
Detection and Classification of 
Interacting Persons 

 
 
Scott Blunsden(1), Robert Fisher (2) 

(1) European Commission Joint Research Centre, Italy  
(2) University of Edinburgh, Scotland 

 
 
ABSTRACT 
This chapter presents a way to classify interactions between people. Examples of the interactions 
we investigate are; people meeting one another, walking together and fighting. A new feature set 
is proposed along with a corresponding classification method. Results are presented which show 
the new method performing significantly better than the previous state of the art method as 
proposed by [Oliver et al., 2000]. 
 
INTRODUCTION 

This chapter presents an investigation into classification of multiple person interactions. There 
has been much previous work upon identifying what activity individual people are engaged in. 
[Davis and Bobick, 2001] used a moment based representation based on extracted silhouettes and 
[Efros et al., 2003] modeled human activity by generating optical flow descriptions of a person’s 
action. Descriptions were generated by first hand-tracking an individual, re-scaling to a standard 
size and then taking the optical flow of a persons actions over several frames. A database of these 
descriptions was created and matched to novel situations. This method was extended by 
[Robertson, 2006] who also included location information to help give contextual information to 
a scene. Location information is of assistance when trying to determine if someone is loitering or 
merely waiting at a road crossing. Following on from flow based features [Dollar et al., 2005] 
extracted spatial-temporal features to identify sequences of actions.  
 

Ribeiro and Santos-Victor [Ribeiro and Santos-Victor, 2005] took a different approach to 
classify an individual’s actions in that they used multiple features calculated from tracking (such 
as speed, eigenvectors of flow) and selected those features which best classified the persons 
actions using a classification tree with each branch using at most 3 features to classify the 
example. 

 
The classification of interacting individuals was studied by [Oliver et al., 2000] who used 

tracking to extract the speed, alignment and derivative of the distance between two individuals. 
This information was then used to classify sequences using a coupled hidden Markov model 
(CHMM). [Liu and Chua, 2006] expanded the two person classification to three person sequences 
using a hidden Markov model (HMM) with an explicit role attribute. Information derived from 
tracking was used to provide features such as the relative angle between two persons to classify 
complete sequences. Xiang and Gong [Gong and Xiang, 2003] again used a CHMM to model 



interactions between vehicles on an aircraft runway. These features are calculated by detecting 
significantly changed pixels over several frames. The correct model for representing the sequence 
is determined by the connections between the separate models. Goodness of fit is calculated by 
the Bayesian information criterion. Using this method a model representing the sequences actions 
is determined. 

 
Multi-person interactions within a rigid formation was also the goal of [Khan and Shah, 2005] 

who used a geometric model to detect rigid formations between people, such an example would 
be a marching band. [Intille and Bobick, 2001] used a pre-defined Bayesian network to describe 
planned motions during American football games. Others such as [Perse et al., 2007] also use a 
pre-specified template to evaluate the current action being performed by many individuals. Pre-
specified templates have been used by [Van Vu et al., 2003, Hongeng and Nevatia, 2001] within 
the context of surveillance applications. 
 
SPECIFICALLY WHAT ARE WE TRYING TO DO? 
Given an input video sequence the goal is to automatically determine if any interactions between 
two people are taking place. If any are taking place then we want to identify the class of the 
interaction.  Here we limit ourselves to pre-defined classes which have been previously labeled.  
To make the situation more realistic there is also a ‘no interaction’ class.  We seek to give each 
frame a label from a predefined set.  For example a label may be that person 1 and person 2 are 
walking together in frame 56. 
 

The ability to automatically classify such interactions would be useful in cases which are 
typical of many surveillance situations.  Such an ability to automatically recognize interactions 
would also be useful in video summarization where it could be possible to focus only on specific 
interactions.  
 
 
FEATURES AND VARIABLES 
Video data is rich in information with the resolution of modern surveillance cameras capable of 
delivering megapixel resolution at a sustained frame rate of greater than 10fps. Such data is 
overwhelming and mostly unnecessary for classification of interactions. As a first step, tracking 
of the individuals is employed. There is a rich body of work upon tracking of people and objects 
within the literature. See the review by Yilmaz et al. for a good survey of current tracking 
technology [Yilmaz, A et al. 2006]. For all experiments performed in this chapter the bounding 
box method of identifying a person was used. The positional information was calculated based 
upon the centre of this box. This process is illustrated in Figure 1. Such tracking information is 
typical of the output of many tracking procedures and it will be assumed that such a tracker is 
available throughout all experiments carried out in this chapter.  
 



  

Figure 1 - Bounding box tracking. Colored lines show the previous position of the centre of the 
tracked object. 

 
Here three types of features are used as input to a classifier.  We make use of movement, 

alignment and distance based features.  More details are given in the following sections.  
 
Movement Based features 
Movement plays an important role in recognizing interactions. The speed of an individual is 
calculated as shown in equation (1.1). The double vertical bar (||..||) represents a vector L2 norm 
as given by 2 2 2

1 2 = sqrt( + +.....+ )nx x x x  where nx  refers to the nth component of vector x. 
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Here t
ip  refers to the position of the tracked object at time t for object i. Within this work only 

the two dimensional ( ,t t t
i i ix y⎡ ⎤= ⎣ ⎦p ) case is considered due to tracking information only being 

available in two dimensions. The temporal offset w is introduced due to the high rates which 
typify many modern video cameras.  With frame rates of around 25 frames per second this can 
mean that differences between the current and last frame (w=1) are very small and may be 
dominated by noise.  

 
The absolute difference in speed ( ,

t
i jε ) between two tracks is also calculated ( t t

i js s− ). The 

vorticity ( i
tv ) is measured as a deviation from a line.  This line is calculated by fitting a line to a 

set of previous positions of the trajectory ,..,t t w t
i i i

−⎡ ⎤= ⎣ ⎦P p p . The window size w is the same as 

that used in equation (1.1). At each point the orthogonal distance to the line is found.  The total 
distance of all points are then summed and normalized by window length and so give a measure 
of the vorticity. 
 
 
 
 
 



 
Alignment Based features 
 
The alignment of two tracks can give valuable information as to how they are interacting. The 
degree of alignment is common to [Gigerenzer et al., 1999; Oliver et al., 2000; and Liu and Chua, 
2006] who all make use of such information when classifying trajectory information. To calculate 
the dot product the heading (h) of the object is taken as in equation (1.2)  and the dot product 
(1.3) is calculated from the directions of tracks i and j. 
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In addition to the alignment between two people the potential intersection ( ,i j
tγ

) of two 

Trajectories is also calculated.  Such features are suggested in [Gigerenzer et al., 1999] and [Liu 
and Chua, 2006]. We first test for an intersection of the headings. This is achieved as shown in 
Algorithm 1. 
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Algorithm 1- Algorithm to determine the meeting of two trajectories 



 
 
 
Distance Based features 
Distance is a good measure for many types of interaction, for example meeting is not possible 
without being in close physical proximity. First the Euclidean distance is taken and is used as 
given in equation (1.4) below.  
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The derivative of the distance was also calculated. This is the difference in distance at 

contiguous time steps. It is calculated as shown in equation (1.5) below. 
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An instantaneous measure such as the distance and the derivative of the distance can both be 

prone to short term tracking errors. In an effort to remove this effect a window size containing w 
points was averaged (as in t

iP in the previous section). The distance was calculated for every 
point (as in equation (1.4)) in this window. 
 
Final feature vector 

The final feature vector for each pair of people is given in equation (1.6)  below: 
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The vector between persons i and  j at time t is made up of the speed of each person ( ,t t

i js s ) 

and the change in speed ˆ ˆ,t t
i js s . The alignment, distance and change in distance at a particular 

point in time is given by 
, ,,t t

i j i ja d  and 
,

ˆ t
i jd . The vorticity at a particular point in time for each 

person is given by ,t t
i jv v  whilst the possibility of an intersection between two trajectories is given 

by 
,
t
i jγ . This gives a final feature vector containing 11 elements.  A further processing step of 

normalizing the training data to have zero mean and unit variance was also taken. 
 
 
 
 
 
 

 



Observation Window Size 
 
Throughout these experiments we investigated the role of varying the number of video frames 
used before making a decision as to what is happening within the frame. Figure 2 (below) shows 
how this is achieved. Throughout this work we used information from before and after the current 
frame in order to classify it. Typically the frames relate to a small quantity of time (1-2 seconds) 
and help with the lag problem when your decision is biased by the large amount of previous 
information used in the classification. The window size variation throughout this work is 
equivalent to a few seconds delay. This was not foreseen as a problem if such an approach was 
taken in a real surveillance application. The fact that there would be a lag in classification if 
making use of only previous information seems an appropriate trade-off for an increase in 
accuracy. 
 

 

Figure 2 - The frame to classify (t) uses information from w frames around the current frame in 
order to classify the frame. 

 
 
CLASSIFICATION 
This section introduces the classifiers which are used throughout subsequent experiments. We 
make use of a simple linear discriminant classifier (LDA) which is non-probabilistic and provides 
a baseline for performance. This is introduced in the next section. We then briefly introduce the 
hidden Markov model (HMM) which is widely used throughout the literature. We then introduce 
a newer model, the conditional random field (CRF). Finally the previous best method as 
suggested by [Oliver, 2000] is briefly reviewed. 
 
 
 
 
 
 
 
 
 
 



Linear Discriminant Classifier 
 

Linear discriminant analysis (LDA) seeks to maximize the objective function given in 
equation (1.7) below.  Here WS is the within class scatter matrix with BS  being the between class 
scatter matrix.  
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The objective function (equation (1.7)) is often referred to as the signal to noise ratio. What 

we are trying to achieve is a projection (w) which maximizes the distance of the class means 
relative to the (sum of) variances of a particular class. To generate a solution it is noted that 
equation (1.7) has a property whereby it is invariant with respect to scaling of the w vectors (eg 

α→w w where α  is some arbitrary scaling). Therefore w can be chosen such that 1T
W =w S w . 

It is also common (and indeed the case here) to perform a whitening step (zero mean and unit 
variance) on the data prior to input into this method. 

 
This maximization can be turned into a regular eigenvalue problem.  Projections are found for 

each class (ie one class vs all others) and the mean and variance (C) of the class projection are 
found. In order to classify a novel point the new point is projected with 1

WS − . The class label is 
determined by taking the smallest Mahalonobis distance between the calculated class model’s 
mean and variance and the new test point. 

 
Hidden Markov Model 

Hidden Markov models (HMM’s) have been introduced by (among others) Rabiner 
[Rabiner,1990]. The model is parameterized by the prior distribution ∏ with each element iπ  

representing ( )i p x iπ = =  across all hidden states [1,.., ]i N∈ . The stationary state transition 
matrix A is used to represent the probability of a transition from one state (i) to another (j) 
through time.  An entry within the stochastic matrix A is referenced by , 1( | )i j t ta p x i x j−= = = . 

Within this work we are concerned with continuous real valued inputs ( tr ) which can be 
accommodated within the model by using a Gaussian mixture model to represent the input 
distribution ( | )t tp x j=r .  
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Here the observed data R is the vector being modeled, 

,j mc  is the mixture coefficient for the 

mth mixture in state j. N is a Gaussian distribution with mean vector 
,j mμ  and covariance 

,j mC  

for the mth mixture component in state j.  The mixture coefficient 
jc  must sum to 1.  



The hidden Markov model’s parameters can thus be represented as ( , , )λ = Π ΘA  where Θ  
represent the parameters of the mixture model. 
 
Conditional Random Field 
In this section the workings of a conditional random field (CRF) are explained and then the 
specific formulation as applied in this chapter is given. The structure of the CRF we use is shown 
in Figure 3. The CRF can be configured to resemble HMM like models. However they can be  
more expressive in that arbitrary dependencies on the observations are allowed. Using the feature 
functions of the CRF allows any part of the input sequence to be used at any time during the 
inference stage. It is also possible that different state’s (classes) can have differing feature 
functions (though we do not make use of this here). The feature functions describe the structure 
of the model. The CRF is also a discriminative model where as the HMM is a generative one. A 
potential advantage of the discriminative CRF over generative models is that they have been 
shown to be more robust to violations of independence assumptions [Lafferty et al., 2001]. 
 

 

Figure 3- CRF model. The observations (r) are shown for each timestep. The class label x is also 
shown. 

 
The discrete temporal state at a particular timestep t is given by tx which takes a value from 

the set of all possible class labels {1,2,.., }x X C∈ = . Here C is the maximum number of class 
labels whilst t represents the time with T being the maximum length of the sequence. 
Observations at time t are denoted as tr  with the joint observations given as 1( ,.., )t t=R r r . 
Likewise the joint state is given by 1( ,.., )t tx x=X .  For notational compactness we shall refer to 

tX  as X and tR  as R in accordance with other author’s [Sminchisescu et al.,2005, and Wallach, 
2004]. 

The distribution over joint labels X  given observations R and parameters Θ  are given by: 
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Within this equation c
θφ  is a real valued potential function of the clique c and ( )Zθ R  is the 

observation dependent normalization (sometimes referred to as a partition function).  C(X,R) is 
the set of maximal cliques. 

 
Here a first order linear chain is used (as show in Figure 3). The cliques are pairs f 

neighboring states ( , 1t tx x + ), whilst the connectivity among observations is restricted to that 
shown in the graph (Figure 3- CRF model. The observations (r) are shown for each timestep. The 
class label x is also shown.).  A CRF model with T timesteps, as used here, can be re-written in 
terms of exponential feature functions Fθ  computed in terms of weighted sums over the features 
of the cliques.  This exponential feature formulation is given below in equation (1.10) 
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The conditional log likelihood of the CRF is given below.  Assuming that the training data is 

fully labeled { }
1,..,

,d d

d D=
X R  the parameters of the model are obtained by optimization of the 

following function: 
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In order to make parameter optimization more stable the problem often makes use of a 

regularized term ( Rθ ). The problem then becomes one of optimizing the penalized likelihood 

( L Rθ θ+ ).  The regularizing term used here was chosen to be 2Rθ θ= − . 

Once trained novel input is given to a CRF model and a probability distribution is given 
throughout all timesteps for all classes. In this case we choose the highest probability as being the 
classification label of the new example. A Gaussian prior over the input data was used throughout 
all experiments.  
 
Oliver’s Coupled Hidden Markov Model 
Here we briefly cover Oliver’s method ([Oliver et al., 2000]) of classifying interacting 
individuals. This work is reviewed as it provides a state of the art method to compare our results 
with. Oliver used coupled hidden Markov models to model five different interactive behaviors. 
 

Oliver’s work is used for comparison with the work presented here. Oliver et al use two 
feature vectors (one for each chain).  These feature vectors are made up of the velocity of the 
person, the change in distance between the two people and the alignment between the two people. 
This gives two feature vectors, one for each chain.   

 
For each class the parameters of a two chain coupled hidden Markov model are trained.  When 

classifying the model which produces the highest likelihood for a test sequence is taken as the 
class label. 



  
 
RESULTS 
 
This section presents the results obtained by using the methods described in the preceding 
chapters. Results using a conditional random field (CRF) , hidden Markov model (HMM) and its 
coupled variation (CHMM) are presented. Results using a linear discriminant model (LDA) are 
also presented and used as a baseline non-probabilistic method to which results are compared. We 
present the result of classification over many training and testing subsets to give an indication of 
the standard deviation and the expected performance when using a method. Results are presented 
over many different window sizes. The graphs show the averaged performance of the classifier 
over 50 runs.  The standard deviation is given by the shaded regions. 
 
 
Experimental setup 
The CAVIAR dataset has been previously used in [Dee and Hogg, 2004a, Wu and Nevatia, 2007] 
however there is not a universally agreed training and testing set. Therefore it was deemed that in 
order to characterise an algorithm’s true performance upon a dataset it should be tested with 
different subsets of the entire data. This will give an indication of the expected performance of 
the algorithm rather than finding a particularly good (in terms of classification accuracy) subset. 
 

We are interested in comparing the four methods as described in the previous section. 
Furthermore the role of time is investigated. We seek to investigate what is the optimal length of 
time a sequence should be watched before a decision is made. Results comparing each method 
and the effects of time are given in the following sections. 

 
Throughout the training procedure the testing set was kept separate from the training data and 

was unseen by the learning algorithm until testing time. Therefore only the training set was used 
when determining the parameters of the learning model. Training and testing sets were split 50/50 
on a per class basis. Partitioning was done per-class rather than over the whole dataset due to the 
uneven distribution of classes. Such a step means that in the training stage the learning algorithm 
will have examples of every type of class. We would not expect a correct classification on unseen 
classes and so this measure can stop misleading results. In order to show the average performance 
this procedure was repeated over 50 different partitions of the training and test data. 
 

The dataset contains examples of complete sequences, for example a sequence consisting of 
two people walking together may be hundreds of frames long. Our goal is to classify each frame 
correctly. If we were to take this sequence and split it up as training and testing frames then the 
classification task would be much simpler as training and testing points would be simply a matter 
of interpolation between highly similar points. It is for this reason that when deciding on the 
training and testing data we partition based on the complete sequences. This means that an entire 
walking together sequence will be assigned to the training set whilst another complete walking 
together sequence will be assigned to the testing set. This should avoid the pitfall of having 
training and testing data which is essentially the same. This is especially true as the data has a 
very strong temporal coupling. 



 
What we are aiming to do is try to give a class label to two interacting individuals.  This is 

shown in Figure 4-. The two people are approaching one another.  Between the first and second 
frame the distance between them decreases.  The classifier would assign one label for this 
interaction (covering both people) to indicate ‘approaching’. 

 

 

Figure 4-Two people approaching one another. 
 

Classification Results 
 
CAVIAR Dataset 

 
The CAVIAR dataset [EC Funded CAVIAR.. (2004)] contains 11,415 frames in which some 
have labeled examples of interactions. Within this set there are 5 distinct classes which we seek to 
identify and classify. The 5 classes consist of examples of people: walking together (2,543), 
approaching (942), ignoring (4,916), meeting one another (1,801), splitting up (879) and fighting 
(334). The numbers in brackets indicates how many frames contain this behavior. 

Overall results for the dataset are shown in Figure 5.  These results are the further broken 
down and shown for each class in Figure 6, Figure 7 and Figure 8. 
 



 

Figure 5- Overall results on the CAVIAR dataset for each method. Lines show averaged results 
(over 50 runs) whilst the shaded regions show one standard deviation. 

 
 
It is visible that for small window sizes the CRF method offers the best performance (except 

perhaps when classifying the approaching behavior). However in this dataset the HMM model 
gives the best possible average performance. Both the HMM and the CRF using the new 
proposed features show superior performance to Oliver’s method. A particular problem for all 
methods is in the classification of fighting behavior. A small sample size and the short timescale 
where any fighting actually occurs contribute towards this. We see that for some cases the 
window is too small (such as walking together and ignore) or too large (such as ignore and 
approach). A per class time window or an enhanced feature set would help this problem 
 
 



 

Figure 6 – Results on the ‘approaching’ and ‘fighting’ class, for the CAVIAR data. 
 

 

 
 

Figure 7  – Results on the ‘ignore’ and ‘meet’ class, for the CAVIAR data. 
 



 

Figure 8 – Results on the ‘split’ and ‘walk together’ class, for the CAVIAR data 
 

One of the other features of this dataset is that for “approaching”, “splitting” and “fighting” 
there were perhaps not enough examples to get a build a sufficiently generalisable model. A 
simple answer would be to say that more data is required. However in many real surveillance 
applications such an approach is not possible so showing how a method performs using only 
limited data is still of value. 
 
 
BEHAVE Dataset 

 
The BEHAVE dataset [Blunsden et al. 2007] contains 134,457 frames which have labeled 
examples of interactions. Within this set there are 5 distinct classes which we seek to identify and 
classify. The 8 classes consist of examples of people: In a group (91,421), Approaching (8,991), 
walking together (14,261), splitting (11,046), ignoring (1,557), fighting (4,772), running (1,870) 
and chasing (539) one another. The numbers in brackets indicates how many frames contain this 
behavior. 
 



 

Figure 9- Overall performance on the BEHAVE dataset for each method. Lines show averaged 
results (over 50 runs) whilst the shaded regions show one standard deviation. 

 
 

The overall averaged classification is shown in Figure 9. The CRF clearly performs better than 
all other methods on this dataset for all window sizes. There is a slight increase in performance 
when the window size is increased when using a CRF. However the effect is more dramatic for 
both the CHMM, HMM and the LDA method. All three of these methods (HMM, CHMM, LDA) 
increase in performance as the window size is increased. Significant performance increases are 
observed between window sizes of 1 and 20. 

 
Per class results (figures Figure 10, Figure 11 and Figure 12) display a similar story where 

increasing the window size has little effect upon CRF classification. When classifying splitting, 
approaching (Figure Figure 10)  and fighting (Figure 11) increasing the window size improves the 
performance of the HMM, CHMM and the LDA classifiers. The HMM classifier gives the best 
performance of all methods when classifying fighting (Figure 6). Increasing window size also 
gives a similar increase in performance for both the in group classification and the walking 
together class (Figure 12). However when classifying people in a group the LDA method 
decreases in performance. 

 
 

 



 

Figure 10-Results on the ‘split and ‘approach’ classes for the BEHAVE dataset. 
 

 

Figure 11 - Results on the ‘fight’ and ‘ignore’ classes for the BEHAVE dataset. 
 



 

Figure 12- Results on the ‘walk together’ and ‘in group’ classes for the BEHAVE dataset. 
 

 
CONCLUSION 
 
Over all datasets the CRF classifier performs well (80-95%) when using limited information. The 
previous best method suggested by Oliver [Oliver, 2000] is improved upon using the CRF 
classifier in conjunction with the new proposed feature set. The new proposed feature set also 
outperforms Oliver’s method when using a HMM model for a great many cases.  
 

The CRF classifier displays an ability to better classify data in the short term compared to the 
HMM. In contrast the HMM model improves more rapidly when the observation window size is 
increased suggesting it is better at smoothing the signal over longer sequences. The forward 
algorithm used to determine the likelihood seems to smooth the signal much better than the CRF. 
The case of the CHMM the more gradual improvement could be attributable to the larger number 
of parameters which requires more data in order to represent the data adequately. A suggestion 
for future work would be therefore to improve the long term temporal model of the CRF that we 
are using. It should be noted that these comments about the CRF model apply for the single chain 
structure which is used here. There are many configurations which can be used within the CRF 
framework. A higher order CRF may produce a better temporal model and so we would expect to 
see larger improvements when the observation window size is increased. However a CRF model 
will always be discriminative compared to the HMM and CHMM’s generative ability. The ability 
to generate samples may be important in certain cases (such as estimating a model’s complexity 
[Gong and Xiang, 2003]) however this ability is not required for the classification tasks as 
presented here. 

 
Throughout all experiments on all of the datasets it is visible that there seems to be an optimal 

window size for classification of a particular class. For some activities such as fighting in the 
CAVIAR dataset (Figure 6) the window size is quite short (due to the speed of a fight) where as 



for other classes such as the ignore behavior (Figure 7) a longer window size improves 
performance.  
 
 
FUTURE WORK 
 
The significance of the role of time within this work has been demonstrated.  Future work should 
seek to exploit this in a principled way. It would also be fruitful to investigate in a principled way 
automatic feature selection.  It would be envisaged that such a procedure could incorporate lots of 
features and chose them automatically rather than, as is the case here, where it is only possible to 
use a limited number of features. By having a comparative study of the classifiers on the dataset 
is also possible to know how much you should rely on them, if for instance you were using some 
classification criteria in feature selection or to establish an optimal time window.   
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