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Abstract

Visual servoing is a well-known task in robotics. However, there
are still challenges when multiple visual sources are combined to accu-
rately guide the robot or occlusions appear. In this paper we present a
novel visual servoing approach using hybrid multi-camera input data
to lead a robot arm accurately to dynamically moving target points
in the presence of partial occlusions. The approach uses four RGBD
sensors as Eye-to-Hand (EtoH) visual input, and an arm-mounted
stereo camera as Eye-in-Hand (EinH). A Master supervisor task se-
lects between using the EtoH or the EinH, depending on the distance
between the robot and target. The Master also selects the subset of
EtoH cameras that best perceive the target. When the EinH sensor is
used, if the target becomes occluded or goes out of the sensor’s view-
frustum, the Master switches back to the EtoH sensors to re-track the
object. Using this adaptive visual input data, the robot is then con-
trolled using an iterative planner that uses position, orientation and
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joint configuration to estimate the trajectory. Since the target is dy-
namic, this trajectory is updated every time-step. Experiments show
good performance in four different situations: tracking a ball, target-
ing a bulls-eye, guiding a straw to a mouth and delivering an item to
a moving hand. The experiments cover both simple situations such
as a ball that is mostly visible from all cameras, and more complex
situations such as the mouth which is partially occluded from some of
the sensors.

1 INTRODUCTION

The range of robotic applications has greatly increased with the advent of
low-cost 3D sensing technology. Among the different new uses of robots, so-
cial interaction is one of the more exciting areas of research and development.
But these applications require methods to guide robots to perform tasks that
interact with humans, e.g. emptying a spoon into a mouth, offering tools,
pouring liquids for people, etc. One factor that these tasks have in common
is the motion of the target, which motivates in part the research presented
here.

Visual servoing methods, iteratively and in real-time, control robots using
visual information as input data. There is much previous research into visual
servoing and good surveys exist [1, 2, 3], including a recent survey of medi-
cal robotics servoing applications [4]. To control the robot, cameras can be
placed on the robot arm (eye-in-hand) or in the environment (eye-to-hand).
These terms have been defined as: “the camera is said eye-in-hand (EinH)
when rigidly mounted on the robot end-effector and it is said eye-to-hand
(EtoH) when it observes the robot within its work space” [5]. Our hypothesis
is that using a hybrid scheme we can switch to the best sensor (EinH⇔ EoH)
in terms of accuracy, which is typically the EinH camera in close range from
the target. Impressive results have been reached using eye-to-hand cameras,
such as the catching flying objects [6, 7, 8]. The system learns how to catch
objects using several cameras and with a human initially manipulating the
arm. Bauml et al. [6, 7] used a trajectory model so that the ball movement
and catch position could be predicted. However, in [8] statistically and dy-
namically unbalanced objects (half full bottles or a racket) are used, hence
they readjust the near future predicted target position iteratively. Other
approaches solve occlusion problems using using multiple cameras in the en-
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vironment, such as the work of Maniatis et al. [9] where they fuse multiple
RGBD sensors around the arm, creating an occupancy space to find empty
areas where a robot-mounted camera could be placed.

Multi-camera setups that combine data from external and arm-mounted
sensors [10, 11, 12] acquire information from different perspectives to solve
problems such as occlusion, high precision targeting via coarse-to-fine posi-
tioning, dynamic target acquisition, etc. When multiple sensors are used,
the configuration could be eyes-in-hand along with eyes-to-hand. Quintero
et al. [13] explored both EinH and EtoH, using stereo sensors in hand but
not as a 3D sensor and used RGB data separately. Wang et al. [14] servoed
to dynamic targets in cases where the data capture is slower than the target
motion. They use visual sensing dynamics to compensate for the slow sam-
pling and large latency of the visual feedback. Hybrid EinH/EtoH was used
in various approaches. Lippiello et al. presented in [15] an approach where
all sensors are included in the pose estimation model. On the other hand,
Chang and Shao [16] used EtoH (RGB camera) to coarsely locate the target
pose, and EinH (laser projector and a camera) to control the fine position of
the robot moving towards the target.

In the research reviewed above, the image data is analyzed using tradi-
tional algorithmic methods. However, some research approaches are analyz-
ing the the visual information using deep network methods. Lee et al. [17]
used deep features to learn a visual servo mapping from image to motor con-
trol, in a manner more robust to visual variation, changes in viewing angle
and appearance, and occlusions. Zhang et al. [18] trained a Deep Q Network
to servo based on simulation, using image data inputs.

There have been many approaches to visual servoing, including EinH,
EtoH and hybrid schemes. However, there are still some challenging prob-
lems like perception of large scenarios with multiple EtoH, or avoiding self-
occlusions with the robot and the visual system. To cope with such problems,
this paper presents a novel approach for visual servoing using a hybrid-camera
setup that combines a 3D EinH and multiple-EtoH 3D sensors for dynamic
targets. The method uses a Master process that selects the input informa-
tion for the servoing from a global 3D EtoH virtual sensor or a 3D stereo
EinH sensor, depending on the distance to the target and perception qual-
ity. Global scene analysis uses 3D data fused from multiple RGB-D sensors,
where only those with good quality perception are selected for fusion. If the
target is close enough, the EinH sensor is used for control; otherwise, or if
the target moves out the view of the EinH stereo 3D sensor, the whole set
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of EtoH sensors are activated. This solution allows a better visualization of
objects and to overcome partially covered targets. The main contributions
of the paper are:

1. A novel robot workcell incorporating multiple RGBD sensors, an in-
verted robot and an arm-mounted real-time stereo sensor that supports
3D capture and servoing over a range of scales (Section 2).

2. A hybrid 3D servoing algorithm using data from both the global
(for coarse alignment) and arm-mounted (for fine alignment) 3D sensors
(Section 2.1).

3. A source switching algorithm that selects between the global and
arm-mounted 3D sensors for most accurate performance (Section 2.1).

2 Problem Statement

This paper presents a novel hybrid multi-camera eye-to-hand (EtoH) / eye-
in-hand (EinH) approach to guide a robot arm in different tasks. The target
point is assumed to be dynamic, which makes the problem more complex
in terms of the switching between EtoH and EinH servoing as the spatial
relationship between the robot and target changes. The proposed EtoH/EinH
switching algorithm is general, but for experimental evaluation the workcell
seen in Fig. 1 is used, which has these components:

• Inverted UR10 arm and work surface.

• Video rate stereo sensor [19] (720x480 color pixels, 30 selectable depth
planes, 10 fps) mounted on the UR10 arm bracket (see bottom orange
square Fig. 1). The sensor’s view-frustum is 45◦ wide and bounded be-
tween 20 and 40 cm from its mounting point, resulting in approximately
0.7 cm depth quantization.

• Four Kinect v2 RGB-D sensors at the four corners of the workcell
(Fig. 4).
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Figure 1: Setup for tracking of targets with multiple depth sensors. The
upper orange square shows one of the 4 RGBD Kinects, and the lower orange
square marks the stereo EinH sensor.

2.1 Proposed Approach

The proposed visual servoing approach uses a hybrid multi-camera setup, an
iterative color 2D target segmentation and a 3D target location algorithm
switching between EtoH and EinH sensors to accurately locate the target
and thus position the robot arm for a specific purpose. The system schema
(Fig. 2) shows the main software components, which are discussed in detail
below. The implementation uses a combination of ROS and custom Matlab
specialist packages.

The image data can come from any or several of the four Kinect RGBD
sensors (EtoH), or the arm-mounted stereo sensor (EinH), and as with any
position based servoing, their good calibration is critical to the accuracy
of the system. The intrinsics of the Kinect cameras are calibrated using
Kalibr [20]. The extrinsic calibration to register depth data from the four
cameras into a common global coordinate system is carried out in two steps.
First similar to [21] a spherical marker is placed in different locations across
the workspace and the center of the sphere in each camera a is calculated
from segmented point cloud. Next, Procrustes analysis of the corresponding
centers is used to find the transformation from each camera to the reference.
Finally, april-grid pattern [20] placed on the tabletop provides a transform
of the workcell’s center and orientation to a reference Kinect, resulting in
a fused point-cloud of the whole workcell (Fig. 5). The residual distance
of the corresponding marker center points after the registration was ∼3 cm
on average and increased towards the corners of the workcell. The EinH
stereo sensor is similarly calibrated with respect to the gripper mounted at
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the end of the robot arm, whose global position can be derived from the
current robot configuration. In the static case the combined EinH error of
∼1 cm is significantly lower than EtoH, which is the main motivation to
use it when possible, leading to the advocated hybrid scheme. Based on
our initial experiments we adopted the sensor switching strategy to only use
sensors close to a target location, which provide less noisy data and more
accurate target poses compared to sensors far from the target. Our attempts
to continuously average detections from all sensors (e.g. using Kalman filter)
has led to inferior accuracy and reduced overall system performance (more
data bandwidth and processing resources needed).

The core of the system is a Master state machine that connects the robot-
arm control with the image analysis. The Master also decides when to use
the EtoH or the EinH sensors. This switch depends, mainly, on whether
the target is in the view-frustum of the eye-in-hand sensor. The stereo pair
mounted on the arm is meant for fine accuracy, but its working range is nar-
row and close in distance (see parameters in the component list 2). Initially
the EtoH sensor provides the image data, used to servo the robot towards
the moving target. Once the robot is close enough, the Master switches to
the EinH stereo sensor. If the target goes out of the EinH view-frustum,
the master switches back to the EtoH multi-camera to servo the target back
into the EinH range. There is a 5 cm hysteresis difference threshold when
switching from EtoH to EinH to limit oscillation at the switching boundary.
There is no hysteresis when switching from EinH to EtoH.

Visual servoing uses the input information selected by the Master in two
different components: Object tracking (Sec. 2.2), and robot controller with
position based control (Sec. 2.3), which are described in more detail below.

2.2 Hybrid Object Tracking

The visual tracking subsystem combines inputs from multiple RGBD sensors
to estimate the moving target’s position by optimally selecting active sen-
sors, particularly in cases when the target becomes occluded by the robot
arm or the operator, or leaves the view-frustum of the EinH sensor. Color
thresholding in the Lab color space and morphological post-processing gives
the target’s 2D image position. As target detection is not a main point of
this paper, the targets are easily distinguishable (Fig. 6). In the case of cir-
cular targets, we neglect the effect of perspective projection and assume the
projected shape is approximately circular. The detection component could
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Figure 2: Components of the position-based visual servo system. Sensor
calibration is carried out before the servoing loop is executed, then all com-
ponents run in parallel. The Master controller switches between the EinH or
EtoH input data. Target tracking is performed using the selected data, with
target position being given to the motion controller.

be replaced by a trainable object detector such as [22].
The 3D target position s(t) is estimated using the registered point cloud

value associated with each RGB image pixel. Color segmentation finds the
target’s image region which gives an associated set of 3D points, whose center
of mass estimates the target 3D position. A 3D target position is estimated
for each active EtoH sensor and then averaged to get a more precise location
of the target (because of errors in the global registration of the four Kinect
sensors). Normally the fusion uses only the 3D positions from the two Kinects
that are closest to the target and have it in their field of view. The data from
all four Kinects is used if target detection fails.

When the object is in the view-frustum of the EinH camera, tracking
switches from EtoH to EinH (which provides color image and depth dispar-
ity). As before, color information is used to segment the target. Then, the
center of mass is estimated using the 3D point cloud of the segmented ob-
ject in the disparity map. This position is in the EinH camera coordinate
system, which is then transformed into the global 3D space, by using the
current UR10 arm joint angles of the arm to obtain the current camera pose.
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Figure 3: Parallel replanning and execution scheme. See text for explanation.

2.3 Position Based Motion Control

Visual servoing to moving targets requires fast movement control of the robot
arm and real-time motion planning. To plan motions in the presence of a
human operator, safe movements are needed. The kinematic planning uses
spatial position constraints and plans motion in joint space with trajectory
interpolation for better stability.

A segment k is a variable time period during which a given plan is exe-
cuted and simultaneously the next trajectory is planned based on the current
sensor reading (Fig. 3). Define t0 and te as the starting and ending times
of trajectory segment k. All variables that change within a segment will be
parametrized with t ∈ [t0, te]. The tracked target position obtained from the
visual tracker at time t0 in the segment k is sk = s(t0).

The next end-effector goal pose X∗
k = [y∗k(te), a

∗
k(te)]

T in task-space for
segment k is given to the motion planner in the previous segment k − 1.
From now on, all variables with superscript ∗ are target values for time
te. X∗

k combines the desired position y∗k of the robot end-effector and the
desired orientation a∗k. Similarly, the current actual robot end-effector pose
is denoted Xk(t) = [yk(t), ak(t)]T .

Arbitrary target motions make its next appearance less predictable, i.e.
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uncertainty needs to be considered when estimating y∗k. For this reason, an
iterative approach strategy is used (Sec. 2.4). A movement “discount” factor
α ∈ (0, 1] (here 0.8) compensates for the unpredictability when calculating
y∗k:

y∗k = yk(t0) + α ∗ (sk−1 − yk(t0)) (1)

where yk(t0) = y∗k−1(te) is the initial task-space position of the robot end-
effector.

Equation (1) defines the servoing to a target by moving the robot towards
the estimated orientation rather than the estimated position. This procedure
iteratively leads the robot’s end-effector to the target point until convergence.
When the target is less than 2 cm away, the discount used is α = 1.0.

In joint space, qk(t) ∈ R6 is the current joint configuration (6 DoF) at
time t and q∗k is the desired joint configuration at time te. The robot state is
described with R(t) = [yk(t), ak(t), qk(t)] and the task cost function f is:

f(R(t)) = ‖y∗k − yk(t)‖2W1+

+ ‖a∗k − ak(t)‖2W2 + ‖q∗k − qk(t)‖2C
(2)

where W1 ∈ R3×3, W2 ∈ R3×3, and C ∈ R6×6 are empirically set diag-
onal weight matrices for each criterion. The planned end effector position
y∗k = [y∗kx, y

∗
ky, y

∗
kz]

T is constrained to lie in a bounding box given by the work-
cell dimensions, and the end effector orientation a∗k = [sin(γ∗), cos(γ∗), 0]T is
constrained to point towards the side of the workcell where the human op-
erator stands, with angle γ∗ = yaw(sk−1 − yk(t0)) derived from the relative
target location. The actual constraints are:

−0.9 ≤ y∗kx ≤ 0.9, −0.9 ≤ y∗ky ≤ 0.9,

0.2 ≤ y∗kz ≤ 1.2, −π
4
≤ γ∗ ≤ π

4

We use the ROS MoveIt! Cartesian path planner to minimize the ob-
jective function (2) on the current segment time period (t0, te) with several
joint space waypoints (depending on the distance), obtained by interpolating
waypoints between q∗k−1 and q∗k to increase the smoothness of the trajectory.
The maximum velocity q̇k(t) and acceleration q̈k(t) are limited.

The planned trajectory is represented as Tk = [Θt 0
k ,Θt 1

k , . . . ,Θt e
k ], where

Θt 0
k

.
= Θt e

k−1. Any waypoint state Θt
k within the fine-interpolated trajectory

segment Tk has now the desired joint position, velocity and acceleration at
time t, i.e. Θt

k = [qtk, q̇
t
k, q̈

t
k].

9



Figure 4: Input images from 4 Kinect cameras (left and middle) and stereo
sensor (right) working in disparity range corresponding to 20-40 cm depth.
Data captured during red ball touching experiment (Sec. 3.2).

2.4 Planning Strategy

To implement an iterative servoing process with a moving target, re-planning
is necessary to keep the target positions and generated trajectories updated.
The planner typically takes about 30ms per segment to generate a new tra-
jectory which typically takes 300ms to execute. Sequentially alternating tra-
jectory planning and execution will not only significantly increase time cost,
but also risks a failed approach sometimes due to target motion. Hence, plan-
ning and execution proceed in parallel to improve the efficiency. As shown
in Fig. 3, the planned trajectory at time segment k is a set of waystates
Tk+1 = [Θt 0

k+1,Θ
t 1
k+1, . . . ,Θ

t e
k+1], where Θt 0

k+1
.
= Θt e

k (because the actual mo-
tion will result in a slightly different state). Any waystate Θt

k+1 within the
fine-interpolated trajectory plan Tk should have the desired joint position,
velocity and acceleration at time t, i.e. Θt

k+1 = [qtk+1, q̇
t
k+1, q̈

t
k+1]. This tra-

jectory is computed given the expected final joint state Θt e
k from the previous

segment and the current estimated target pose in cartesian space Xk(tcurrent).
As the new trajectory Tk+1 is planned while the current trajectory is still be-
ing executed, the initial pose for segment k + 1 is approximated by Θt e

k . A
segment finishes when both the planning and execution are complete.
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Figure 5: Point cloud from Kinect sensors combined with tracked pose of
the target indicated Xt as shown in RViz for red ball (left) and hand (right),
green arrow is the current goal.

(a) Red ball (b) Bulls-eye (c) Smiley (d) Hand

Figure 6: Targets used in the experiments.

3 Experiments

This section presents four experiments to demonstrate the proposed method
and evaluate its accuracy. The four Kinect sensors were connected to a
workstation (8 cores i7 CPU, GTX1080 GPU), which processed the EtoH
data, providing detections at ∼5 Hz. A second identical workstation in the
ROS network controlled the UR10 inverted arm, processed data from EinH
synchronized stereo sensor (∼10 Hz detections) and hosted the ROS Master
controller node.

Examples of the visual servoing input data can be seen in Fig. 4. The four
images on the left show the four kinect viewpoints covering the workcell. The
two images on the right are the color (top right) and disparity (bottom right)
images from the EinH stereo sensor. The targets used in the experiments are
seen in Fig. 6. Fig. 5 shows an example of the servoed end effector (colored
cube) aligned with the target red ball (slightly visible at the colored cube’s
edge).
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Ball mode Success rate Time to goal Iterations
Hybrid 95 % 9.0 s 11
Kinect only 68 % 10.2 s 12
Bulls-eye mode Accuracy Time to goal Iterations
Hybrid 15 mm 6.4 s 6
Kinect only 25 mm 5.8 s 8

Table 1: Performance of ball touching and bulls-eye aiming scenarios

3.1 Tracking Accuracy

The dynamic accuracy of both the EinH and EtoH sensors was estimated,
with the arm tooltip pose based on joint angle readouts used as the reference.
EtoH: The red ball target was attached directly to the tooltip and moved
along a predefined trajectory at ∼10 cm/s speed. The difference between
reference and estimated positions (median distance) was 38 mm. EinH: The
bulls-eye target was placed at a known reference position and the arm placed
the stereo sensor in front of it within the extent of both the viewing angle
(45 deg) and depth range (20-40 cm) of the sensor. Median error distance
was 18 mm.

3.2 Ball Touching

The red ball target was held by hand and moved randomly by a demonstrator
standing on one side of the workcell, while a tip attached to the robot arm
endpoint was servoed to touch the ball. For quantitative dynamic evaluation,
the ball was moved to 22 waypoints placed at the corners and face centers of
a virtual box (100 cm wide, 50 cm high, 50 cm deep), with the demonstrator
pausing at each waypoint until servoing converged to its goal. Every such
partial servoing action to a waypoint was successful if the endpoint reached
within 5 mm from the surface of the ball. The experiment was performed
both in hybrid mode (Kinect+stereo) and Kinect only mode and the median
statistics are given in Table 1. The use of EinH in the hybrid mode signifi-
cantly improves the success rate. The few failures can be attributed to the
target estimated at a lower depth than the actual in the stereo sensor, prob-
ably due to reflections on the glossy target surface. The dynamic behavior is
best observed in the supplementary video (https://youtu.be/OEiZu0gaP6w),
which presents all experiments in this section.
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3.3 Bulls-eye Aiming

The bulls-eye target was used to evaluate the accuracy of servoing to static
targets. The servoing was repeated twice for three target locations and four
starting endpoint poses, i.e. 24 total actions. For each servo action which
reached the target (< 5 mm) a point was plotted on the target to mark the
endpoint location. The error distance to the target center was subsequently
measured, with results summarized in Table 1. The EinH sensor improved
the accuracy in the final approach stage, where the Kinect system suffered
from depth over-smoothing, temporal noise and residual calibration errors.

3.4 Head and Straw Docking

A potential application of the proposed system is assistance to a disabled
person, which can drink from a cup with a straw delivered by the robot to
the person’s mouth. In our case the person was represented by a 20 cm
smiley face (Fig. 6c) printed on a box and the goal was to insert the straw
in the mouth (make contact with the surface).

Similar to the previous experiment the success was evaluated on a set of
24 combinations of start and target poses. Flexible straw attached to the cup
occasionally deformed on the first contact with the target surface, leading to
success of rate 67%, with 6 iterations or 8.7 s to reach the goal (median).
In several failure cases the straw collided with the target box outside the
mouth, pushing it away or deforming.

3.5 Delivery of Item to Hand

Another assistance application we include is to pick an item or tool from
a fixed location and deliver it to the moving hand (Fig. 6d) of a person.
We control a two-finger Robotiq gripper attached to the robot arm, which
releases the item above the palm. For this purpose, the end effector is oriented
vertically and EinH camera faces down, as shown in Fig. 7. A pink glove was
used for color segmentation of the target in EtoH and a blue palm circle for
better localization in EinH.

A set of experiments with the hand moving to 12 different locations re-
peatedly has shown 75% success rate of delivering the item to the palm in
Hybrid mode, compared to 58% in Kinect only mode. In some cases depend-
ing on the goal approach direction, the palm circle was occluded in the stereo
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Figure 7: Delivery of a green cube item from a fixed position (left) to a
moving hand (right) using two-finger gripper.

camera view by the item in the gripper, which prevented switching to EinH,
resulting in some of the failures.

4 Conclusions

We have proposed a system for hybrid visual servoing to moving targets,
which achieves a higher success rate and improves accuracy of target reaching
when compared to Kinect-only servoing. On the other hand, the increased
complexity requires careful calibration of the sensors, which can be difficult
to implement.

The experimental evaluation of the proposed approach has exposed sev-
eral issues. 1) Although we apply a global calibration method to register the
four Kinect sensors, there is alignment error of up to 5 cm error in the far
corners of the table, probably due to intrinsic errors in the Kinect sensor.
This can lead to extra motion planning cycles to refine the position once
moving to the periphery. 2) The eye-in-hand sensor depth resolution is lim-
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ited to ∼7 mm, which affects targeting error. 3) The current position based
controller limits the servoing cycle to ∼1 Hz in practice, when the arm must
stop moving before executing a new plan. We are working towards imple-
menting a velocity based controller for the final approach to target, which
will allow continuous operation.
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