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ABSTRACT

Fusing disparity maps from different methods is an useful
technique to get a refined disparity map by leveraging the
complimentary advantage. We present a model for disparity
fusion that uses an adversarial network, which can be trained
without using ground truth disparity data. We input two ini-
tial disparity maps (from the left view) along with auxiliary
information (gradient, left & right intensity image) into the
generator and train the generator to output a refined disparity
map registered on the left view. The refined left disparity map
and left intensity image are used to reconstruct a fake right in-
tensity image. Finally, the fake and real right intensity images
(from the right stereo vision camera) are fed into a discrimi-
nator. The trained network’s architecture is effective for the
fusion task (90 fps on Kitti2015). The accuracy is on par or
even better than the state-of-art supervised methods. A demo
video is available https://youtu.be/XTHOF3kZGsU.

Index Terms— Disparity Fusion, Adversarial network,
Unsupervised, Stereo-stereo fusion, Stereo-lidar fusion.

1. INTRODUCTION

With the popularity of 3D vision, how to get more accurate
disparity (equivalent to depth)1 information is important. Cur-
rently, there are many methods to obtain depth information,
such as active illumination devices (eg: structured light cam-
eras, Time of Flight (ToF) sensors), passive methods (monoc-
ular vision [1], stereo vision [2, 3, 4, 5]) etc. However, none of
these methods are perfect in all scenes. Thus, disparity fusion
from multiple sources is urgently needed, where different data
sources can compensate for the weaknesses of each other.

Recently, different kinds of disparity fusion methods have
emerged in different sub-tasks, such as stereo-ToF fusion ([6,
7, 8]), stereo-stereo fusion ([9]), Lidar-stereo fusion ([10, 11])
and general depth fusion ([12]). For this task, deep-learning
based methods perform much better. However, all of the pre-
vious algorithms are supervised. As far as we know, we are
the first to develop an unsupervised depth fusion method.

Unsupervised disparity fusion is hard because it requires
computing an accurate disparity map without any ground
truth disparity data. Existing unsupervised strategies based

Thanks to TrimBot2020 [EC Grant Agreement No. 688007] for funding.
1depth = focal length*baseline/disparity.

on left and right intensity consistency cannot guarantee a
highly accurate disparity map. For example, Monodepth [1]
treated the left-right intensity consistency error as a global
metric in their cost function and slight intensity changes in
the images influence the global estimation greatly. Here, left-
right intensity consistency is just one of our local refinement
metrics, which increases both global robustness and accuracy.
Previous work, such as Sdf-GAN [12], achieves top disparity
fusion performance but it needs ground truth disparity data to
train. By combining the global disparity initialization with lo-
cal disparity refinement, we can achieve unsupervised fusion.
Thus, the proposed work is different from previous work.

In this paper, a fully unsupervised disparity fusion frame-
work (Figure 1) is proposed based on Generative Adversarial
Network (GAN [13]). The generator is trained to output a re-
fined disparity value close to the weighted sum of the dispar-
ity inputs from global initialization (Equation 1). Then, three
refinement principles are adopted to refine the depth. (1) The
reconstructed intensity error between the reconstructed and
real right intensity image is minimized (Equation 2). (2) The
similarities between the reconstructed and real right image in
different receptive fields are maximized (Equation 3). (3) The
refined disparity map is smoothed based on the correspond-
ing intensity image space (Equation 4). An efficient network
structure has been designed (See supplementary material).

Section 2 presents the methodology. Section 3 presents
the experimental results. Section 4 presents the conclusion.

Contributions: We have:

1. An efficient unsupervised disparity fusion strategy by
combining global disparity initialization and local re-
finement

2. An indirect method using a GAN to force the disparity
Markov Random Field in the refined disparity map to
be close to that in the real disparity map

3. An unsupervised end-to-end uncertainty-based pipeline
that can fuse registered disparity maps from different
sources

2. METHOD

First the pipeline is proposed and then the cost functions for
the networks are presented.

https://youtu.be/XTHOF3kZGsU
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Fig. 1: Our target output is refined disparity map. The inputs to the generator (G) are the initial disparity maps in the left view
and auxiliary information (left intensity image, right intensity image, right gradient). The gradient of the left view is calculated
from the left image directly. The input to discriminator (D) is the combination of the auxiliary information, the initial disparity
inputs and the reconstructed/real right image. The generator produces a refined disparity map in the left view. The refined left
disparity map and left image are used to reconstruct the right image. The discriminator discriminates whether the input is fake
(reconstructed right image) or true (right image). The images in each block come from a synthetic garden dataset.

2.1. Fusion Pipeline

The whole process based on GAN [13] is shown in Figure 1.

2.2. Objective Function

The goal is to get a refined disparity map from initial disparity
maps and auxiliary image information. The main ideas are:
• The disparity fusion has initial disparity inputs (unlike

stereo vision etc.). The initial disparity maps should be used
to provide the global initial value of the refined disparity map
first. That is, the refined disparity map from the generator is
encouraged to be similar to the input disparities (Equation 1).
• The initialization based on Equation 1 provides a coarse

disparity map. Refinement will be realized by three local de-
cision strategies. We reconstruct the right intensity image
from the left intensity image and disparity map. Thus, the
accuracy of the refined disparity map can be assessed indi-
rectly by comparing the reconstructed right image and real
right image. We design the L1 intensity error based on the
gradient in Equation 2 and describe the distance between the
Markov Random Field of the refined disparity map and real
disparity distribution in Equation 3 indirectly. We also design
a disparity smoothness term to reduce the outliers and noise
in Equation 4 using the gradient.

More specifically, our cost functions are:
(1) A constraint that the output should be close to the

weighted sum of the initial disparity inputs:

Lc(G) = E
u∈x̃,us∈x̄s,x̃∼PG,s=1..Z

[wus ||x̃u − x̄us ||1] (1)

where x̄us
is the disparity value of a pixel us in the sth ini-

tial disparity map x̄s (In Fig. 1, it is ‘disparity1’ or ‘dispar-

ity2’) corresponding to pixel u in the refined disparity map x̃
(In Fig. 1, it is ‘Refined Disparity’). PG represents the dis-
tribution of the samples x̃ from the generator and x̃u is the
disparity value of pixel u. || • ||1 is L1 distance. wus

is the
confidence of the pixel us. If no prior knowledge is available,
wus

= 1/Z for all pixels where Z is the number of initial
disparity inputs.

(2) To encourage disparity estimates at edges to be more
accurate, we incorporate gradient information as a weight into
the L1 distance to make the disparity edges shaper:

LL1
(G) = E

Ir∼PR,Ĩr∼P ′
G

[exp(α|∇(Ir)|)||Ir − Ĩr||1] (2)

where Ir is the real right intensity image from the right cam-
era (In Fig. 1, it is ‘right image’) and Ĩr is the reconstructed
right intensity image from the generator (In Fig. 1, it is ‘re-
constructed right image’). ∇(Ir) is the gradient of the gray-
scale image in the right view (In Fig. 1, it is ‘right gradient’
using the Sobel operator). α ≥ 0 weights the gradient value.
P ′G represents the distribution of the samples Ĩr reconstructed
from the left intensity image and corresponding refined dis-
parity map. PR represents the distribution of the samples Ir
from the right camera in the stereo vision setting. The goal is
to encourage disparity estimates at intensity edges (larger gra-
dients) to be more accurate with less reconstructed intensity
error.

(3) Unlike [12], we input the reconstructed right image
and real right image into the discriminator, which gives in-
direct feedback about whether the refined disparity distribu-
tion is close to the ground truth. By making the discriminator
output the probabilities at different receptive fields or scales
[please refer to Di in the discriminator network architecture



in the supplementary material. i = 1..M and M = 5 is the
number of the scales], the generator will be forced to make
the disparity distribution in the refined disparity map be close
to the real distribution. To alleviate training difficulties, we
adopt the Improved WGAN loss function [14].

Lwgan(G,Di) = E
Ĩr∼P ′

G

[Di(Ĩr)]− E
Ir∼PR

[Di(Ir)]

+λ E
Îr∼PÎr

[(||∇Îr
Di(Îr)||2 − 1)2]

(3)

where Di is the probability at the ith scale that the input im-
age patch to the discriminator is from the real distribution. λ
is the penalty coefficient (λ = 0.0001 is set). Îr is the random
sample and PÎr

is its corresponding distribution. (For details,
see [14]).

(4) To suppress outliers and noise in the refined dispar-
ity map, a gradient-based smoothness term is used to propa-
gate more accurate disparity values to the areas with similar
color by the assumption that the disparity in the neighborhood
should be similar if the intensity is similar:

Lsm(G) = E
u∈x̃,v∈N(u),x̃∼PG

[exp(γ−β|∇(Il)uv|)||x̃u−x̃v||1]

(4)
where x̃u is the disparity value of a pixel u in the refined
disparity map x̃ from the generator. x̃v is the disparity value
of a pixel v in the neighborhood N(u) of pixel u. ∇(Il)uv is
the gradient in the left intensity image from pixel u to pixel
v. It is calculated from the left intensity image considering
the diagonal, left and right directions. β ≥ 0 and γ ≥ 0 are
responsible for how close the disparities are if the intensities
in the neighborhood are similar.

(5) Finally, our final object function is:

G∗ = arg min
G

max
Di

[θ1LL1
(G) + θ2Lsm(G) + θ3Lc(G)

− θ4

M∑
i=1

Lwgan(G,Di)]

(5)

where θ1, θ2, θ3, θ4 are the weights for the different loss
terms. There are no ground truth terms in Equation 1-5. Thus,
the training is unsupervised.

3. EXPERIMENTAL RESULTS

The network is implemented using TensorFlow [16] and
trained & tested using an Intel Core i7-7820HK processor
(quad-core, 8MB cache, up to 4.4GHZ) and Nvidia Geforce
GTX 1080Ti. In the following experiments, the inputs to the
neural network were first normalized to [-1, 1]. After that, the
input was flipped vertically with a 50% chance to double the
number of training samples. Weights of all the neurons were
initialized from a Gaussian distribution (standard deviation

0.02, mean 0). We trained each model for 500 epochs using
disparity values calculated by different stereo algorithms on
Kitti2015, with a batch size 4 using Adam [17] with a mo-
mentum of 0.5. The learning rate is changed from 0.005 to
0.0001 gradually. The method in [13] is used to optimize the
generator and discriminator by alternating between one step
on the discriminator and then one step on the generator. We
set the parameters θ1, θ2, θ3, θ4 in Equation 5 to make those
four terms contribute differently to the energy function in
the training process. If the difference of two initial disparity
values on the same pixel is small (<0.3 pixels), we assign a
large value (0.99) to their confidence weight in Equation 1. If
not, we set them uniformly (1/Z). Besides the confidence es-
timation above, we also adopted some empirical confidence
estimation for the disparity inputs in the following experi-
ments (For more details, see the corresponding experiments).
We used the L1 distance between the estimated value and
ground truth as the error. The unit is pixels.

Table 1: Test Time and Training Parameter Setting

Experiment with Real Dataset (Kitti2015)
Para. Test time θ1 θ2 θ3 θ4 α β γ
Value 0.011

(s/frame)
1 20 to

1
0.0001
to 1K

1 3 1 to
3000

5

3.1. Stereo-stereo Fusion

We tested our network on the real Kitti2015 dataset, which
used a Velodyne HDL-64E Lidar scanner to get the sparse
ground truth and a 1242*375 resolution stereo camera to
get stereo image pairs. The training dataset contains 400
unlabelled and labelled samples. There are another 400 sam-
ples in the test dataset. 50 samples from ‘000000 10.png’
to ‘000049 10.png’ in the Kitti2015 training dataset were
used as our test dataset. 50 samples from ‘000050 50.png’ to
‘000099 10.png’ in the Kitti2015 training dataset were used
as our validation dataset. The rest 700 samples were used
as our training set. By flipping the training samples verti-
cally, we doubled the number of training samples. We used
the state-of-art stereo vision algorithm PSMNet [2] as one
of our inputs. We used their released pre-trained model2 on
the Kitti2015 dataset to get the disparity maps. A traditional
stereo vision algorithm SGM [5] is used as the second input
to the network. Because we do not care about the sparsity
of SGM, we set their parameters to produce more reliable
disparity maps (0.78 pixels3). Thus, we assign big confidence
values (0.8) to its valid pixels and 0 to its invalid pixels’
confidences. More specifically, we used the implementa-
tion (‘disparity’ function) from Matlab2016b. The relevant

2PSMNet [2]: https://github.com/JiaRenChang/PSMNet
3This is a more accurate disparity but is calculated only using more reli-

able pixels. On average only 40% of the ground truth pixels are used. If we
use all the valid ground truth to calculate its error, it is 22.13 pixels.

https://github.com/JiaRenChang/PSMNet
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(a) Ground Truth
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(b) Input Disparity 1: SGM [5]
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(c) Input Disparity 2: PSMNet [2]
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(d) Refined Disparity
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(e) Scene
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(f) Input Disparity 1 Error: SGM [5]
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(g) Input Disparity 2 Error: PSMNet [2]
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(h) Refined Disparity Error

Fig. 2: We trained the proposed network to fuse the initial disparity maps (b), (c) into a refined disparity map (d) for the same
scene (e) from the Kitti2015 dataset [15]. (a) is the corresponding ground truth. (f), (g), (h) are the errors of (b), (c), (d). The
colorbars (from blue to white) corresponds to 0 - 1.6 pixels and the lighter pixel have bigger error in (f), (g), (h).

parameters are: ’DisparityRange’ [0, 160], ‘BlockSize’ 5,
‘ContrastThreshold’ 0.99, ‘UniquenessThreshold’ 70, ‘Dis-
tanceThreshold’ 2. The settings of the neural network are
shown in Table 1 (For more details, see Table 1 in the sup-
plementary material). We compared the algorithm with the
state-of-art technique [12, 9] in stereo-stereo fusion and also
stereo vision inputs [2, 5]. We compared our method with
the supervised method in Sdf-GAN [12]. We trained Sdf-
GAN on a synthetic garden dataset first and then fine-tuned
the pre-trained model on the Kitti2015. 150 labeled sam-
ples from ‘00050 10.png’ to ‘000199 10.png’ in the initial
training dataset were used for Sdf-GAN fine-tuning. The
performance of the proposed algorithm (0.83 pixels) (See
Table 2) is better than Sdf-GAN (1.17 pixels). The reason is
because Sdf-GAN does not generalize well in the real envi-
ronment. However, the proposed algorithm is less affected by
such problems because the unsupervised method can use the
unlabelled data directly.

For qualitative results, see Figure 2. Compared with SGM
and PSMNet, the fused results are more dense, accurate and
preserve the details better (eg: tree). But it fails on the sky
because we treated the pixels (disparity = 0) as invalid (con-
fidence = 0) in SGM. However, the disparity values in the
sky area from PSMNet are all larger than 0 (confidence >0).
So, the PSMNet misleads the network to adopt their disparity
value as the initialization. Thus, the wrong confidence mea-
surement can bring big error to the refined disparity map. It
can be solved by adding more cues, such as semantic mean-
ing, to make the confidence measurements more accurate.

Table 2: Average error (pixel) on Kitti2015

Source Error Fused Algorithm Error
SGM
[5]

PSMNet
[2]

DSF
[9]

Sdf-GAN
[12]

Ours

0.78 1.22 1.20 1.17 0.83

3.2. Additional Experiments

We have also done ablation study experiments and Stereo-
Lidar fusion. The experimental results show our superior-
ity again. For more details, see the supplementary material
( https://arxiv.org/abs/1904.10044 ).

4. CONCLUSION

We proposed an unsupervised method to fuse the disparity
estimates of multiple state-of-art disparity/depth algorithms.
The experiments have shown the effectiveness of the energy
function design based on multiple cues and the efficiency of
the network structure. The proposed network can be gener-
alized to other fusion tasks based on left-right image con-
sistency (In this paper, we only did stereo-stereo and stereo-
lidar fusion). The method proposed in this paper reduces the
cost of acquiring labelled data necessary for use in a super-
vised method. Given the algorithm’s low computation cost,
the combination of the proposed method and existing depth-
acquisition algorithms is a good solution to obtaining higher
accuracy depth maps. Future work will investigate improved
methods for setting the confidence values based on the initial
disparity values and type of sensor.

https://arxiv.org/abs/1904.10044
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