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Abstract Feature vectors can be anything from sim-
ple surface normals to more complex feature descriptors.
Feature extraction is important in order to solve various
computer vision problems: e.g. registration, object recog-
nition and scene understanding. Most of these techniques
cannot be computed online due to their complexity and
the context where they are applied. Therefore computing
these features in real-time for many points in the scene is
impossible. In this work a hardware-based implementa-
tion of 3D feature extraction and 3D object recognition is
proposed in order to accelerate these methods and there-
fore the entire pipeline of RGBD based computer vision
systems where such features are typically used. The use
of a GPU as a General Purpose processor (GPGPU) can
achieve considerable speed-ups compared with a CPU
implementation. In this work advantageous results are
obtained using the GPU to accelerate the computation
of a 3D descriptor based on the calculation of 3D semi-
local surface patches of partial views. This allows de-
scriptor computation at several points of a scene in real-
time. Benefits of the accelerated descriptor have been
demonstrated in object recognition tasks. Source code
will be made publicly available as contribution to the
Open Source Point Cloud Library (PCL).
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1 Introduction

In recent years, the number of jobs concerned with 3D
data processing has increased considerably due to the
emergence of cheap 3D sensors capable of providing a
real time data stream. The Kinect device1 and 3D laser
scanners are examples of these devices. Besides providing
3D information, these devices can also provide color in-
formation of the observed scene. The availability of real-
time 3D streams has provided a key resource for solv-
ing many challenging problems. However, the computing
power of the CPU is still an obvious bottleneck when
running systems in real time. Additionally, as these sys-
tems are becoming more complex, huge computational
resources are demanded, especially when hard real-time
constraints are required.

With the advent of the GPU as a General Purpose
Graphic Processing Unit (GPGPU) many methods re-
lated to 3D data processing have been implemented on
GPUs in order to accelerate them. Examples of this can
be found in the calculation of feature descriptors and 3D
keypoint extraction on the GPU. In [5], the GPU per-
forms curvature estimation of 3D meshes in real time. A
parallel implementation using the GPU and the CUDA
language from NVIDIA considerably accelerates the His-
tograms of Oriented Gradient (HOG) computation [20].
In [8], a Point Feature Histograms (PFH) GPU imple-
mentation is proposed allowing its computation in real-
time on large point clouds. Despite the mentioned meth-
ods above, which demonstrate the feasibility of the GPU
for 3D feature extraction, there are still comparatively
few methods implemented with respect to all those cur-
rently prevalent in the state of the art. Furthermore,
more complex descriptors have not been implemented
yet on the GPU. One example of this is a descriptor
based on the extraction of 3D surface patches represent-
ing the underlying model. It can also be noted that the
integration of these methods in complete systems, that

1 Kinect for XBox 360: http://www.xbox.com/kinect Mi-
crosoft
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require real-time constraints, is still very low. Kinect Fu-
sion [10] has been one of the first works where the GPU
has been used as the main core processor, allowing the
reconstruction of 3D scenes in real time.

This work goes a step further in the application of
massively parallel processor architectures, such as the
GPU, to 3D data processing tasks and their integra-
tion to complex 3D vision systems with real-time con-
straints. 3D data has been obtained mainly as RGB-
Depth maps provided by the Kinect sensor. Advanta-
geous results have been obtained using the GPU for ac-
celerating the extraction of a feature descriptor based on
the 3D calculation of semi-local surfaces patches. This
descriptor is computationally expensive to compute on
the CPU and also requires some preprocessing steps for
its computation: normals estimation, surface triangula-
tion and keypoint detection. Since these preprocessing
steps are common for a large number of applications their
acceleration and integration in the pipeline of a GPU ar-
chitecture becomes essential to make progress in 3D data
real-time processing.

Other motivations for this work include the existing
gap of 3D object recognition solutions based on models
that support real-time constraints; until now most of the
proposed works that supported real-time constraints are
view-based. For example in [1], a local feature descrip-
tor for RGB-D images is proposed. This descriptor com-
bines color and depth information into one representa-
tion. However, 3D information possibilities are still neg-
ligible, it depends mostly on textures and illumination of
the specific scene. In [15], a combined descriptor formed
by 3D geometrical shape and texture information is used
to identify objects and its pose in real-time. The pro-
posed system is accelerated using GPU achieving real-
time processing. However, 3D information is only used
to extend shape information and considerably relies on
texture information, making it sensitive to scene illumi-
nation conditions. Model-based approaches are less sensi-
tive to illumination, shadows, and occlusions of the scene
allowing more robust object recognition systems improv-
ing also its pose estimation. Until now, works that make
use of 3D local shape descriptors like SPLASH [23], Spin
Images [11], Spherical Spin Image [21], surface patch rep-
resentation [3], 3D tensor-based representation [16], 3D
SURF [14], etc. have rarely been processed in real-time
is also useful and have not been integrated in complex
computer vision systems. These 3D model-based descrip-
tors are the most popular techniques applied to free-form
object recognition but in this work we are going to focus
on 3D tensor-based representation [17] as it has demon-
strated good performance in free-form object recognition
even under significant background clutter and it outper-
forms other state-of-the-art descriptors as Spin Images
[17]. 3D tensor-based computation requires some pre-
processing steps that are common to other descriptors
therefore being able to process those in real-time. The

proposed gpu-based implementation may be extended to
other 3D local shape descriptors.

The paper is structured as follows: in Section 2 the
proposed descriptor to be accelerated is presented. In
the following Subsections 2.1 and 2.2 the GPU imple-
mentation of pre-processing steps are detailed. In Sec-
tion 2.3 a GPU-based tensor extraction implementation
is described. Next, in Section 3, performance results are
shown for different steps and hardware configurations.
Finally, Section 4 presents a real application in object
recognition tasks with time constraints to validate our
implementation, followed by our main conclusions and
future work.

2 GPU-based tensor extraction algorithm

The feature descriptor proposed for implementation on
the GPU is based on the descriptor introduced in [16].
This descriptor is based on the calculation of semi-local
surface patches obtained by a range camera. It has been
used successfully for different applications like global reg-
istration and 3D object recognition, where other descrip-
tors like Spin Images [12] or Geometric Histograms [7]
obtained worse results. Additionally, in [17] it is demon-
strated how this descriptor can be successfully applied in
object recognition problems with high level of occlusion.
The main problem of this descriptor is its high compu-
tational cost, which is prohibitive for running in a con-
ventional CPU under real-time constraints.

This descriptor extracts a semi-local model of the
scene, computing semi-local features that assist the lo-
cal object recognition even under conditions of occlusion.
This feature is referenced in the following sections as a
tensor. A tensor is defined by the surface of the model
that is intersected by each voxel on a centered grid. This
set of values define a third order tensor.

To compute the required descriptor some preprocess-
ing steps are necessary. These steps have also been im-
plemented on the GPU in order to accelerate the entire
pipeline. Therefore it has been necessary to implement
on the GPU the following processes: depth map and color
map transformation to a coloured point cloud, noise re-
moval, normal estimation and surface reconstruction. A
general system overview for semi-local surface patch ex-
traction is shown in Figure 1. Moreover, in Figure 2 it can
be seen the different steps required prior to the extrac-
tion of the tensor and their 3D visualization after each
step. As we can appreciate, most steps are computed on
the GPU taking advantage of parallel computing power
of the GPU and avoiding transfers between CPU and
GPU after each step. Pseudo-code of the entire GPU-
based tensor extraction algorithm is presented in Algo-
rithm 1. Moreover, pseudo-code snippets for all GPU-
based preprocessing steps are presented in next sections.
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Fig. 1 General system overview. Steps coloured in dark are computed on the GPU.
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Fig. 2 (a) Point cloud obtained after transforming depth and color maps provided by the Kinect sensor. (b) Normal
estimation. (c) Surface reconstruction. (d) Feature descriptor extraction: 3D tensor computed over a partial view

input : A depth map Md of size 640× 480
output: A set of 3D tensors T = {t0, t1, t2, ..., tN}

that describe the input data

1 Depth map is transferred to the GPU memory ;
2 cudaMemCopyHostToDevice(d Md,Md);
3 d Mfiltered ← gpuBilateralFiltering(d Md);
4 d Pxyz ← gpuPointCloudProjection(d Mfiltered);
5 d Nxyz ← gpuNormalEstimation(d Pxyz);
6 d Tri← gpuSurfaceTriangulation(d Pxyz, d Nxyz);
7 d Vpairs ← gpuValidPairsComp(d Pxyz, d Nxyz);
8 cudaMemCopyDeviceToHost(Vpairs, d Vpairs);
9 for i← 0 to |Vpairs| do

10 tensors are computed in parallel at thread level
and tensor level ;

11 AsyncGpuTensorComp(vi,d Pxyz,d Nxyz,d Tri,
d T );

12 end
13 cudaMemCopyDeviceToHost(T, d T );

Algorithm 1: Pseudo-code of the GPU-based 3D
tensor extraction algorithm. d prefix means that
variable is allocated in the GPU memory.

2.1 RGB-D processing on the GPU

In this work we focus on the processing of 3D informa-
tion provided by the Kinect sensor. This processing is

performed on the GPU with the aim of achieving a real-
time implementation.

The overall goal is the implementation of systems
that offer interaction with the user. Kinect sensor pro-
vides a RGB map with color information Mc and a dis-
parity map Md. The first step to carry out on the GPU
with the aim of accelerating future steps is the projection
of the depth and color information in a three-dimensional
space, where the depth and colour information is aligned,
allowing the production of a coloured point cloud that
represents the scene, Figure 3.

The relationship between a disparity map provided
by the Kinect sensor and a normalized disparity map is
given by d = 1/8 · (doff − kd), where d is the normalized
disparity, kd is the disparity provided by the Kinect and
doff is a particular offset of a Kinect sensor. Calibration
values can be obtained in the calibration step [13]. In
this way the relationship between depth and a disparity
map is given by the following equation:

z =
b · f

1/8 · (doff − kd)
(1)

where b is the baseline between the infrared camera and
the RGB camera (in meters), and f is the focal distance
of the cameras (in pixels). Once the depth map Md is
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obtained calculating the depth z for all points, the pro-
jection of each point in 3D space is given by:

px = z · (x− xc) · 1/fx
py = z · (y − yc) · 1/fy
pz = z (2)

where p ∈ R3, x and y are the row and the column of the
projected pixel, xc and yc are the distances (in pixels) to
the map centre and fx and fy are the focal distances of
the Kinect sensor obtained during the calibration [13].

This transformation can be computed independently
for each pixel of the map, so it fits perfectly on mas-
sively parallel architectures such as the GPU, accelerat-
ing processing time related to the CPU implementation.
As this transformation is often followed by other pro-
cessing steps, it is not necessary to copy data back to the
CPU memory and we therefore avoid the latency caused
by these transfers by storing the projected 3D points on
the GPU memory. Pseudo-code of the kernel executed
onto the GPU is shown in Algorithm 2. In section 3.1
we show the acceleration factor and time of execution
obtained by the GPU implementation. All these meth-
ods are developed in C++. GPU programming is done
using the CUDA language created by NVIDIA [18]. Fi-
nally, 3D data management (data structures) and their
visualization is done using the PCL2 library.

input : A depth map Md of size 640× 480
output: Projected point cloud Pxyz into 3D space

1 global void;
2 gpuPointCloudProjectionKernel( Md );
3 {
4 This kernel is executed creating one thread for each

pixel in parallel ;
5 int u = threadIdx.x + blockIdx.x * blockDim.x;
6 int v = threadIdx.y + blockIdx.y * blockDim.y;
7 float z = Md [v][u] / 1000.f;

8 float px = z * (u - cx) * fx inv;
9 float py = z * (v - cy) * fy inv;

10 float pz = z;
11 }
Algorithm 2: Pseudo-code of the GPU-based
point cloud projection algorithm.

2.1.1 Noise removal: Bilateral filtering

In structured light imaging a predefined light pattern is
projected onto an object and simultaneously observed by
a camera. The appearance of the light pattern in a cer-
tain region of the camera image varies with the camera-
object distance. This effect is used to generate a dis-
tance image of the acquired scene. The predefined light

2 The Point Cloud Library (or PCL) is a large scale, open
project [22] for 2D/3D image and point cloud processing.

patterns can be e.g. gray codes, sine waves, or speckle
patterns. Speckle patterns are used in popular struc-
tured light (infrared) cameras like the Microsoft Kinect.
This method of obtaining 3D information from the scene
presents problems when the surfaces have a high level of
specularity (reflection of the incident light) making it im-
possible for the sensor to obtain depth information about
some surfaces [27]. The same problem occurs in the case
of objects that are very far away from the sensor. There-
fore, if we want to extract coherent information of the
observed surfaces it is necessary to minimize this obser-
vation error. In previous works, simple filters such as the
mean or the median have been used as they correct the
error and run in real-time. As the computing power of
the GPU can be applied in this step, this allows the ap-
plication of more complex filters that are able to reduce
the depth map error without removing important infor-
mation, such as edge information. An example of these
filters, the Bilateral filter [24], is able to remove noise of
the image whilst preserving edge information. This fil-
ter was used originally in color and grey scale images to
reduce the noise while keeping edge information, but we
can also use it to reduce the noise on depth maps ob-
tained from 3D sensors like the Kinect. A Bilateral filter
is a combination of a domain kernel, which gives priority
to pixels that are close to the target pixel in the image
plane, with a range kernel, which gives priority to the
pixels which have similar values as the target pixel. This
filter is often useful when it is necessary to preserve edge
information because of the range kernel advantages. The
new value of a filtered pixel is given by:

Pf =
1

Kp

∑
q∈ω

Vqf(||p− q||)g(||Vp − Vq||) (3)

where Kp is a normalization factor, ω is the neighbour-
hood of the target pixel, Vq is the target pixel value and
Pf is the filtered value of pixel p. This equation also con-
tains the domain kernel and the range kernel: f(||p−q||)
, g(||Vp − Vq||). Often, f and g are Gaussian functions
with standard deviation σs and σr.

Section 2.1.2 shows how the estimation of the nor-
mal vectors is improved after applying bilateral filtering,
providing more stable normal vectors by removing origi-
nal noise presented on the depth map. Most 3D features
extracted from the scene are based on the curvature of
the geometry, which is calculated using information from
normal vectors at each point in the scene, therefore ob-
taining more stable normal vectors leads to more accu-
rate scene knowledge.

The calculation of filtered values at each pixel of the
image can be calculated independently and therefore is
well suited for parallel architectures like the GPU. In [2]
and [26] GPU implementations able to run in real time
were proposed. The runtime is considerably improved,
allowing filtering in real time depth maps generated by
the sensor. In Section 3 GPU and CPU runtimes and
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Fig. 3 Left: Depth map. Center: RGB Map. Right: Projected Point cloud.

speed-ups for our implementation on different graphics
boards are presented.

2.1.2 Normal estimation

Estimation of normal vectors on a geometric surface has
been widely used in many application areas such as com-
puter graphics: generating realistic illumination of the
surfaces and in computer vision as geometric features of
the observed environment: keypoints with high curvature
(corner or edge points).

Given a geometric surface it is possible to estimate
the direction of the normal vector at a point obtaining
the outward facing vector of the surface. However, we
still have a point cloud without information about the
surfaces that compose it, therefore we approach the nor-
mal vector estimation of a point efficiently by using its
neighbourhood to calculate the normal vector. Here we
focus on the estimation of the plane that best fits the
neighbourhood of points using least squares. In this way
the point normal vector is calculated as the plane normal
vector.

The search for this plane is reduced to the calcula-
tion of eigenvalues and eigenvectors, Principal Compo-
nent Analysis (PCA) of the covariance matrix created
using the neighbourhood of the point on which we want
to know its normal vector. The orientation of the normal
vector is easily calculated because we know the point of
view of the scene, in this case the Kinect position, so that
all normal vectors must be facing consistently toward the
point of view satisfying the following equation:

ni · (vp − pi) > 0 (4)

where ni is the calculated normal vector, vp is the point
of view, and pi is the target point. In cases where this
constraint is not satisfied, it is necessary to reverse the
sign of the calculated normal vector.

Once we have the organized point cloud stored in the
memory of the GPU, the normal estimation process us-
ing PCA can be performed efficiently on the GPU. The
normal vector calculation is performed on the GPU in-
dependently at each point of the scene, considerably ac-
celerating the runtime. Pseudo-code of the GPU-based
normal estimation algorithm is shown in Algorithm 3.

Moreover, thanks to the previous noise removal using bi-
lateral filtering, normal vectors obtained are much more
stable than normal vectors computed directly from the
original depth map that does not take into account the
borders and corner points of the scene. In Figure 4 we
can see this effect.

input : A projected point cloud d Pxyz
output: Point cloud of normals d Nxyz

1 global void;
2 gpuNormalEstimationKernel( Pxyz, k );
3 {
4 This kernel is executed creating one thread for each

point in parallel ;
5 int u = threadIdx.x + blockIdx.x * blockDim.x;
6 int v = threadIdx.y + blockIdx.y * blockDim.y;

7 Compute Covariance matrix centered at point p
using k neighbours;

8 d Nxyz[u][v] = compCovarianceMat(u,v,k,N);
9 d Nxyz[u][v] = checkOrientation();

10 }
Algorithm 3: Pseudo-code of the GPU-based nor-
mal estimation algorithm

2.2 Surface triangulation on the GPU

In [9] an efficient method to triangulate organised point
clouds is presented. In this section we present an ac-
celerated and robust implementation of this method. In
the original work a triangulation method for 3D points,
obtained from range cameras or structured light, is pro-
posed. Using sensors such as the Kinect, 3D points can
be accessed using their matrix organization using x for
the row and y for the column. In this way, a 3D point
px,y can be accessed using a 2D indexing system. Using
this representation it is possible to obtain the scene sur-
face from the point cloud captured by the sensor. The
method assumes that the viewpoint is known and in this
way it is possible to calculate the angle formed by the
viewpoint vector vp and the target point px,y and the
vector formed by the target point px,y and its neigh-
bour points px+1,y or px,y+1. If points fall into a common
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Fig. 4 Bottom row. Normal estimation using the original map. Top row. Normal estimation using the filtered map (bilateral
filtering). It can be observed that the normal estimation is improved resulting in more stable normal directions. This effect
can be visually observed on plane surfaces where the normals estimated using a noisy map are much less stable than normals
computed over a filtered map.

line of sight with the viewpoint from where the measure-
ments are taken, one of the underlying surfaces occludes
the other. If all checks are passed the triangle is added
to the mesh, otherwise a hole arises in the final recon-
structed mesh. Moreover, if the sensor cannot acquire a
valid depth measurement for a certain pixel that trian-
gle is also rejected creating a hole. This Figure 5 visually
shows the proposed condition for point triangulation.

Our proposed method is more robust than the origi-
nal method, as the normal information at each point of
the scene is used as an additional condition for meshing
the point cloud. As the triangulation of the points can
be done independently, the algorithm has been ported to
the GPU, where each GPU thread tests the point we are
targeting to form a triangle with its neighbourhood. As a
result, we obtain a vector with all the triangles. Pseudo-
code of the GPU-based surface triangulation algorithm
is shown in Algorithm 4.

Invalid triangles are created on points that do not
satisfy the proposed constraint to keep the organization
of the point cloud. Finally, the condition to create an
edge between two points is formulated as follows:

edgevalid = (|vvp,p · vp,q| ≤ cos εθpov ) ∧

(||p− q||2 ≤ Td) ∧
(|np · nq| ≤ cos εθn) (5)

where εθpov is the angle existing between two points and
the point of view establishing whether or not these points
are occluded. This angle value is established based on the
visual analysis showed in the Figure 5 and also based on
results provided in [9]. The maximum distance between
two points is Td. This distance is obtained in real-time
based on point cloud resolution. For that, the average
distance between the targeted point and its neighbour-
hood k is calculated. Next, based on the mean of these
average distances and standard deviation, threshold Td
is given by: Td = dk + σd where dk is the mean distance
and σd is the standard deviation. Finally, εθn is the es-
tablished threshold for the maximum angle between two
normal vectors. This is calculated in the same way as Td,
obtaining an angle threshold.

The proposed method allows us to obtain fast approx-
imate meshing of the input point cloud. This fast mesh-
ing method is therefore used in Section 2.3 for computing
the proposed 3D semi-local surface patch descriptor in
real-time, as it requires a surface representation of the
scene. The proposed accelerated meshing method takes
advantage of the knowledge about the point of view po-
sition and also takes advantage of having already calcu-
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Fig. 5 Left: Point triangulation condition. In this image can be observed how the condition for creating an edge establishes
that the angle θpov formed by vectors vvp,p and vp,q must be within an established threshold εθpov . This threshold assures
that points are not occluded among themselves. The Euclidean distance between p and q also must be smaller than an
established threshold Td, dynamically calculated according to mesh resolution and its standard deviation. Right: Triangles
are established by left cut checking constraints between points.

lated normal vectors on GPU memory for every point of
the scene. The GPU implementation achieves run times
considerably lower compared to the CPU. The GPU im-
plementation achieves processing frame rates close to 30
fps for 640 by 480 depth maps while the CPU imple-
mentation achieves a frame rate close to 6 fps. Figure 6
shows a point cloud mesh obtained using the proposed
method.

input : A projected point cloud d Pxyz
input : A point cloud of normals d Nxyz
output: List of triangles d Tri

1 global void;
2 gpuTriangulationKernel( d Pxyz, d Nxyz );
3 {
4 This kernel is executed creating one thread for each

point in parallel ;
5 int u = threadIdx.x + blockIdx.x * blockDim.x;
6 int v = threadIdx.y + blockIdx.y * blockDim.y;

7 check constraints with neighbour points;
8 if (isValidTriangle (i, index down, index right));
9 addTriangle (d Tri);

10 if (isValidTriangle (index right, index down,
index down right)) ;

11 addTriangle (d Tri);
12 }
Algorithm 4: Pseudo-code of the GPU-based sur-
face triangulation algorithm.

2.3 Tensor computation on the GPU

Once point cloud normal information and surface trian-
gulation are obtained, pairs of points along with their
normals are selected to define local 3D coordinate bases

for tensor computation. To avoid the Cn2 combinatorial
explosion of the points, a distance constraint is used on
their pairing. This distance constraint allows the pairing
between only those points that are within a previously
specified distance. The distance constraint also ensures
that the vertices that are paired are far enough apart so
that the calculation of the coordinate bases is not sensi-
tive to noise but close enough to maximize their chances
of being inside the same surface. The maximum and min-
imum distances between points are based on point cloud
resolution, being dmin = pclres∗5 and dmax = pclres∗14.
pclres is calculated for each point cloud captured by the
Kinect sensor in real time, allowing the movement of the
sensor. In addition to this distance constraint, an angle
constraint θd is defined between valid pairs of points,
so that points with approximately equal normals are not
paired (since their cross product will result in zero). This
mutual angle must be higher than 15 degrees allowing
the use of the mean value of these normals as an axis for
the coordinate bases. Each point is paired with only its
three closest neighbours, limiting the number of possible
pairs to 3n per view. In practice, due to the constraints
this number is lower than 3n.

Pair point calculation is accelerated using as many
threads as points in the point cloud, in this way each
GPU thread checks its corresponding point pair with
its neighbours. Moreover, the matrix organization of the
point cloud is used for improving this search. In this way,
each thread of the GPU performs the search of valid pairs
only in a defined window around the targeted point. The
size of this window is based on the maximum distance
constraint dmax and the point cloud resolution pclres:
windowsradius = dmax/pclres giving the radius of the
windows in pixels. In Section 3.1 a runtime comparison
is presented, the CPU implementation applies the same
technique for search acceleration.
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Fig. 6 Point cloud meshing using the proposed method. Note that some holes and gaps still exist in the approximate surface
reconstruction due to the noisy information obtained from the Kinect sensor.

Once a valid list of point pairs is obtained, a local
3D basis is defined for each valid pair in the following
manner: the center of the line joining the two vertices
defines the origin of the new 3D basis. The average of
the two normals defines the z-axis. The cross product of
the two normals defines the x-axis and finally the cross
product of the z-axis with the x-axis defines the y-axis.
This 3D basis is used to define a 3D grid centered at its
origin. This step is also computed in parallel on the GPU
for each valid pair of points.

For the grid computation, which will define the fea-
ture descriptor, it is necessary to define two more pa-
rameters. The first one is the number of voxels that com-
pose the grid nvoxels and the size of each of these voxels
voxelsize. Modifying the number of voxels and so the size
of the grid, causes the obtained descriptor to contain lo-
cal, semi-local or global information of the scene. In the
experiments done in [17] it is demonstrated how for the
object recognition task, a size of 10× 10× 10 grid allows
the extraction of a descriptor with semi-local informa-
tion of the object allowing identification even under a
high level of occlusion. The size of the voxel voxelsize is
defined dynamically according to the point cloud reso-
lution. Once the grid is defined, the surface area of the
mesh surface intersecting each voxel of the grid is stored
in a third order tensor. This tensor is a local surface de-
scriptor which corresponds to a semi-local representation
of the object where the pair of points are lying. Suther-
land Hodgman’s polygon clipping algorithm [4] is used
for calculating area intersections between polygons and
voxels. In this way an entry is made at the corresponding
element position in the tensor. Since more than one trian-
gulated facet can intersect a single voxel, the calculated

area of intersection is added to the area already present
in that voxel as a result of intersection with another tri-
angulated facet. To avoid checking all triangles that com-
pose the scene, a growing approach is used, which starts
by checking the triangles that lie in the pair of points
selected and growing along its neighbourhood until all
the checked triangles are not intersected with the corre-
sponding voxel. This approach is used in both CPU and
GPU versions, allowing a fair runtime comparison. Fi-
nally extracted tensors are compressed by squeezing out
the zero elements and retaining the non-zero values and
their index positions in the tensor. These compressed
tensors together with their respective coordinate basis
and the mutual angle between their normals are called a
tensor representation of the view.

The computation of each tensor is considerably accel-
erated using the GPU because there is no dependency be-
tween the calculation of the intersected area in each voxel
of the grid. Therefore, Dimx × Dimy × Dimz threads
are executed on the GPU organized as a three dimen-
sional grid. Each thread calculates the intersected area
between the mesh and its corresponding voxel, storing
the calculated area in the position accessed by its in-
dexes. See Figure 7. Due to the 3D index organization
that the CUDA framework provides, the calculation of
corresponding indexes is greatly accelerated. Sutherland
Hodgman’s polygon clipping algorithm is also executed
by each thread in parallel. Pseudo-code of the GPU-
based 3D tensor computation algorithm is shown in Al-
gorithm 5. Additionally, there is also no dependency be-
tween the computation of different tensors, thereby the
computation of different tensors is overlapped occupy-
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ing all the available resources on the GPU. Performance
results are shown in Section 3.1.

input : A projected point cloud d Pxyz
input : A valid pair of points d Nxyz
input : List of triangles d Tri
output: 3D tensor ti

1 global void;
2 gpuTensorCompKernel( vi,d Pxyz,d Nxyz,d Tri );
3 {
4 This kernel is executed creating one thread for each

bin of the grid in parallel ;
5 int x = threadIdx.x + blockIdx.x * blockDim.x ;
6 int y = threadIdx.y + blockIdx.y * blockDim.y ;
7 int z = threadIdx.z + blockIdx.z * blockDim.z ;

8 binLimits = computeBinLimits(cloud,tri) ;
9 d Neigh Tri = compIndexNeighTriangles() ;

10 calculate area that clip with the corresponding bin;
11 for i← 0 to |d Neigh Tri| do
12 area += clipTriangle(cloud,tri,binLimits) ;
13 end
14 ti[x][y][z] = area ;
15 }
Algorithm 5: Pseudo-code of the GPU-based 3D
tensor computation algorithm

All extracted tensors from a partial view of an object
are stored with their coordinate basis allowing the use of
this information for grouping all tensors with similar an-
gle between their normals. In this way an efficient match-
ing is possible for different applications such as partial
view registration and object recognition. This collection
of tensors is stored during a training phase creating a
hash table for efficient retrieval during test phase.

3 Experimental results

GPU versions of the proposed method described in this
document has been tested on a desktop machine with an
Intel Core i3 540 3.07Ghz and different CUDA capable
devices. GPU implementations were first developed on a
laptop machine equipped with an Intel Core i5 3210M 2.5
Ghz and a CUDA compatible GPU. Table 1 shows differ-
ent models that have been used and their main features.
We used different models ranging from the integrated
GPU on a laptop to a more advanced model, demon-
strating that the GPU implementations can be executed
on different GPUs and that they can obtain good exe-
cution times on different graphic boards with different
number of cores.

GPUs are ideally suited to executing data-parallel al-
gorithms. Data-parallel algorithms execute identical units
of work (programs) over large sets of data. The algo-
rithms can be parallelized for efficiency when the work
units are independent and are able to run on small divi-
sions on the data. One critical aspect of designing par-

allel algorithms is identifying the units of work and de-
termining how they will interact via communication and
synchronization. A second critical aspect is analyzing the
data access patterns of the programs and ensuring data
locality to the processing units. It is also necessary to
consider the program execution pipeline in order to avoid
unnecessary data transfers,

These three critical aspects have been satisfied by our
GPU implementations because every step was decom-
posed as an independent execution unit. This is possible
since there are no dependencies during their computa-
tion. Moreover, all the computed data on the GPU is
not transferred back to the CPU until the entire pipeline
is completed, thus avoiding expensive memory transfers.
Finally, threads access memory using data-patterns in
order to ensure locality to the processing units. Most
steps implemented on the GPU use a 2D map of threads
accessing memory in a coalesced way. For the tensor com-
putation a 3D grid of threads is used.

3.1 Performance

The performance obtained by the GPU implementation
allow us to compute the proposed methods under real-
time constraints. In Table 2 we can see the different steps
that have been accelerated using the GPU and their dif-
ferent runtime and the speed-ups achieved for the differ-
ent graphics boards. The obtained acceleration is rela-
tive to a CPU implementation of the proposed method.
In general the best performance was obtained with the
graphics board with the largest number of CUDA cores
(GTX480) and the largest memory bandwidth.

These results demonstrate how the proposed methods
are suitable for massively parallel architectures such as
the GPU, where each thread processes one of the points
of the scene. Another interesting aspect of the results
shown in Table 2 is that GPU implementations allows us
to compute operations that are prohibitively slow on the
CPU in real-time such as normal estimation, keypoint
detection or surface triangulation. Moreover, in table 2 it
is shown how the entire computation of 200 tensors in the
GPU is performed in less than 0.5 seconds for the faster
device achieving a 93x performance boost related to the
CPU implementation and allowing the computation of
the descriptor at different points of a scene in real-time.

Another remarkable aspect of the performance ob-
tained for the overall system is that tensor computa-
tion is not only parallelized at thread level, it is also
parallelized at task level computing simultaneously dif-
ferent tensors. As tensor computation is not dependent,
it can be parallelized using different CUDA streams on
the GPU. This technology allows executing in parallel as
many kernels as possible in different queues and therefore
allows to exploit available resources on the GPU [25]. We
decided to exploit the possibility of launching multiple
kernels concurrently using CUDA streams, overlapping
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Partial views of the model 
are triangulated

3D Polygon clipping

Fig. 7 (a) Launching Dimx × Dimy × Dimz threads in parallel where each GPU thread represent a voxel of the grid.
(b) Each thread with indexes i, j, k calculates the area of intersection between the mesh and its corresponding voxel using
Sutherland Hodgman’s polygon clipping algorithm. Taking advantage of thread indexes, the calculated area is stored in a
flattened vector.

Device Model CUDA cores Global Mem Bandwidth Mem

Quadro 2k 192 1 GB 41.6 GB/s
GeForce GTX 480 480 1.5 GB 177.4 GB/s
GeForce GT630M 96 1 GB 32 GB/s

Table 1 CUDA capable devices used in experiments

Step GT630M GTX480 Q2k CPU GT630M GT480 Q2k

Bilateral filtering of depth map 11ms 5ms 8ms 1008 ms 91.63x 201.6x 126x
Point cloud projection 2ms 1ms 1ms 50ms 25x 50x 50x

Normal estimation 9ms 1ms 8ms 190ms 21.11x 190x 23.75x
Compute surface triangulation 5ms 2ms 4ms 121ms 24.25x 40.3x 30.25x

Compute cloud resolution 7ms 4ms 6ms 330ms 47.14x 82.5x 55x
Compute valid pairs 71ms 9ms 35ms 4479ms 63x 497x 127.97x

Compute third order tensor 6ms 3ms 4ms 130 ms 31.6x 43.33x 32.5x
Total GPU time for extracting 200 tensors 854 ms 490ms 687ms 45887ms 53.72x 93.64x 66.79x

Table 2 Runtime comparison and speed-up obtained for proposed methods using different graphics boards. The fastest run
times were achieved by the graphics board NVIDIA GTX480. Runtimes are averaged over 50 runs.

the paradigm of task parallelism to that of data paral-
lelism. In order to analyse and confirm stream parallel
execution we profiled the algorithm using the NVIDIA
Visual Profiler [19], which allows to visually appreciate
how stream computation is performed along the time and
also multiprocessors occupancy on the GPU. In Figure
8 it can be seen algorithm computation timeline using
and not using streams to overlap computations. Run-
time execution and multiprocessors occupancy is greatly
improved thanks to concurrent kernel execution using
streams. Runtime is improved by a speed-up factor of
5x overlapping tensors computation with many kernels
enqueued in different streams and launched concurrently.

We fixed the number of streams to 16 after testing
different number of streams. In Figure 9 it can be seen

how the runtime is improved as the number of streams
is increased obtaining maximum performance and occu-
pancy on the GPU using values larger than 4. Indeed, in
Figure 8 it is shown how the maximum number of ten-
sors that are calculated simultaneously is 8 without tak-
ing into consideration the maximum number of streams
specified. This occurs due to the occupancy of all the
available resources by the kernels running concurrently.

Finally, in Figure 10 an experiment computing dif-
ferent number of tensors is performed and the speed-up
compared to the CPU version is presented. From Figure
10 we can conclude that the speed-up obtained by the
GPU version is increased as the number of tensors is also
increased achieving a larger speed-up factor. Computing
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Runtime using 16 Streams: 490 ms

Runtime without Streams: 2690 ms

Concurrent computation of tensors

Sequential computation of tensors

Fig. 8 Profiling computation of tensors using streams (top) and without streams (bottom). On the top of the figure (using
streams) it can be seen how up to 6 kernels run simultaneously occupying all available resources on the GPU.
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Fig. 9 Tensors computation runtime using different number
of streams. Number of tensors is fixed to 200 and the device
used is the NVIDIA GTX 480.

times obtained using the CPU version are prohibitively
for time-constrained applications.

4 Robot Vision: 3D object recognition

In this section, we show an application where the use
of the accelerated semi-local surface feature extraction
process allows to detect and recognize objects under clut-
tered conditions in real-time. The main goal of this ap-
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Fig. 10 Speed-up achieved compared to sequential CPU ver-
sion for the computation of a different number of tensors.

plication is the recognition of objects under real-time
constraints in order to integrate the proposed algorithm
in mobile robotics. Our method is designed to use only
depth information because of the need for robots to work
under bad or no illumination conditions.

To validate the proposal we tested the proposed fea-
ture in a similar application as it was done in the original
work [17] where the semi-local surface feature is success-
fully used to recognize objects in cluttered scenes. For
our experiments we have captured data from a Kinect
sensor and tested the accelerated feature with some clut-
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tered scenes. To do that, first a small library of models is
constructed offline, storing all extracted tensors in an ef-
ficient way using a hash table. After, online object recog-
nition is performed using cluttered scenes. Although the
accelerated feature is tested using 3D data obtained from
the Kinect sensor, this method is developed for manag-
ing 3D point sets collected by any kind of sensor and
could be extended to other datasets.

We created a toy dataset to validate our proposal
since the main goal of this work is to achieve real-time
performance and integrate 3D data processing onto the
GPU. Further analysis on recognition rates and feature
parameters are already presented in the original work
[17]. In addition, a deeper analysis on parametrization
will be carried out in future works as this topic is out of
the scope of the current work.

4.1 Offline learning

To recognize objects using our real-time tensor extrac-
tion algorithm, first a model library is built extracting
tensors from different views of free-form objects. Each
partial view is represented with tensors and they are
stored in an efficient way for being used after in an on-
line recognition phase. In Figure 11 some partial views
of the models used to build the library are presented.
Moreover, tensors extracted for some of the views are
showed in Figure 11. For each of these views the pro-
cess explained in Section 2.1 is computed, obtaining as
a result a set of tensors that describe each partial view.

Since multi-view correspondence using linear match-
ing methods algorithms would be unaffordable, a hash
map is introduced using the angle θd of the tensors as a
key for the retrieval. The hash map is quantized in bins
of θb degrees obtaining a good balance of tensors per bin
and boosting the query performance. For this application
the hash map is quantized into bins of 5 degrees.

In contrast to the original implementation of this
kind of hash map presented in [17] and to integrate the
matching process onto the GPU pipeline, the tensor li-
brary is stored in the GPU memory performing the ten-
sors matching in parallel on the GPU and considerably
accelerating its performance.

4.2 Online recognition

Once the model library is built and loaded in the GPU
memory, the application is ready to start recognizing ob-
jects from a scene captured in real-time. Therefore, the
input to our application is a point cloud of a scene. The
point cloud is processed following the pipeline presented
in Section 2.1. Once tensors from the scene are computed
these are matched against the model library previously
stored on the GPU memory. The matching process, as it
was introduced in previous section, is performed in par-
allel onto the calculated entry using the angle as a key for

Cube

Tortoise

Pyramid

Speaker

Fig. 11 Model library consisted of 4 real models. Each object
consists of several partial views. For every partial view of a
model, tensors are computed (blue lines) describing the model
by extracting 3D surface patches (tensors).

the hash map. For the calculated entry are launched as
many threads as tensors are stored in that bounded bin,
computing in parallel a correlation coefficient originally
presented in [17]. The correlation coefficient measures
the similarity between the scene tensors and possible
candidates stored in the model library. The correlation
coefficient in the overlapped area between two tensors is
calculated as follows:

Cc =
nq

∑nq

i=1
piqi −

∑nq

i=1
pi
∑nq

i=1
qi√

nq
∑nq

i=1
pi2 − (

∑nq

i=1
pi)

2
√
nq

∑nq

i=1
qi2 − (

∑nq

i=1
qi)

2
(6)

where pi and qi(i = 1...nq) are the respective elements
of the model tensor Tm and scene tensor Ts in their re-
gion of overlap. Matchings whose Cc < tc are discarded
(tc = 0.5 based on results presented in [17]). The remain
tensors are considered as possible correspondences.

Once all correlation coefficient has been calculated in
parallel for a scene tensor Ts and considered as true pos-
sible correspondences, minimum correlation coefficient
value is found and considered as the true correspondence.
The reduction operation [6] to obtain the minimum value
in parallel is also performed on the GPU pipeline using
classical divide and conquer approach to find the mini-
mum value.

4.3 Performance and results

In this section, some experiments related to the perfor-
mance of the parallel matching performed on the GPU
are presented, comparing performances obtained by the
GPU and CPU versions.
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Model library size (tensors) 2000 4000 16000 64000
Runtime CPU (ms) 215 398 1589 6414

Runtime GTX480 (ms) 75 140 534 2130
Speed-up GTX480 2.87x 2.84x 2.98x 3.01x

Table 3 Runtime comparison and speed-up obtained for matching process. As the size of the model library is increased the
speed-up achieved is slightly larger. Runtimes are averaged over 50 runs.

In Table 3, it is shown how the matching process:
correlation factor computing step and the reduction of
the minimum value is computed faster on the GPU. The
speed-up achieved is close to 3x but the most important
is that the computing matching process on the GPU also
avoid transferring data back to the CPU side after com-
puting tensors on the GPU, step which obtains an im-
portant acceleration factor compared to the CPU as it is
shown in Section 3.1. In this experiment, matching pro-
cess is tested using different sizes of the model library,
ranging from 4 to 64 objects. The number of objects was
simulated copying the real model library comprised of 4
objects. It is considered that every object is described
extracting tensors from 6 partial views obtaining an av-
erage of 1000 tensors per model.

Finally, in Figure 12 a scene computed using the
proposed method is visually presented. Tensors are cal-
culated randomly over the scene and matched tensors
are labelled with the closest model in the library. Multi-
ple labels are shown in Figure 12 as all tensors present
in the scene are evaluated and matched against the li-
brary model. Voting strategies within clusters may be
performed in order to further accelerate the object recog-
nition process.

The number of tensors evaluated over the scene is 200
as experiments have demonstrated that evaluating over
200 tensors in most of cases achieves the recognition of
all objects in the scene. A similar study was made in the
original work [17]. Some wrong labelling appears in Fig-
ure 12 (Top) for the speaker as the partial view of the
scene does not have enough geometric information to find
a correspondence in the database. However, in the Scene
2 (Bottom) as the partial view contains more geomet-
ric information of the speaker, it is correctly recognized.
For other objects as the tortoise, cube and pyramid, as
similar views of the objects are present in the database
and partial view of the scene has enough geometric in-
formation, the algorithm does correctly find tensors that
match the model stored in the library. Total computa-
tion for the GPU took around 800ms using the NVIDIA
GTX480, managing 3D object recognition problem in
real-time and therefore enabling its integration in mo-
bile robotics.

5 Conclusions

The highlights of this paper are as follows:

– Our primary concern is the integration of 3D data
processing algorithms in complex computer vision sys-
tems. Experiments have demonstrated that GPGPU
paradigm allows to considerably accelerate algorithms
regard to CPU implementations and to run these in
real-time.

– Within the 3D data algorithms used in the proposed
pipeline, some progress have been made towards a
faster and more robust point cloud triangulation al-
gorithm, obtaining a GPU implementation that runs
at 30 fps.

– Advantageous results are obtained in the use of the
GPU to accelerate the computation of a 3D descrip-
tor based on the calculation of 3D semi-local sur-
face patches of partial views, thus allowing descriptor
computation at several points of a scene in real-time.

– Matching process have also been accelerated onto
the GPU, taking advantage of the GPU pipeline and
achieving a speed-up factor of 3x regard the CPU
implementation.

– We have implemented a prototype of the proposed
pipeline and it has been tested with a real applica-
tion obtaining satisfactory results in terms of accu-
racy and performance. We show that implemented
prototype took around 800 ms with a GPU imple-
mentation and performing 3D object recognition of
the entire scene.

Further work will include adding other processing
steps to the GPU pipeline: hypothesis verification using
ICP techniques on the GPU and using multi-GPU com-
putation to improve performance and to manage compu-
tation of tensors and their matching on different devices.
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