs of upper lip DC5, DC6

Max and min PCs of lower lip DC7, DC8

Frame-level 3D Static Facial Primitives
Left eye width SD1

Right eye width SD2

L-R eye width SD3

Nose length SD4

Nose width SD5

Max and min PCs of nose bridge SC1, SC2

Max and min PCs of nose tip SC3, SC4

(PC: Principal Curvatures)

Specifically, the FLMs are the standard 68 points distributed
around eyes, nose, mouth and cheek, extracted using [17].
We only selected 10 static FLMs from the eyes and nose,
and 4 dynamic FLMs from the deforming mouth. The frame-
level 3D facial features are extracted in 2 phases: leveraging
an ensemble of regression trees for 2D FLM detection [17],
then extracting corresponding 3D FLMs and neighborhoods
from the pixel-wise registered 3D video. The derived 3D
facial primitives from each frame are 5 Static FLM Distances
SDa = {SDt

a}, 2 Dynamic FLM Distances DDb = {DDt
b},

4 Static PCs SCc = {SCt
c}, and 8 Dynamic PCs DCd =

{DCt
d}, as listed in Table II. Each facial primitive across a

sequence generates a facial signature. Finally, we calculated
statistics of each sequence signature and concentrated them
into a holistic descriptor. Note that these statistics encode the
dynamic properties of the talking face.

The ith summary feature f(xi) of either a static or a
dynamic signature xi = {xt

i} is computed as
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By concatenating all the statistical properties of the facial



Fig. 1. The proposed 3D visual-audio behaviometrics pipeline. The top box details the 3D visual-audio joint representation, which is then used in the bottom
box for dataset training and speaker testing.

signatures, a 3D talking face is finally represented as a 29D
feature vector as

f = {waf(SDa), wcf(SCc), wb′f(DDb), wd′f(DCd)} (2)

where wa(a = 1 · · · 5), wc(c = 1 · · · 4), wb′ (b′ = 1 · · · 4 is the
number of statistical features of DDb, so is twice the number
of b), wd′ (d′ = 1 · · · 16 is also twice the number of d) are
all binary indexes that indicate whether the feature has been
selected based on effectiveness for use (detailed in section
II-D). The 3D video data and features have been previously
used for person identification in [18].

C. Audio Representation

The process used to extract audio features is similar to that
used in other recent work, for example [19]. It involves first
calculating iVectors [16] and then applying linear discriminant
analysis (LDA). Briefly, frame-level 42 dimensional spectral
features were first extracted from each audio recording (down-
sampled to 16kHz) in the form of mel-cepstra (12 dimensions,
plus 0th order coefficient and energy, and their derived deltas
and delta-deltas) using the Voicebox speech processing toolbox
[20]. Then, for iVector processing, the training data was used
to train a GMM-UBM with 256 mixture components, and
a total variability matrix (T-matrix) for 40 dimensions. The
training set iVectors and speaker labels were then used to
derive an LDA projection to a reduced 10-dimensional space.
The projection is to avoid the curse of dimensionality and thus
improve the discriminativity of audio features. The UBM, T-
matrix and LDA projection matrix thus obtained were used to
process the test audio data in the same way.

D. Joint Feature Training and Classification
We combine the 29D visual features and 10D audio features

into a 39D visual-audio joint feature vector. Since not all of the
features are discriminative and informative enough for subject-
specific identity classification, we select the first n features
using a forward sequential feature selection strategy that min-
imizes the mean recognition error of an LDA classifier based
on 5-fold cross validation. The selected top n discriminative
features create a refined 3D visual-audio representation for the
dual-modality talking-metrics.

For training and test, all the samples are separated into
3 splits (training, validation and test set). Each sample is
represented by an n dimensional selected visual-audio feature
vector. For each fold, an LDA classifier model is trained and
tuned using the training and validation sets. In the test phase,
a 3D visual-audio sample probe is input into the pre-trained
LDA classifier for identity recognition. The first-rank class
based on the nearest neighbor distance will be the identity of
the test person.

III. RESULTS AND DISCUSSIONS

To the best of our knowledge, there is no existing publicly
released dataset on talking-related 3D dynamic face videos
and audio streams. We construct Edinburgh Speech-related
3D Facial Motion Dataset (S3DFM), which enables research
on joint 3D visual-audio recognition. The experiments were
conducted using the proposed S3DFM dataset to investigate
the performance and robustness to spoofing of the proposed
method.

A. S3DFM Dataset
The new dataset contains 600 samples acquired from 60

subjects (each subject has 10 samples), where there are 37



Fig. 2. Example data: top: 4 representative 3D point cloud frames; mid: 4
pixel-wise registered 2D infrared intensity frames; bottom: audio sample.

males and 23 females. The subjects cover more than 15
nationalities, and their ages range from 16 to 73 years old.
In data acquisition, each subject was asked to spontaneously
repeat a short passphrase - ‘Nihao’ 10 times in front of a
binocular stereo video sensor [21] and a microphone. Each
sample consists of a 500 fps 3D point cloud video with the
resolution of 600 × 600 points, a pixel-wise registered 2D
infrared intensity video with the resolution of 600 × 600
pixels and a synchronized audio stream with the sampling
frequency of 16kHz. To increase the difficulty, we used the
same passphrase across all the subjects. An example sample
from a subject is shown in Fig. 2. All the experiments below
used 5-fold cross-validation. The training, validation, and test
set are respectively with 6 samples, 2 samples, and 2 samples
each from the 60 subjects.

B. Feature Distribution

To qualitatively evaluate the separability of features, we
projected (using PCA) 4 sets of features into a 2D space
respectively and compare their distributions. The investigated
feature sets are selected 3D visual-audio features (Selected 3D
VA), 3D static visual features (3D SV), 3D dynamic visual
features (3D DV), and audio features. The distributions of
the 4 feature sets from one fold are shown in Fig.3. The 2
test samples from one class are linked with the center of the
remaining 8 samples from the same class using a line to show
the intra-separability of the class.

Overall, all the distributions of the 4 feature sets show some
separability of classes, although the separability of the audio
samples is not large compared with its intra-separability. The
3D SV samples have both small inter and intra-separabilities.
The inter-separability of the 3D DV samples is better, while a
few samples are not clustered well. The selected joint visual-
audio features benefit from the 3 individual feature types,
although there are still a few outlier samples that lie relatively
far from the center of the corresponding class.

Fig. 3. The distribution of feature sets: (a) audio features; (b) 3D dynamic
visual (3D DV) features; (c) 3D static visual (3D SV) features; (d) selected
3D visual-audio features.

C. Feature Selection

The most effective features are selected from the full 39D
visual-audio joint features to maximize the discriminativity
power and to remove noisy components. To compare the
contribution of each modality’s features individually, we did
independent feature selection on 3D visual features (3D SV
+ 3D DV) and audio features. Fig.4 shows feature selection
error for pure 3D visual features, pure audio features, and 3D
joint visual-audio features, respectively, where the number of
original 3D visual features is 29 and the number of audio
features is 10. The iterative optimization of the sequential
selection algorithm minimizes the mean recognition error (%)
achieved by an LDA classifier over the 600 samples. The
selection was performed using 5-fold cross-validation over the
full dataset.

One can see that (1) the pure 3D visual feature selection
shows that the first 13 visual features achieve the best per-
formance with a recognition rate of 95.0%, while the main
improvement is given by the first 7 visual features, with a
recognition rate of 93.7%. The detailed feature numbers are
listed in Table III. (2) The pure audio feature selection shows
that all of the 10 audio features are useful for recognition, with
the best recognition rate of 94.7%. (3) The feature selection
over the full visual-audio joint features shows that the first 18
visual-audio joint features are the most useful for our task,
with the overall best recognition rate of 98.5%. The order of
the sequentially selected 18 features is listed in Table IV. The
main improvement is given by the first 10 joint features, with
the minimum recognition rate of 96.7%.



Fig. 4. Recognition error for different numbers of selected features.

TABLE III
FEATURE NUMBERS BEFORE AND AFTER FORWARD SEQUENTIAL

SELECTION

Original Feature Set Original Feature Number Selected Number
3D V (S + D) 29 13
Audio 10 10
Joint 3D visual-audio 39 18

TABLE IV
SEQUENTIALLY SELECTED VISUAL-AUDIO JOINT FEATURES

Order Type Feature Order Type Feature
1 3D SV f(SD3) 10 Audio Audio 7
2 3D SV f(SD5) 11 3D DV f(DC3)2
3 3D SV f(SD2) 12 Audio Audio 10
4 3D SV f(SD1) 13 Audio Audio 1
5 3D DV f(DD2)1 14 Audio Audio 2
6 3D SV f(SD4) 15 3D DV f(DD1)1
7 3D DV f(DD2)2 16 3D SV f(SC2)

8 Audio Audio 3 17 3D DV f(DC5)2
9 Audio Audio 6 18 3D DV f(DC6)1

(The numbers of the audio features do not have explicit interpretations
due to the LDA refinement.)

D. Performance of 2D and 3D Feature Combinations

We investigate the performance of selected 3D visual-
audio joint features for person identification, in comparison
to several other feature combination pipelines based on 3D
SV and/or 3D DV and/or audio and/or algorithmic 2D visual
(2D V) features, and a state-of-the-art “deep” face descriptor
(FaceNet) [22]. The 2D features were extracted from a 2D in-
tensity set with 2400 images (60 subjects×40 images/subject)
randomly selected from the proposed S3DFM Dataset. The
algorithmic 2D facial features are Gabor Magnitude (GM)
[23] and Phase Congruency (PhaseC) [24] for comparison.
The deep-net-based pipeline was trained via fine-tuning a pre-
trained FaceNet model. For the pipeline based on algorithmic
2D V, we trained an LDA classifier and tuned its projection

Fig. 5. Comparison of retrieval results of varying pipelines: (a) 3D +/ audio
features; (b) 2D +/ 3D +/ audio features. (The results in the 2 sub-figures can
be compared together, while are separated just for easier viewing)

parameter over the training and validation sets using 5-fold
cross-validation. The parameters with the minimum mean
recognition error were used in the test phase. The comparison
results are shown in Fig. 5 using Cumulative Match Character-
istic (CMC) curves. The CMC curves show that the accuracy
of the algorithm varies with ‘Top N’ correctness, for different
values of N. A decision is correct if the true identity is in the
top N scores.

The FaceNet-based pipeline show a overall mean recogni-
tion rate of 76.5% over the 2400 intensity images. As the
FaceNet-based descriptors have 4096 dimensions and the size
of the dataset is limited, we do not think that the FaceNet is
the most compatible solution with our data. The results in Fig.
5 show that the pipeline based on the selected 3D visual-audio
features outperforms all of the other pipelines, with the highest
first-rank recognition rate of 98.5%, followed by the full 3D
visual-audio features with 97.9% and the feature combination
of Phase Congruency 2D visual features and the selected 3D
visual-audio features, with 97.3%. In Fig.5a, it is obvious that
the 3 individual feature sets (3D SV, 3D DV, audio) performed
relatively poorly. Therefore, each individual modality benefits
from the other modalities by information compensation.

E. Biometric Verification with Spoofing Attacks

Spoofing attacks are one of the greatest challenges in
biometrics. To simulate audio and face spoofing attacks, we
separate all the test samples into three classes, including 60
genuine clients, 30 3D V (3D DV + 3D SV) spoofing attacks,
and 30 audio spoofing attacks.

For the 3D V spoofing attacks, the 3D V features of person
B were replaced by the 3D V features from target subject A
(as if person B with their own audio features was pretending to
be person A). Similarly, for audio spoofing attacks, the audio
features of person B were replaced by the audio features from
target person A (as if person B with their own video features
was pretending to be person A.). The test was conducted using
5-fold cross validation. The distributions of the genuine scores,
3D V impostor scores, and audio impostor scores are shown
in Fig.6a, and the ROC curve of the closed-set verification is
shown in Fig.6b.



Fig. 6. (a) Distributions of the three sets of samples with/without spoofing
attacks; (b) ROC curves for accepting true probes and rejecting spoofing
attacks, obtained by varying the verification score threshold.

It is obvious that the genuine scores are separable from
the impostor scores (audio + 3D V spoofing attacks), which
demonstrates the discriminative power of the individual modal-
ity features and the feasibility of the 3D visual-audio joint
feature representation for anti-spoofing. The ROC gives an
EER of 1.33%. Overall, the proposed 3D visual-audio joint
pipeline is robust against the audio and 3D V spoofing attacks.

IV. CONCLUSIONS
This paper presents a novel dual-modality behaviometrics

approach (talking-metrics) based on a 3D visual-audio joint
feature representation. Also, we presented a novel 2D-3D
facial video plus audio dataset concerning talking-related
behavior. The features of each modality are extracted or
learned separately, and are integrated into a 18D summary
feature vector by sequentially selecting the top discriminative
features. The proposed dual-modality behaviometrics achieves
the best performance over the biometric identification and anti-
spoofing verification tests on our released dataset (S3DFM).
Our works explore a novel discriminative combination of
talking-related 3D dynamic face and audio information and
thus provide a new biometric approach. The discriminability
of the 3D face behavior and mutual compensation between the
dual modalities improve the level of biometric security.

We note that this excellent performance is achieved even
with all subjects speaking the same passphrase. Future work
could explore the benefits of each subject using a unique
passphrase. Another possible future direction could explore
performance when the facial poses are changing unpredictably
while speaking, or deep-net-based feature extraction.
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