3D Color Homography Model for Photo-Realistic Color Transfer
Re-Coding

Han Gong!, Graham D. Finlayson?,

Robert B. Fisher?, and Fufu Fang!

1School of Computing Sciences, University of East Anglia
2School of Informatics, University of Edinburgh

December 8, 2017

Abstract

Color transfer is an image editing process that naturally
transfers the color theme of a source image to a target
image. In this paper, we propose a 3D color homography
model which approximates photo-realistic color transfer
algorithm as a combination of a 3D perspective transform
and a mean intensity mapping. A key advantage of our ap-
proach is that the re-coded color transfer algorithm is sim-
ple and accurate. Our evaluation demonstrates that our
3D color homography model delivers leading color transfer
re-coding performance. In addition, we also show that our
3D color homography model can be applied to color trans-
fer artifact fixing, complex color transfer acceleration, and
color-robust image stitching.

1 Introduction

Color palette modification for pictures/frames is often re-
quired in professional photo editing as well as the video
post-production. Artists usually choose a desired target
picture as a reference and manipulate the other pictures
to make their color palette similar to the reference. This
process is known as photo-realistic color transfer. Fig-
ure 1 shows an example of photo-realistic color transfer
between a target image and a source image. This color
transfer process is a complex task that requires artists to
carefully adjust for multiple properties such as exposure,
brightness, white-point, and color mapping. These ad-
justments are also interdependent, i.e. the alignment for
a single property can cause the other previously aligned
properties to become misaligned. Some artifacts due to
non-linear image processing (e.g. JPEG block edges) may
also appear after color adjustment.

One of the first photo-realistic color transfer methods
was introduced by Reinhard et al. [23]. Their method
proposed that the mean and variance of the source im-
age, in a specially chosen color space, should be manip-
ulated to match those of a target. More recent meth-
ods [21, 16, 1, 19, 20] might adopt more aggressive color
transfers — e.g. color distribution force matches [19, 20]
— and yet these aggressive changes often do not preserve
the original intensity gradients and new spatial type arti-
facts may be introduced into an image (e.g. JPEG blocks
become visible or there is false contouring). In addition,
the complexity of a color transfer method usually leads to
longer processing time. To address these issues, previous

methods [18, 11, 13] were proposed to approximate the
color change produced by a color transfer, such that an
original complicated color transfer can be re-formulated
as a simpler and faster algorithm with an acceptable level
of accuracy and some introduced artifacts.

In this paper, we propose a simple and general model
for re-coding (approximating) an unknown photo-realistic
color transfer which provides leading accuracy and the
color transfer algorithm can be decomposed into mean-
ingful parts. Our model is extended from a recent planar
color homography color transfer model [11] to the 3D do-
main, as opposed to the original 2D planar domain. In our
improved model, we decompose an unknown color trans-
fer into 3D color perspective transform and mean inten-
sity mapping components. Based on [l1], we make two
new contributions: 1) A 3D color mapping model that
better re-codes color change by relating two homogeneous
color spaces; 2) A monotonic mean intensity mapping
method that prevents artifacts without adding unwanted
blur. Our experiments show significant improvements in
color transfer re-coding accuracy. We demonstrate three
applications of the proposed method for color transfer ar-
tifact fixing, color transfer acceleration, and color-robust
image stitching.

Throughout the paper, we denote the source image by I,
and the original color transfer result by I;. Given I and I,
we re-code the color transfer with our color homography
model which approximates the original color transfer from
I to I;. Figure 1 shows the pipeline of our color transfer
decomposition.

Our paper is organized as follows. We review the lead-
ing prior color transfer methods and the previous color
transfer approximation methods in §2. Our color trans-
fer decomposition model is described in §3. We present
a color transfer re-coding method for two corresponding
images in §4. In addition, we demonstrate its applications
in §5. Finally, we conclude in §6.

2 Background

In this section, we briefly review the existing work on
photo-realistic color transfer, the methods for re-coding
such a color transfer, and the concept of Color Homogra-

phy.
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Figure 1: Pipeline of our color transfer decomposition. The “target” image was used by the “original color transfer”
algorithms to produce the “original color transfer” output image, but it is not used by the proposed color transfer
re-coding algorithm. The orange dashed line divides the pipeline into two steps: 1) Color space mapping. The RGBs
of the source image (drawn as red edge circles) and the original color transfer image (by [16] with the target image as
the reference, black edge circles) are matched according to their locations (e.g. the blue matching lines), from which
we estimate a 3D homography matrix H and use H to transfer the source image colors; 2) Mean intensity mapping:
the image mean intensity values (mean values of R, G, and B) are aligned by estimating the per-pixel shading between
the color space mapped result and the original color transfer result by least-squares. The final result is a visually close

color transfer approximation.

2.1 Photo-Realistic Color Transfer

Example-based color transfer was first introduced by Rein-
hard et al. [23]. Their method aligns the color distri-
butions of two images in a specially chosen color space
via 3D scaling and shift. Pitie et al. [19, 20] proposed
an iterative color transfer method that distorts the color
distribution by random 3D rotation and per-channel his-
togram matching until the distributions of the two images
are fully aligned. This method makes the output color
distribution exactly the same as the target image’s color
distribution. However, the method introduces spatial ar-
tifacts. By adding a gradient preservation constraint,
these artifacts can be mitigated or removed at the cost
of more blurry artifacts [20]. Pouli and Reinhard [21]
adopted a progressive histogram matching in L*a*b* color
space. Their method generates image histograms at differ-
ent scales. From coarse to fine, the histogram is progres-
sively reshaped to align the maximas and minimas of the
histogram, at each scale. Their algorithm also handles the
difference in dynamic ranges between two images. Nguyen
et al. [16] proposed an illuminant-aware and gamut-based
color transfer. They first eliminate the color cast difference
by a white-balancing operation for both images. A lumi-
nance alignment is later performed by histogram match-
ing along the “gray” axis of RGB. They finally adopt a 3D
convex hull mapping to limit the color-transferred RGBs
to the gamut of the target RGBs. Other approaches (e.g.
[1, 28, 25]) solve for several local color transfers rather
than a single global color transfer. As most non-global
color transfer methods are essentially a blend of several
single color transfer steps, a global color transfer method
is extendable for multi-transfer algorithms.

2.2 Photo-Realistic Color Transfer Re-
Coding

Various methods have been proposed for approximating
an unknown photo-realistic color transfer for better speed
and naturalness. Pitie et al. [18] proposed a color trans-
fer approximation by a 3D similarity transform (transla-
tion+rotation+scaling) which implements a simplification
of the Earth Movers Distance. By restricting the form of
a color transfer to a similarity transform model, some of
the generality of the transfer can be lost such that the
range of color changes it can account for is more limited.
In addition, a color transfer looks satisfying only if the
tonality looks natural and this is often not the case with
the similarity transformation. Ilie and Welch [13] pro-
posed a polynomial color transfer which introduces higher
degree terms of the RGB values. This encodes the non-
linearity of color transfer better than a simple 3 x 3 lin-
ear transform. However, the non-linear polynomial terms
may over-manipulate a color change and introduce spatial
gradient artifacts. Similarly, this method also does not
address the tonal difference between the input and output
images. Gong et al. [11] proposed a planar color homog-
raphy model which re-codes a color transfer effect as a
combination of 2D perspective transform of chromaticity
and shading adjustments. Compared with [18], it requires
less parameters to represent a non-tonal color change.
The model’s tonal adjustment also further improves color
transfer re-coding accuracy. However, the assumption of a
2D chromaticity distortion limits the range of color trans-
fer it can represent. Their [11] tonal adjustment (mean-
intensity-to-shading mapping) also does not preserve im-
age gradients and the original color rank. Another im-
portant work is probabilistic moving least squares [12]
which calculates a largely parameterized transform of color
space. Its accuracy is slightly better than [13]. However,



due to its high complexity, it is unsuitable for real-time
use. In this paper, we only benchmark against the color
transfer re-coding methods with a real-time performance.

2.3 2D Color Homography

The color homography theorem [7, &] shows that chro-
maticities across a change in capture conditions (light
color, shading and imaging device) are a homogra-
phy apart. Suppose that we have an RGB vector
p=[R,G,B]T, its r and g chromaticity coordinates are
written as r = R/B, g = G/B which can be interpreted
as a homogeneous coordinate vector ¢ and we have:

goc[r g 1}T.

(1)

When the shading is uniform and the scene is diffuse, it
is well-known that across a change in illumination or a
change in device, the corresponding RGBs are, to a rea-
sonable approximation, related by a 3 x 3 linear transform

Hszys:
(2)

where p’ is the corresponding RGBs under a second light
or captured by a different camera [15, 14]. Due to different
shading, the RGB triple under a second light is written as

3)

where Hsy3 here is a color homography color correction
matrix, o denotes an unknown scaling. Without loss of
generality let us interpret c as a homogeneous coordinate,
i.e. assume its third component is 1. Then, rg chromatic-
ities ¢T and ¢/T are a homography apart.

The 2D color homography model decomposes a color
change into a 2D chromaticity distortion and a 1D tonal
mapping, which successfully approximates a range of phys-
ical color changes. However, the degrees-of-freedom of
a 2D chromaticity distortion may not accurately capture
more complicated color changes applied in photo editing.

p'T = pTHsxs

T =acTHyxs

3 3D Color Homography Model
for Photo-Realistic Color Trans-
fer Re-Coding

The color homography theorem reviewed in Section 2.3
states that the same diffuse scene under an illuminant (or
camera) change will result in two images whose chromatic-
ities are a 2D (planar) homography apart. The 2D model
works best for RAW-to-RAW linear color mappings and
can also approximates the non-linear mapping from RAW
to sSRGB [8]. In this paper, we extend the planar color ho-
mography color transfer to the 3D spatial domain. A 3D
perspective transformation in color may be interpreted as
a perspective distortion of color space (e.g. Fig. 2). Com-
pared with the 2D homography model, the introduction
of a 3D perspective transform can model a higher degree
of non-linearity in the color mapping. We propose that
a global color transfer can be decomposed into a 3D per-
spective transform and a mean intensity alignment.

We start with the outputs of the previous color transfer
algorithms. We represent a 3D RGB intensity vector by
its 4D homogeneous coordinates (i.e. appending an addi-
tional element “1” to each RGB vector). Assuming we
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Figure 2: Homogeneous color space mapping. The left 3
homogeneous RGB cubes are equivalent (up to a scale).
The left RGB space cubes can be mapped to the right by
a 4 x 4 3D homography transform H.

relate I, to I; with a pixel-wise correspondence, we repre-
sent the RGBs of I and I; as two n x 3 matrices Ry and
R, respectively where n is the number of pixels. We also
denote their corresponding n x 4 homogeneous RGB ma-
trices as Ry and R;. For instance, R, can be converted to
R, by dividing its first 3 columns by its 4" column. Our
3D color homography color transfer model is proposed as:

(4)
()

where D is a n X n diagonal matrix of scalars (i.e. ex-
posures, but only used for estimating Hyx4) and Hyxy is
a 4 x 4 perspective color space mapping matrix, h() is a
function that converts a n x 4 homogeneous RGB matrix
to a n x 3 RGB matrix (i.e. it divides the first 3 columns
of R, by its 4™ column and removes the 4™ column such
that R, = h(R,)), D’ is another n x n diagonal matrix
of scalars (i.e. shadings) for mean intensity mapping. A
color transfer is decomposed into a 3D homography ma-
trix Hyx4 and a mean intensity mapping diagonal matrix
D’. The effect of applying the matrix H is essentially a
perspective color space distortion (e.g. Fig. 2). That is,
we have a homography for RGB colors (rather than just
chromaticities — (R/B,G/B)). D’ adjusts mean intensity
values (by modifying the magnitudes of the RGB vectors)
to cancel the tonal difference between an input image and
its color transferred output image (e.g. the right-half of
Fig. 1).

Rt ~ DR3H4><4
Ry ~ D'W(RyHyys)

4 Image Color Transfer Re-

Coding

In this section, we describe the steps for decomposing a
color transfer between two registered images into the 3D
color homography model components.

4.1 Perspective Color Space Mapping

We solve for the 3D homography matrix Hyy4 in Equa-
tion 4 by using Alternating Least-Squares (ALS) [9] as
illustrated in Algorithm 1 where ¢ indicates the iteration
number. In each iteration, Step 4 (Algorithm 1) keeps D
fixed (which was updated in Step 5 of a previous iteration)
and finds a better Hyx4. Step 5 finds a better D using the



1 ¢ =0, argminpo

DR, — RtH R0 = DOR,;
F

2 repeat
3 1=1+1;
) i1 . .
4 argming, || R H4X4—RtHF,
5 arg minp, DR2*1H4X4—RtH ;
F

6 | Ri= DRI Hyyu;
7 until HR’S — R’s_lH <€ ORi>n;
F
Algorithm 1: Homography from alternating least-
squares

updated Hyx4 fixed. The minimization in Steps 1, 4 and 5
are achieved by linear least-squares. After these alternat-
ing estimation steps, we get a decreasing evaluation error

for HRZS — RZS_IHF The assured convergence of ALS has

been discussed in [26]. Practically, we may limit the num-
ber of iterations to n = 20 (empirically, the error is not
significant after 20 iterations).

4.2 Mean Intensity Mapping

The tonal difference between an original input image and
the color-transferred image is caused by the non-linear op-
erations of a color transfer process. We cancel this tonal
difference by adjusting mean intensity (i.e. scaling RGBs
by multiplying D’ in Equation 5). To determine the di-
agonal scalars in D', we first propose a universal mean-
intensity-to-mean-intensity mapping function g() which is
a smooth and monotonic curve fitted to the per-pixel mean
intensity values (i.e. mean values of RGB intensities) of
the two images. As opposed to the unconstrained mean-
intensity-to-shading mapping adopted in [11], we enforce
monotonicity and smoothness in our optimization which
avoids halo-like artifacts (due to sharp or non-monotonic
tone change [6]). The mapping function g is fitted by min-
imizing the following function:
argmin

! ly — g(@)||” +p/ PROIR:

subject to  ¢'(t) >0 and 0<g(t) <1.

(6)

where the first term minimizes the least-squares fitting er-
ror, the second term enforces a smoothness constraint for
the fitted curve. z and y are assumed in [0, 1]. The curve is
smoother when the smoothness factor p is larger (p = 10~°
by default). z and y are the input and reference mean in-
tensity vectors. The mapping function g() is implemented
as a look-up table which is solved by quadratic program-
ming [4] (see Appendix A). Figure 1 shows an example of
the computed function g().

Let the operator diag(z) return a diagonal matrix with
components of z along its diagonal. Given the estimated
mean intensity mapping function g(), the diagonal scalar
matrix D’ (in Equation 5) is updated as follows:

1 . 1
b= -h(RsHixa) |1
3 1 (7)

D' = diag(g(b))diag ™" (b)
where b is the input mean intensity vector of the 3D-color-
space-mapped RGB values (i.e. h(RsHyx4)). Because this
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Figure 3: Minor noise reduction: Some JPEG block ar-
tifacts of our initial approximation are reduced via mean
intensity mapping noise reduction step. Compared with
our final approximation result (middle), the output of [11]
contains significant blur artifacts at the boundary of the
hill. Row 2 shows the magnified area in Row 1. Row 3
shows the shading image Ip/ of the magnified area.

step only changes the magnitude of an RGB vector, the
physical chromaticity and hue are preserved.

4.3 Mean Intensity Mapping Noise Re-
duction

Perhaps because of the greater compression ratios in im-
ages and videos, we found that, even though the mean
intensity is reproduced as a smooth and monotonic tone
curve, that some minor spatial artifacts could — albeit
rarely — be introduced. We found that the noise can be am-
plified in the mean-intensity-mapping step and the com-
ponent D’ (in Equation 5) absorbs most of the spatial
artifacts (e.g. JPEG block edges). To reduce the potential
gradient artifacts, we propose a simple noise reduction.
Because D’ scales each pixel individually, we can visualize
D’ as an image denoted as Ip,. We remove the spatial
artifacts by applying a joint-bilateral filter [17] which spa-
tially filters the scale image I guided by the source image
I such that the edges in Ips are similar to the edges in
the mean intensity channel of I;. Figure 3 shows the effect
of the monotonic smooth mean intensity mapping and its
mapping noise reduction. Although it is often not neces-
sary to apply this noise reduction step, we have always
included it as a “safety guarantee”.

4.4 Results

In our experiments, we assume that we have an input im-
age and an output produced by a color transfer algorithm.
Because the input and output are matched (i.e. they are
in perfect registration), we can apply Algorithm 1 directly.

In the experiments which follow, we call our method —
3D homography color transform + mean intensity map-
ping — “3D-H”. Similarly, the 2D homography approach
for color transfer re-coding [11] is denoted as “2D-H”. We
first show some visual results of color transfer approxi-

mations of [16, 20, 21, 23] in Figure 4. Our 3D color



Table 1: Mean errors between the original color transfer
result and its approximations by 4 popular color transfer
methods.

Table 2: Post-Hoc Tests for one-way ANOVA on errors
between the original color transfer result and its approxi-
mations.

Nguyen [16] Pitie [20] Pouli [21] Reinhard [23] Method A Method B P-Vaue
PSNR (Peak Signal-to-Noise Ratio) PSNR Overall P-Value < 0.001
MK [15] 23.24 22.76 22.41 25.21 MK [18]  Poly [13] p < 0.001
Poly [13] 25.54 25.08 27.17 28.27 MK [18] 2D-H [11] p < 0.001
2D-H [11] 24.59 25.19 27.22 28.24 MK [18] 3D-H  p<0.001
3D-H 27.34 26.65  27.55 30.00 Poly [13] 2D-H[11]  0.95
SSIM (Structural SIMilarity) Poly [13] 3D-H p < 0.001
MK [18] 0.88 0.85 0.81 0.85 2D-H [11] 3D-H p< 0.001
Poly [13] 0.91 0.89 0.85 0.88 SSIM Overall P-Value < 0.001
2D-H [11] 0.86 0.86 0.90 0.92 MK [18]  Poly [13] p < 0.001
3D-H 0.93 0.90 0.89 0.93 MK [18]  2D-H [I1] p < 0.001
MK [18] 3D-H  p < 0.001
Poly [13] 2D-H [11] 0.48
homography model offers a visually closer color transfer Poly [13] 3D-H  p < 0.001
approximation. 2D-H[11]  3D-H p<0.001

Although a public dataset for color transfer re-coding
was published in [11], it contains a limited sample size. In
this work, we use a new dataset' In Table 1, we quantita-
tively evaluate the approximation accuracy of the 3 state-
of-the-art algorithms [18, 13, 11] by the error between the
approximation result and the original color transfer result.
The results are the averages over the 200 test images. The
method [13] is tested by using a common second-order
polynomial (which avoids over-fitting). We adopt PSNR
(Peak Signal-to-Noise Ratio) and SSIM (Structural Simi-
larity) [27] as the error measurements. Acceptable values
for PSNR and SSIM are usually considered to be respec-
tively over 20 dB and 0.9. Table 1 shows that 3D-H is gen-
erally better than the other compared methods for both
PSNR and SSIM metrics. To further investigate the sta-
tistical significance of the evaluation result, we run a one-
way ANOVA to verify that the choice of our model has
a significant and positive effect on the evaluation metrics
(i.e. PSNR and SSIM). In our test, we categorize all eval-
uation numbers into four groups according to associated
color transfer re-coding method. Table 2 shows the post-
hoc tests for one-way ANOVA where the choice of color
transfer approximation method is the only variable. We
obtained the overall p-values < 0.001 for both PSNR and
SSIM which indicate the choice of color transfer re-coding
method have a significant impact on the color transfer ap-
proximation result. In addition, we run a post-hoc analysis
and found near 0 p-values when comparing 3D-H with all
3 other methods. This further confirms that the difference
in performance of 3D-H is significant. Our test also shows
that the difference between 2D-H [11] and Poly [13] is not
significant. Our 3D color homography model produces the
best result overall.

5 Applications

In this section, we demonstrate three applications of our
color transfer re-coding method.

1The dataset will be made public for future comparisons. with a
significant larger size — 200 color transfer images — so that the quality
of color transfer re-coding can be thoroughly evaluated. Each color
transfer image pair also comes with the color transfer results of 4
popular methods [16, 20, 21, 23].

5.1 Color Transfer Acceleration

More recent color transfer methods usually produce higher
quality outputs however at the cost of more processing
time. Methods that produce high quality images and
are fast include the work of Gharbi et al. [10] who pro-
posed a general image manipulation acceleration method
— named Transform Recipe (TR) — designed for cloud ap-
plications. Based on a downsampled pair of input and out-
put images, their method approximates the image manip-
ulation effect according to changes in luminance, chromi-
nance and stack levels. Another fast method by Chen et
al. [3] approximates the effect of many general image ma-
nipulation procedures by Convolutional Neural Networks
(CNN). While their approach significantly reduce the com-
putational time for some complex operations, it requires
substantial amounts of samples for training a single image
manipulation. In this sub-section, we demonstrate that
our re-coding method can be applied as an alternative
to accelerate a complex color transfer by approximating
its color transfer effect at a lower scale. We approximate
the color transfer in the following steps: 1) We supply a
thumbnail image (40 x 60 in our experiment) to the origi-
nal color transfer method and obtain a thumbnail output;
2) Given the pair of lower resolution input and output im-
ages, we estimate a color transfer model that approximates
the color transfer effect; 3) We then process the higher res-
olution input image by using the estimated color transfer
model and obtain a higher resolution output which looks
very close to the original higher resolution color transfer
result without acceleration.

In our experiment, we choose two computationally ex-
pensive methods [20, 16] as the inputs and we compare our
performance (MATLAB implementation) with a state-of-
the-art method TR [10] (Python implementation). Fig-
ure 5 shows the output comparisons between the original
color transfer results and the acceleration results. The re-
sults indicate that our re-coding method can significantly
reduce the computational time (25% to 30x faster depend-
ing on the speed of original color transfer algorithm and
the input image resolution) for these complicated color
transfer methods while preserving color transfer fidelity.



Original Color Transfer MK [18]

Poly [13]

2D-H[11] 3D-H

Figure 4: Visual result of 4 color transfer approximations (rightmost 4 columns). The original color transfer results
are produced by the methods cited at the top-right of the images in the first column. The original input images
are shown at the bottom-right of the first column. Please also check our supplementary material for more examples

(http://goo.gl/n6LI3k).

Compared with TR [10], our method produces similar
quality of output for global color transfer approximation
however at a much reduced cost of computation (about
10x faster). Although TR [10] is less efficient, it is also
worth noting that TR supports a wider range of image
manipulation accelerations which include non-global color
change.

5.2 Color Transfer Artifact Reduction

Color transfer methods often produce artifacts during the
color matching process. Here we show that our color trans-
fer re-coding method can be applied as an alternative to
reduce some undesirable artifacts (e.g. JPEG compres-
sion block edges). As discussed in Section 4.3, the color
transfer artifacts are empirically “absorbed” in the shad-
ing scale component. Therefore, we can simply filter the
shading scale layer by using the de-noising step described
in Section 4.3. Figure 6 shows our artifact reduction result
where we also compare with a state-of-the-art color trans-
fer artifact reduction method — Transportation Map Reg-
ularization (TMR) [22]. Compared with the original color
transfer output, our processed result better preserves its
contrast and color similarity (e.g. the grass). Meanwhile,
it also removes the undesirable artifacts. And, depending
on an individual user’s personal preference, the result of
TMR could also be preferred since TMR makes the con-
trast of its result more similar to the original input. While
one of our goals is to make the processed colors close to the
original output image’s colors, it is also possible to transfer
the details of the original input image to our result using
the detail transfer method suggested in [5]. The result of

this input detail recovery is shown in Figure 6 (e).

5.3 Color-Robust Image Stitching

The input images for image stitching are not always taken
by the same camera or under the same illumination condi-
tions. The camera’s automatic image processing pipeline
also modifies the colors. Direct image stitching without
color correction may therefore leave imperfections in the fi-
nal blending result. Since the color change between images
of different views are unknown but photo-realistic, our
color transfer approximation model can be applied to ad-
dress this color-inconsistency problem. Figure 7 shows an
example of a color-robust image stitching using our color
transfer re-coding method where 2 input images taken by
2 different cameras and in different illuminations are sup-
plied for image stitching. In our color-robust procedure,
we first register these two images and find the overlap-
ping pixels. With the per-pixel correspondences, we es-
timate a 3D color homography color transfer model that
transfers the colors of the first image to the second im-
age’s. We then apply the estimated color transfer model
to correct the first image. Finally, the corrected first in-
put image and the original second image are supplied to
the image stitching software AutoStitch [2]. Although the
multi-band blending proposed in [2] provides a smooth
transition at the stitching boundary, the color difference
between the two halves is still noticeable (especially for the
sky and tree colors) in the original stitching result. After
our color alignment process, the colors of the two halves
look more homogeneous. We also compare our method
with a local color correction method — Gain Compensa-
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Figure 5: Color Transfer Acceleration. The color transfers

¢) [20] Accelerated by TR [22] d) [20] Accelerated by 3D-H
. | Total Time: 6.63s Total Time: 0.29s

App. Time: 6.39s App. Time: 0.05s
__PSNR: 34.00 PSNR: 32.00

f) [16] Accelerated by TR [22] g) [16] Accelerated by 3D-H

Total Time: 6.46s Total Time: 0.62s
App. Time: 5.89s App. Time: 0.05s
PSNR: 31.20 PSNR: 32.00

[20, 16] of an original image (a) is accelerated by our 3D-H

color transfer re-coding method and a state-of-the-art method Transform Recipe (TR) [10]. The top-right labels in
(b) and (e) show the original color transfer time. The top-right labels in (c-d) and (f-g) show the improved processing
time and the measurements of similarity (PSNR) to the original color transfer output. “App. Time” indicates time

for color transfer approximation only.
tion [2].

6 Conclusion

In this paper, we have shown that a global color transfer
can be approximated by a combination of 3D color space
mapping and mean intensity mapping. Our experiments
show that the proposed color transfer model approximates
well for many photo-realistic color transfer methods as
well as unknown global color change in images. We have
demonstrated three applications for color transfer accel-
eration, color transfer artifact reduction, and color-robust
image stitching.

Appendix

A Quadratic Programming Solu-
tion for Function g()

In this sub-section, we explain the details of solving Equa-
tion 6 using quadratic programming. In our solution, we
try to build a 1000-entry Look-Up-Table (LUT) that ap-
proximates the mean intensity mapping function g(). We
first quantize input mean intensity values z into 1000 uni-
form levels distributed within [0,1]. To construct a de-

terministic one-to-one mean intensity mapping, we have
two issues to address before the actual optimization: 1)
Among the training mean intensity pairs, it is likely that
each unique input mean intensity level z; (where 4 is an
index) is mapped to more than one reference output mean
intensity values. To address this, we define the mean of all
reference output mean intensity values of x; as a unique
reference output mean intensity value y; for z;; 2) Each
unique input level z; may have a different number of (or
none) input training data pairs. To balance data fitness
in the later weighted least-squares optimization, we con-
struct a weight vector w whose element w; is the count of
training data associated with x; which can be 0 if there
is no data associated with the quantization level (see Fig-
ure 1 for an example).

Suppose that the elements of the 1000-vectors x and y
are simultaneously sorted in an ascending order based on
the elements of z (i.e. ¢; < ;41), we can approximate the
minimization by finite differentiation and re-write Equa-



a) Original Output c) Yarovslavski Filter-Based TMR [22]

b) Original Input f) Color Difference betweena & ¢

d) Our Result

) Our Detail Recovered Result

g) Color Difference between a & d h) Color Difference between a & e

Figure 6: Artifact Reduction comparison based on an original image b) and its defective color transfer output a). c)

is an artifact reduction result by a state-of-the-art method

— Transportation Map Regularization (TMR) [22]. d) is

our re-coding result where the artifacts are indirectly smoothed at the layer of shading scales. e) is our alternative
enhancement result which makes its higher frequency detail similar to the original input image. f-g) the CIE 1976
Color Difference AE [24] visualization of c-e) where the average color difference is labeled at the top-right corner. A

lower AE indicates a closer approximation to a).

tion 6 as:
n
argmin <Z w; ||y — g(a:i)||2> +
g() i=1
g (@) — g (@icy) ||
p (; (n—1)"1
s.t. Vie{2,3,.n} g(z;)—g(zi1) >0
0<g(xi_1),9(x;) <1
b 1oy o 9) = g(xio1) _ g(@i) — g(@ia)
where  ¢'(z;) paS— 1)1
n = 10°.

(8)

where n is the number of unique input mean intensity
values z (for training). Further, since the mean intensity
mapping is a positive-to-positive number mapping, we can
define the mean intensity mapping function as g(z;) =
a;x; where oy is a positive scalar of a scalar vector a. We
can then re-write Equation 8 in matrix multiplication form

as:

argmin  (y"diag(w)y — 2y"diag(w)diag(z)a+

e

+ (diag(z))Tdiag(w)(diag(z)a))

+p(Dg2a)T(Dg2a)
s.t. Dy(z)aa>0

0<z<1

11 9)
-1 1
where D, =
-11 (n—1)xn
dyi = (n—1)"'D,diag(z)a

dgz ES (n — 1)_1Dn_16_lg1

In Equation 9, D,, is defined as a (n — 1) X (n) sparse
forward difference matrix (where n is a variable size), O
and 1 are respectively a (n — 1)-zero-vector and a (n — 1)-
one-vector, d;1 and dg» are respectively the 15% order and
274 order finite difference vectors of g(), with respect to
.

Finally, we convert the minimization function of Equa-
tion 9 into a quadratic form:

1

argmin —a"Ma+ fTa

o 2
where M = 2(pT"T + diag(w)diag?(z))
T = (n—1)"*D, 1 D,diag(z)
f = —2yTdiag(w)diag(z)

(10)

where M is a sparse Hessian matrix, f is a linear term.
With the pre-computed M, f and the inequality condi-
tions, we can apply quadratic programming to solve for a.



a) Original Image 1 b) Original Image 2 c¢) Image 1 to Image 2

Figure 7: Color-Robust Image Stitching. a) and b) are the original images taken by 2 different cameras. c) is the color
transferred results from Image 2 to Image 1. d) shows the original image stitching result without color transfer. e).f)
are the image stitching results matched to the colors of Image 2 by using different color alignment algorithms (The
color transition in f) is better, which is especially visible in the sky.).



The mapped one-to-one deterministic output mean inten-
sity value is computed as diag(z)a.

B Implementation Details

We implemented the proposed algorithm in MATLAB. In
ALS (Algorithm 1), we exclude the under-saturated pixels
with zero RGBs as they contain no useful color informa-
tion. Practically, we also limit the maximum iteration
number of ALS to 20, beyond which we do not find any
significant fidelity improvement.
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