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Abstract

Face biometrics have achieved remarkable performance over the
past decades, but unexpected spoofing of the static faces poses a threat
to information security. There is an increasing demand for stable and
discriminative biological modalities which are hard to be mimicked and
deceived. Speech-driven 3D facial motion is a distinctive and mea-
surable behavior-signature that is promising for biometrics. In this
paper, we propose a novel 3D behaviometrics framework based on a
“3D visual passcode” derived from speech-driven 3D facial dynamics.
The 3D facial dynamics are jointly represented by 3D-keypoint-based
measurements and 3D shape patch features, extracted from both static
and speech-driven dynamic regions. An ensemble of subject-specific
classifiers are then trained over selected discriminative features, which
allows for a discriminant speech-driven 3D facial dynamics representa-
tion. We construct the first publicly available Speech-driven 3D Facial
Motion dataset (S3DFM) that includes 2D-3D face video plus audio
samples from 77 participants. The experimental results on the S3DFM
show that the proposed pipeline achieves a face identification rate of
96.1%. Detailed discussions are presented, concerning anti-spoofing,
head pose variation, video frame rate, and applicability cases. We also
give comparison with other baselines on “deep” and “shallow” 2D face
features.
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1 Introduction

Human faces are a discriminative biological representation for identities.
Thus, face biometrics have been widely applied in access control and in-
formation security. Compared with traditional token or knowledge based
information protection, human faces are impossible to be forgotten. Com-
pared with other bio-modalities such as fingerprints, palmprints, and DNA,
face biometrics are non-contact and non-invasive.

Over the past decades, 2D face biometrics have had great success, which
benefits from rich 2D image representations [1, 2]. However, common weak-
nesses of 2D face biometrics are high sensitivity to the application conditions,
e.g. illumination, shadows, facial pose, and appearance (makeup, complex-
ion, aging, etc). With the popularity of various 3D sensors, 3D face bio-
metrics have gained increasing attention. The most prominent advantages
of 3D data are immunity to texture-related variations and pose-invariance,
which also allow for fine-level recognition. Apart from the data modality,
anti-spoofing is another significant property of biometrics algorithms. Due
to the openness of social networking, static face data is easily intercepted and
misused, which degrades the reliability of biometric systems. Since 3D facial
dynamics contain extra informative and discriminative power for character-
izing individuals, it is a promising bio-modality for enhancing information
security.

In this paper, we present person recognition with a 3D individual-specific
bio-modality, which is less likely to be deceived or mimicked and is robust
against head pose variations. We propose a novel behaviometric method
using speech-driven 3D facial dynamics as a “3D visual passcode”. The
core merits of the “3D visual passcode” are two-fold. Firstly, the 3D bio-
modality is a cooperative and text-constrained behavior generated from a
human speaking a real passcode. In comparison to spontaneous facial ex-
pressions, it is more repeatable and possesses the inherent advantages of
3D data. Secondly, compared with static faces, it is relatively tough to be
mimicked and deceived due to being person specific and distinctive. The pro-
posed idea can be generally applied in any biometric system where 3D video
scanners are installed facing users. Also, our framework and its speaking-
dynamics features can be generalized to any spoken passcodes (set by users)
and is invariant to speaking speed, which in turn means that the uniqueness
of the “3D visual passcode” originates from both the subject-specific facial
motion and the privacy of a passcode.
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The properties mentioned above of the proposed “3D visual passcode”
raise 3 main sub-problems that will be investigated and discussed in this pa-
per. (1) Repeatability: when a subject speaks the same passcode at different
times, the “3D visual passcode” should be consistent. (2) Distinctiveness:
even if different subjects speak the same passcode, the “3D visual passcode”
should be distinctive or subject-specific. (3) Anti-spoofing: the “3D visual
passcode” should be difficult to be mimicked and fabricated by others.

The contributions of the paper are:
• A behaviometrics algorithm using 3D speech-driven dynamic faces (Sec-

tion 4.1).
• The first publicly available Speech-driven 3D Facial Motion dataset –

S3DFM1 (Section 3). The dataset includes of over 1000 samples from 77
participants. Each sample consists of a one second 3D point cloud sequence
plus a pixel-wise registered 2D intensity sequence captured at 500 frames per
second, and a synchronized audio sequence. Note that the proposed dataset
is the largest known dataset based on a speech-driven 3D facial motion.
The new dataset can be generally used for various speech-driven recogni-
tion research, such as identity recognition, gender/age estimation, liveness
detection, etc.

The experiments (Section 5) demonstrate the power of our approach. We
even made the task more difficult by asking all the participants to use the
same passcode, and still achieved 740 correct identifications out of 770 trials
(96.1%) with 77 participants. A few important abbreviations are listed in
Table 1 below.

Table 1: Abbreviations of a few important items
Item Abbr. Item Abbr.
Facial Landmark FLM Cumulative Match Characteristic CMC
Principal Curvature PC Deep Neural Network DNN
Speech-driven 3D Facial Motion Dataset S3DFM

2 Related works

This section briefly reviews relevant work on 3D face behaviometrics and
3D dynamic face datasets. We know there are numerous topics related with

1http://groups.inf.ed.ac.uk/trimbot2020/DYNAMICFACES/
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our work, but here we only focus on the closest topics below. To the best
of our knowledge, the new dataset (S3DFM) is the first publicly available
speech-driven 3D dynamic face dataset in the community.

Table 2: Summary of existing 3D dynamic face datasets
Dataset Motion Type Sequences Subjects Sensor / Frame Rate (fps) Public Year

Chang et al. [3] 6 expressions 36 6 NTSC camera/projector sensor / 30 N 2005

BU-4DFE [4] 6 expressions 606 101 DI3D triple cameras / 25 Y 2008

BP4D-Spontaneous [5] 8 expressions - 41 DI3D triple cameras / 25 Y 2013

VT-KFER [6] 6 expressions 1988 32 Kinect 1.0 Y 2015

D3DFACS [6] 19 single AUs + 97 combined AUs 519 10 3DMD 3D stereo sensor / 60 Y 2011

Benedikt et al. [7] expressions, AUs, reading 9 words 606 94 3DMD Face Dynamic System / 48 N 2010

Hi4D-ADSIP [8] 14 articulations 3360 80 DI3D triple cameras / 25 Y 2011

Ours: S3DFM
single-dynamics(77 persons): repeated one passcode 10 times;

dual-dynamics(26 persons): speaking with head moving
770 + 260 77 + 26 DI4D stereo video sensor / 500 Y 2019

2.1 From 3D face biometrics to behaviometrics

2D face recognition algorithms are usually based on rich texture informa-
tion. A lot of newly developed texture and image representations [1, 2, 9] are
promising for the task of face recognition. 3D face recognition benefits from
using real 3D geometric information that underpins the properties of pose
invariance and illumination invariance, etc. Thus, 3D face recognition is an
active topic in biometrics. The majority of existing approaches are based
on hand-crafted features [10, 11] or 3D Morphable Model (3DMM) fitting
[12, 13]. The low-level approaches based on hand-crafted features have ex-
plicable descriptiveness and are powerful enough to handle normal scales of
data, but they usually depend on algorithmic operations with a high com-
plexity. The 3DMM-based approaches use parametric face representation
but also suffer from a high computation cost from model fitting and opti-
mization. Recently, data-driven-based approaches via end-to-end learning
models have been used for 3D face biometrics. Kim et al. [14] proposed
a 3D face biometrics approach based on transfer learning, which utilizes a
convolutional neural network (CNN) pre-trained on 2D intensity images to
induce a fine-tuned CNN model specialized for 3D data representation. The
method avoids training a CNN from scratch using a large dataset of 3D facial
scans. All of the above approaches are based on single face scans, without
dynamic information.
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Neurophysiological research demonstrates that dynamic information en-
hances visual perception by conveying more discriminative information [15].
The research establishes a theoretical basis for face behaviometrics [16], in-
cluding identity, gender, age, and ethnicity estimation. Here, we separate
facial dynamics as speech-driven and non-speech related. Earlier works, e.g.
[17] extracted dynamic visual features from 2D lip motions to enhance ac-
cess security. [18, 19] further combine 2D lip motion from an utterance with
audio information for speaker recognition. For non-speech related facial dy-
namics, Zafeiriou et al. [20] proposed that facial deformation in spontaneous
smile/laughter is useful in behaviometrics, although it is difficult to produce
genuine expressions on demand. Dantcheva et al. [21] investigated how
dynamic features from smiles encrypt gender evidence and proposed Smile-
Dynamics for gender estimation. All of the above behaviometric methods
are based on 2D intensity sequences without 3D geometry or shape infor-
mation. For 3D face behaviometrics, Benedikt et al. [22, 7] compared the
uniqueness and permanence of 3D dynamic faces performing short verbal
or nonverbal motions (facial expressions), and concluded that verbal mo-
tions are more repeatable and reliable for biometrics. They thus proposed
a face behaviometrics algorithm that quantizes 3D facial motions using dy-
namic eigen-coefficients of a PCA-based 3D face morphable model, with a
matching algorithm based on weighted dynamic time warping (WDTW). In
summary, 3D face behaviormetrics is a promising yet under-explored topic.

2.2 3D facial dynamics representation

Most existing 3D facial dynamics research focuses on 3D dynamic facial ex-
pressions [23]. The pioneers of investigating facial dynamics extracted fa-
cial action units (AU) of six spontaneous expressions and established the
well-known Facial Action Coding System (FACS) [24]. The 3D facial dy-
namics representation can be categorized into point-based and part-based
methods. The point-based methods mainly contain keypoint-tracking-based
local dynamics representations [25, 26] and dense-point-based global dynam-
ics representations, e.g. Facial Level Curve [27], Free-Form Deformation [28],
LBP-TOP on 3D flow matrices [29], Dense Scalar Field on radial curves [30].
The part-based methods contain time-varying 3D shape index descriptors
[31], curvature-based spatio-temporal 4D facial features - Nebula Feature
[32], 3D discrete cosine transform based spatio-temporal features [33], and
ST-GeoTopo+ descriptors [34]. Although both facial expression and identity
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recognition focus on 3D dynamic face information, the former investigates
the discriminability of different non-verbal motions, while the latter focuses
on the discriminability and repeatability of different subjects in one fixed 3D
facial motion class.

2.3 3D dynamic face datasets

Existing 3D dynamic face datasets include 3D dynamic facial expression
datasets (spontaneous/non-spontaneous) [3, 4, 5, 6], 3D facial AU datasets
[35], and comprehensive 3D facial motion datasets [7, 8]. Detailed proper-
ties can be seen in Table 2. The first 3D dynamic facial expression dataset
[3] only contains 6 subjects performing 6 basic expressions, without public
availability. The most popular 3D dynamic face dataset is BU-4DFE dataset
[4] (based on the BU-3DFE dataset [36]) from Binghamton University. The
VT-KFER [6] dataset collects RGBD+time data of 7 annotated expressions,
captured by Kinect sensors. In terms of AU datasets, D3DFACS [35] focuses
on facial AUs for dynamic morphable facial modeling or expression recogni-
tion. BP4D-Spontaneous also utilizes FACS to label frame-level ground truth
of facial AUs. All of the above 3D dynamic face datasets only include 3D
facial expressions. Hi4D-ADSIP dataset [8] is a high-resolution 3D dynamic
facial articulation database used for both expression recognition and clinical
diagnosis of facial dysfunctions. The speech-driven dynamic face samples are
not enough for the behaviometrics proposed here.

In addition, our new dataset also has a relation with audio-visual (AV)
dual-modality dataset. Existing AV datasets are collected at various scenes,
e.g. meetings, long-time network TV [37], indoor or outdoor scenes with
varying lighting [38]. There are also some audio-visual corpora with sentences
or dialogs, such as VidTIMIT [39], AusTalk [40], MOBIO [41]. However,
most of the visual modality are based on 2D intensity data. The IEMOCAP
dataset [42] involves 3D facial landmarks, but the landmarks were obtained
via physical markers attached to the faces of participants. Additionally,
the IEMOCAP dataset focuses on emotions elicited from sessions instead of
speaking behavior itself.
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3 New dataset: Speech-driven 3D Facial Mo-

tion Dataset (S3DFM)

To the best of our knowledge, there is no publicly available dataset that
focuses on speech-driven 3D facial dynamics across different subjects. We
constructed the first public one – S3DFM that would contribute to research
on behaviometrics, gender estimation, age estimation, etc. The dataset also
includes visual-audio data, where the participant is speaking with his/her
head moving randomly. Additionally, we provide high temporal resolution
and 10-fold repeatable samples, which are not available in existing datasets.
The dataset can be found at:

http://groups.inf.ed.ac.uk/trimbot2020/DYNAMICFACES
The S3DFM dataset contains 2 parts: Frontal Pose (FP) and Varying

Pose (VP). There are 1030 sets of samples (515,000 2D images + 3D models)
in total. Each set of sample consists of a 2D dynamic face video, a 3D
dynamic face video, and a synchronized audio stream. In the FP part, there
are 770 sets of samples from 77 participants, i.e. 10 sets of samples from
each of 77 participants. The current 77 participants are from more than 20
nationalities, different ages, genders, ethnicities, etc. In detail, there are 50
males and 27 females. 31 participants are native-Chinese speakers and the
rest (46 subjects) are non-native Chinese speakers. The ages range from 16 to
73 years old. The majority of the participants are students and staff from the
School of Informatics at the University of Edinburgh. In the VP part, there
are 26 participants. Each participant also provides 10 2D-3D dynamic face
sequences with synchronized audio sequences. More information is detailed
below.

3.1 Data acquisition

The data acquisition device is a high frame rate 3D video sensor (500 fps)
from DI4D Ltd [43], as shown in Fig.1. The sensor is a binocular stereo
vision system that mainly consists of two infrared intensity cameras. In the
acquisition of frontal face data (FP), each participant was asked to sponta-
neously repeat a short passcode − “ni’hao” (Chinese for “hello”) 10 times in
front of the sensor, with the head naturally looking straight at the sensor.
In the acquisition of varying head pose data (VP), each participant spon-
taneously repeated the same passcode while moving his/her head randomly.
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Figure 1: Setup for capturing dynamic face data: A1&A2 are infrared sources
to improve brightness; B is a stereo video sensor from DI4D Ltd; C is the
data acquisition and reconstruction software.

For each trial, we captured a pair of 2D intensity sequences using the 3D
video sensor and a synchronized audio sequence using a microphone. The
synchronized audio was not used in the validation algorithm here, but it was
used in another 3D video-audio recognition related research [44].

Note that although we used the same passcode across all the trials, the
algorithm we proposed below is not specific to the passcode “ni’hao” and can
be generally applied to the facial dynamics when speaking any passcodes. In
real applications, a client would choose a private passcode. The participant
recruitment and data processing were conducting over 1 year, as we prefer to
include participants with diverse characteristics. Additionally, since the video
and audio acquisition devices are not integrated, manual synchronization is
a time-consuming procedure as well.

3.2 Data processing

In the postprocessing, 3D point cloud sequences were reconstructed from the
pairwise 2D intensity sequences using DI4D’s commercial software with addi-
tional spatial smoothing and temporal filtering. Video-audio synchronization
was achieved using a camera flash that can be “seen” by the cameras and be
“heard” by the microphone simultaneously. Finally, each set of data consists
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Figure 2: (a) 4 representative 3D frames in a 3D sequence; (b) pixel-wise
registered 2D intensity frames; (c) synchronized audio sequence.

of a 3D video and a pixel-wise registered intensity video, plus a synchronized
16kHz audio “passcode”. The 1 second video sequence contains 500 frames.
The resolutions of the 3D and intensity frames are 600 × 600 points and
600 × 600 pixels, respectively. (The 3D frames were downsampled from the
original resolution of 1200 × 1200 pixels in order to improve the processing
efficiency and to reduce 3D noise). Example data is shown in Fig.2.

4 Proposed behaviometrics

4.1 Overview

The proposed system framework has two main parts, as illustrated in Fig.3:
(1) speech-driven 3D facial dynamics representation; (2) offline database
training and online behaviometrics. We overview the proposed method here
and give more details in Section 4.2.

For a participant who is speaking a short phrase, the raw dynamic face
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sequence contains a 2D intensity sequence and a pixel-wise registered 3D
point cloud sequence. From the 2D intensity sequence, 2D facial landmark
(FLM) detection and tracking [45] are performed to obtain consecutive 2D
FLMs. More details can be seen in Fig.4. Meanwhile, from the corresponding
3D point cloud sequence, 4D spatio-temporal fusion guided by 2D intensity
tracking [46] is performed to reduce 3D spatial noise and temporal fluctu-
ations. Because the 2D and 3D images are registered, the 2D FLMs also
specify the corresponding 3D FLMs. i.e., using the 2D FLM sequence. Both
a pixel-wise registered 3D FLM sequence and 3D mesh patches constructed
around each 3D FLM can be extracted from the denoised 3D sequence.

Subsequently, we construct keypoint-based signatures using pre-defined
inter-FLM distances and local-shape-based signatures using the 3D mesh
patches. More details are given in Table 3 and Section 4.2. The aggregation
of statistics of the signatures gives a compact feature vector that encodes
both local geometrical shape information and topological structure infor-
mation of the 3D dynamic face. Then, all the components in the feature
vector are normalized using a multi-dimensional Gaussian model fitted to
the whole feature space, resulting in a scale-invariant 3D dynamic face fea-
ture descriptor. To reduce the influence of noisy components and improve
learning efficiency, discriminative components in the full feature descriptor
are selected according to a feature separability metric.

Using the proposed 3D facial dynamics representation, each speaker’s 3D
facial motion is encoded as a feature descriptor in the offline stage. We
employ subject-specific linear discriminant analysis to train an ensemble of
linear classifiers over the normalized feature space. Note that each classifier
in the ensemble can be regarded as a high-level 3D facial dynamics represen-
tation of the subject. We collect all the ensembles in a pre-trained database.
In the online stage, a test probe represented by its feature descriptor is com-
pared to the database. The classification with the highest confidence score
determines the identity of the tested speaker. We now explain the approach
in more detail.

4.2 Speech-driven 3D facial dynamics representation

The proposed hierarchical representation of speech-driven 3D facial dynamics
consists of two levels: (1) mid-level representation with part-based 3D dy-
namic facial primitives; (2) high-level representation with 3D discriminative
facial features.
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Figure 3: System framework of the proposed behaviometrics. The top box
shows the process for extracting the descriptive features from the 2D/3D
video. FLMs are firstly detected in the 2D video frames, and then the 3D
position of these FLMs are extracted from the registered 3D point cloud
(after noise reduction based on fusing multiple consecutive frames). The
distances between the static and dynamic FLMs, and the principal curva-
tures at selected FLMs are extracted for each frame and then aggregated
over time as meta-signatures. For each meta-signature, statistical values en-
coding the static or dynamic property of the speaking face are extracted as
meta-features. Finally, the aggregated features are normalized and the best
performing subset is selected. The bottom box illustrates how the descriptors
extracted using the process in the top box are used for classifier training and
then recognition.
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Figure 4: (a) Static facial landmarks (blue) and dynamic facial landmarks
(red) on a dynamic face. Number-marked points are facial landmarks of
interest; (b) corresponding 3D facial landmarks.

4.2.1 3D speaking face primitives

A speaking face can be separated into static regions R (eyes & nose) and
dynamic regions Q (mouth & chin) using 70 FLMs, as shown in Fig.4. We
detect the FLMs using an ensemble of regression trees [45]. For each 3D
frame t, we select 10 static 3D FLMs of interest {pt

n ∈ R3}(n = 1 · · · 10)
from the region R and 4 dynamic 3D FLMs {qt

m ∈ R3}(m = 1 · · · 4) from
the region Q, as the numbers marked in Fig.4. The selected 3D FLMs are
used for constructing 10 dynamic and 9 static 3D facial primitives of the
speaking face. The meanings and mathematical labels of the defined 3D
facial primitives are listed in Table 3.

For each facial primitive, all the samples across a whole sequence form a
facial signature. The speaking face results in 4 kinds of signatures, including 5
static FLM distance signatures SDa = {SDt

a}(a = 1 · · · 5), 2 dynamic FLM
distance signatures DDb = {DDt

b}(b = 1, 2), 4 static Principal Curvature
(PC) signatures SCc = {SCt

c}(c = 1 · · · 4), and 8 dynamic PC signatures
DCd = {DCt

d}(d = 1 · · · 8). The PCs of a FLM are computed from the
neighboring 3D mesh patch St(u, v) (with general parameters u and v) of
the FLM. As the part-based facial primitives/signatures only represent local
properties of the speaking face, we regard them as the mid-level representa-
tion of the 3D dynamic face.

We calculate a summary statistical feature from each facial signature.
For a static facial signature SDa or SCc, the feature is f0(x). For a dynamic
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facial signature DDb or DCd, the features are f1(x) and f2(x), as

feature =


f0(x)= 1

n

∑
t
xt if x = SDaorSCc

f1(x) = max
t

(xt)− 1
n

∑
t
xt

f2(x) = 1
n

∑
t
xt −min

t
(xt)

if x = DDborDCd

(1)

Combining all the statistical features, a 3D dynamic face is then repre-
sented as a 29D feature vector:

f =
[waf0(SDa), wbf1(DDb), wbf2(DDb),
wcf0(SCc), wdf1(DCd), wdf2(DCd)]

(2)

where wa(a = 1 · · · 5), wb(b = 1, 2), wc(c = 1 · · · 4), wd(d = 1 · · · 8) are binary
weights assigned to each feature candidate. The weights are determined by
discriminative feature selection (detailed in the next section).

4.2.2 Learned representation of 3D speaking face

The values of the raw features are normalized for use during feature selection,
training, and classification. The feature space {f} of the 4D face features over
all training samples is fitted to a Gaussian model with the mean µ0 and the
covariance Σ0. The raw feature vector f is normalized and decorrelated using
a whitening transformation:

g = (f − µ0)Σ0
−1/2 (3)

All the raw features are transformed into the whitened space.
To avoid noisy and less-distinctive features degrading the stability and

discriminability of the 3D facial dynamics representation, a discriminative
feature selection strategy over the normalized feature vector {g} is used to
remove less useful feature components. Since the speech-driven 3D facial
motion is unique for each subject, we perform discriminative feature selection
individually for each subject, producing a subject-specific discriminative 3D
facial dynamics representation.

In detail, we measure the separability of the subjects represented as full
feature descriptors using the ratio of intra-subject scatter and inter-subject
scatter. In the selection process, we iteratively search for the feature com-
ponents among the full feature vector, resulting in the smallest intra-subject
scatter and the largest inter-subject scatter at the same time. The selected
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Table 3: Speech-driven 3D dynamic face primitives

10 dynamic primitives in frame t

Mouth width DDt
1 Distance between FLM 11 and 12

Mouth opening DDt
2 Distance between FLM 13 and 14

Left mouth corner DCt
1, DC

t
2 Max and Min PC of FLM 11

Right mouth corner DCt
3, DC

t
4 Max and Min PC of FLM 12

Upper lip DCt
5, DC

t
6 Max and Min PC of FLM 13

Lower lip DCt
7, DC

t
8 Max and Min PC of FLM 14

9 static primitives in frame t

Left eye width SDt
1 Distance between FLM 1 and 3

Right eye width SDt
2 Distance between FLM 4 and 6

L-R eye separation SDt
3 Distance between FLM 2 and 5

Nose length SDt
4 Distance between FLM 7 and 8

Nose width SDt
5 Distance between FLM 9 and 10

Nose bridge SCt
1, SC

t
2 Max and Min PC of FLM 7

Nose tip SCt
3, SC

t
4 Max and Min PC of FLM 8

FLM: Facial Landmark; PC: Principal Curvature.

(See Fig.4 for FLM locations)

feature components are regarded as the most discriminative from the full fea-
ture descriptor for characterizing the subject. Mathematically, we assigned
a binary weight vector ws ∈ {0, 1}29 to each subject s, which minimizes the
objective function as

Ŵ = arg min
W

∑
s

∑
gs

(gs − µs)(gs − µs)
T

(µs − µ)(µs − µ)T
(4)

W = [w1 · · ·ws] aggregates all the subject-specific binary weight vec-
tors ws = [ws1, ws2, · · ·ws29] , gs = [ws1g1, ws2g2, · · ·ws29g29] is the feature
filtered with the binary weights, µs ∈ R29 is the weighted mean of all the
filtered samples of subject s, and here µ ∈ R29 is the weighted mean of all
the filtered samples in the transformed feature space {g}. The numerator
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term represents the intra-subject scatter using the variance of all the sam-
ples of the subject s. i.e., the intra-subject scatter measures the difference
of feature descriptors of the subject s. The denominator term represents the
inter-subject scatter using the Euclidean distance of the subject means. The
objective function of this type of feature selection has a correlation with the
mechanism of linear discriminant analysis (LDA), while the feature space
doesn’t change as in LDA. The discriminative feature selection results in
a more compact feature descriptor whose dimension is the number of the
selected features with wi = 1 for each subject.

In the training stage, we train an ensemble of subject-specific LDAs us-
ing n-fold cross validation. For each subject s, a linear discriminant classifier
(LDA classifier) parameterized as Ls ∈ R29, bs ∈ R is trained using the
training samples from the subject s as positive exemplars and the training
samples of the remaining subjects as negatives. The subject-specific clas-
sification strategy emphasizes discrimination of each subject class from the
competing classes and thus increases the recognition power. It also has a
similarity to the exemplar-SVM [47], although the E-SVM focuses on intra-
class details via an ensemble classifier. The trained model in our classifier
is

y = Lswsg + bs (5)

where g is the discriminative feature descriptor of a training sample.
In the speaker recognition phase, given a probe sample g, we get the

response scores of all the candidate classifiers in the pre-stored dataset. The
class with the highest response score ŷ is selected as the identity label of the
tested participant.

The recognition strategy we use here is consistent with the feature selec-
tion process in terms of the objective mechanism. The parameters of each
classifier are also a learned representation specific to each subject. Compared
with lower-level representations, the learned representation has discriminant
capability with holistic semantic information. Thus, we regard it as the
high-level representation of a 3D speaking face. Overall, each subject s is
represented using a mid-level semantic feature descriptor fs, a discriminabil-
ity index ws and a high-level holistic feature descriptor (Ls, bs).
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5 Results and Discussion

The proposed 3D behaviometrics algorithm was verified on the new database
S3DFM. We first analyze multiple properties of the 3D speaking face sig-
natures (Sec.5.1) and its derived 3D speaking face features (Sec.5.2). The
performance of different 3D face features are compared in Sec.5.3. For refer-
ence, we give the performance of 2D face recognition via deep neural networks
(DNN) (Sec.5.4) and “shallow” features (Sec.5.5), using 2D intensity samples
from the new dataset. We also present discussion on anti-spoofing, head pose
variation, video frame rates, and applicability.

5.1 3D speaking face signatures

We investigate the distinctiveness and repeatability of the 3D face primitives
defined in Table 3. For each sequence, we extracted static and dynamic face
signatures and fitted a line or a curve for each signature.

Examples of static and dynamic face signatures of one subject (Fig.4)
are shown in Fig.5. Qualitatively, the defined static facial signatures SDa

and SCc are stable across the sequence. The dynamic facial signatures are
distinctive for describing the speech-driven 3D facial motion. Quantitatively,
it is supposed that the nose bridge (SC1,SC2) and tip (SC3,SC4) are the
most discriminating static facial primitives in terms of principle curvatures.
The standard deviations of the nose bridge SC1 and tip SC3 are 11.33 and
1.62, respectively. If we assume that the measure range is between -150 and
200, the relative standard deviations of the signatures are 3.23% and 0.46%,
respectively, which demonstrates that the static PC-based facial signatures
are also stable.

Fig.6 shows the repeatability and distinctiveness of the mouth-related
signatures DD1,DD2. The mouth width DD1 and opening DD2 are corre-
lated, thus changing simultaneously when the subject is speaking. The fitted
curves in Fig.6b and 6d show the movement pattern clearly. Fig.6e and 6f
compares 5 example mouth width DD1 and mouth opening DD2 from 5 dif-
ferent subjects, which obviously shows the distinctiveness of the two dynamic
facial signatures across different subjects.
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Figure 5: (a) 7 FLM-distance-based facial signatures; (b) 6 PC-based facial
signatures. The solid lines are the best line or q-spline fits.
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Figure 6: Repeatability & Distinctiveness: (a) 10 instances of mouth width
signature (DD1) from one subject; (b) 10 instances of mouth opening sig-
nature (DD2) from the same subject; (c) 10 fitted mouth width signatures
from the same subject; (d) 10 fitted mouth opening signatures from the same
subject; (e) 5 instances of mouth width signature (DD1) from 5 subjects; (f)
5 instances of mouth opening signature (DD2) from the same 5 subjects.

5.2 Discriminative 3D speaking face features

5.2.1 Similarity evaluation of full features

To quantitatively evaluate the similarities of the features and subjects, we
measured the similarity distances between full feature vectors of the 3D fa-
cial motion using the Mahalanobis distance. Firstly, each participant was
regarded as an independent class and each sequence was represented as a
29D feature vector. We calculated the mean Mahalanobis distance between
each pair of classes. Specifically, for each pair of participants {A, B}, we
computed the average distance between each of the 10 samples from A and
each of the 10 samples from B. The similarity matrix of the 77 classes is
shown in Fig.7a. In addition, regarding the 29 features as 29 independent
classes, we investigate the correlation of each pair of the 29 features over the
770 samples. The correlation matrix of the 29 features is shown in Fig.7b.

In Fig.7a, 76 Mahalanobis distances along the diagonal have the mini-
mum value along the same row or column, which suggests that, on average,
98.7% of the 77 subjects are well represented by the proposed feature set.
Fig.7b shows that the diagonal values are maximum among the correlation
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Figure 7: (a) Similarity matrix of different subjects (blue-ish colors indicate
greater similarity); (b) Correlation matrix of different features (blue-ish col-
ors indicate less correlation). The features are grouped by regions. Region
1 is static FLM distances of eyes; region 2 is static FLM distances of noses;
region 3 is dynamic FLM distances of mouth; region 4 is static PCs of noses;
region 5 is dynamic PCs of mouth corners; region 6 is dynamic PCs of lips.

values in the same row, which means that all the 29 features are effective for
representing the 3D facial motion. However, the features extracted from the
same face region are relatively highly correlated with each other, especially
for the FLM-based features of eyes (region 1). Therefore, discriminative
feature selection is used for removing redundant features.

5.2.2 Selected feature evaluation

Discriminative feature selection based on the Sequential Forward Selection
strategy [48] was conducted in an iterative fashion over the 770 samples. The
most useful features are sorted out from all the features one by one. For each
round, one feature is sorted out, which minimizes the mean recognition error
of 5-fold cross validation. The selection procedure sequentially continues
until the mean recognition error does not decrease any more. The results of
the sequential selection process are shown in Fig.8, and the corresponding
semantic information of the selected features is listed in table 4. From Fig.8a,
the 5-fold cross validation error gradually converges to a minimum value
after 18 features are selected. The first 10 features contain 5 static features
and 5 dynamic features, which means that both static and dynamic features
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Figure 8: (a) Selected features vs. average test errors of 5-fold cross valida-
tion; (b) correlation matrix of selected features (blue-ish colors indicate less
correlation, refer to Eq.(1) for the mathematical symbols).

Table 4: Sequentially selected features
Order Feature Meaning Symbol

1 L-R eye separation f0(SD3)

2 Nose length f0(SD4)

3 Max PC of nose tip f0(SC3)

4 Min PC of nose tip f0(SC4)

5 Mouth opening f2(DD2)

6 Max PC of nose bridge f0(SC1)

7 Mouth width f2(DD1)

8 Max PC of left mouth corner f2(DC1)

9 Max PC of upper lip f2(DC5)

10 Min PC of right mouth corner f1(DC4)

For the mathematical symbols, refer to
Eq.(1).

contribute to the behaviometrics performance. Fig.8b shows the similarity
matrix of the top 10 features. Compared with the full features in Fig.7b, the
selected features have less correlation and higher distinctiveness.
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Figure 9: Distribution of dimensionality-reduced features: (a) using multi-
class LDA, where each color is a different subject and good clusters can be
seen; (b) using subject-specific LDA, where the dark red and rose red samples
are from 2 subjects and the blue samples are from the remaining subjects.

5.2.3 Distribution of 3D speaking face features

To investigate separability of all the samples, we trained a generic LDA
classifier and mapped all the samples represented by the full 29D features
to a 2D feature space. The mapped 2D features produced by the generic
LDA classifier can be seen in Fig.9a, where each subject (with 10 samples)
has its own color. We also relabeled all the samples into three classes: a
pair of subjects become the first two classes, and the remaining samples are
the third class. A specific LDA classifier was trained over the three classes,
resulting in a distribution of the mapped features as shown in Fig.9b.

Overall, all the samples in Fig.9a cluster well, suggesting that (1) the
passcode descriptor is repeatable and robust for each individual; (2) indi-
viduals are largely distinguishable. However, as the number of classes gets
larger and larger, the overlapping region of the classes would expand as well,
which decreases the separability of the samples. Compared with Fig.9a, the
mapped features (in Fig.9b) reduced by a specific LDA are more discrimina-
tive and separable from negatives, even for the classes whose repeatability is
not high.
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Table 5: Recognition rate with different features from speech-driven 3D facial
motion (%)

Proposed Linear SVM
Mahal KNN

(k=3)
Simple Trees Bagged Trees Mean results

3D Static Features 86.9± 0.49 71.0± 1.05 85.7± 0.51 83.5± 0.99 93.8± 0.67 84.2± 0.74
3D Dynamic Features 85.6± 0.53 72.1± 0.76 74.3± 0.70 76.2± 1.13 85.5± 0.93 78.7± 0.81

Full Features 93.6± 0.34 93.6± 0.46 87.4± 0.58 89.6± 1.13 91.9± 0.78 91.2± 0.66
3D Selected Features

(Proposed)
96.1± 0.28 89.0± 0.55 93.4± 0.48 89.9± 0.87 93.0± 0.69 92.3± 0.57

5.3 Recognition performance on different 3D feature
sets

To examine the discriminating capability of the selected features, we veri-
fied the proposed 3D behaviometrics algorithm in comparison to the results
from 4 other basic classifier pipelines (Linear SVM, Mahal KNN, Simple
Trees, Bagged Trees) versus four 3D feature sets (3D Static Feature, 3D Dy-
namic Feature, 3D Full Feature, 3D Selected Feature). The single feature
sets were constructed using the subsets of the 29 features. The results are
listed in Table 5. It is obvious that the 3D-Selected-Feature-based pipelines
achieve superior performance under the same classifier. The comparison
of 3D-Static-Feature-based algorithms and 3D-Selected-Feature-based algo-
rithms illustrates that the discriminative static and dynamic features im-
prove the speaker identification performance. Among the pipelines based on
3D Selected Features, our proposed pipeline outperforms the others, with the
highest mean recognition rate of 96.1%.

We also investigated the Cumulative Match Characteristic (CMC) curves
of different 3D features sets and 2D-3D joint features using the proposed
pipeline. The results are presented in Fig.10. The rank-N responses were
ordered by matching scores. Fig.10a demonstrates conclusions consistent
with Section 5.5 (i.e., adding 3D features and feature selection boosts perfor-
mance). Fig.10b shows that the Selected 3D Features perform best in terms
of the rank-1 recognition rate, followed by the Full 3D Features. However,
the 3D PC-based features (either static or dynamic) perform poorly across
the ranks. That is because the principal curvatures are more sensitive to 3D
noise, which decreases the stability of 3D PC-based features.
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Figure 10: (a) CMC curves of 2D & 2D-3D joint feature sets using the
proposed pipeline; (b) CMC curves of different 3D feature sets using the
proposed pipeline. (V is the simplification of Visual; FLM-D is FLM distance;
PC is principal curvature.)

5.4 Discussion on deep-neural-network based 2D face
biometrics and the proposed behaviometrics

In this section, we show the performance of two popular DNNs [49, 50] specific
for face recognition, using the 2D intensity samples from the new dataset. A
performance-based comparison of 2D face biometrics and 3D face behavio-
metrics is not completely ideal because of the properties of different modal-
ities (discussed after the performance test). Instead, we analyze that both
2D face and 3D face behaviometric algorithms can be applied in different
conditions.

The top performing 2D face recognition algorithms used different high-
dimensional DNN-based face descriptors and achieved remarkable perfor-
mance over a large dataset “Labeled Faces in the Wild” (LFW). For example,
FaceNet [49] achieves 99.63% verification accuracy; DeepID 3 [51] achieves
99.53% verification accuracy and 96.0% identification rate; DeepFace [52] has
97.35% verification accuracy; VGG-Face [50] has 97.27% verification accu-
racy. We tested FaceNet and VGG-Face on the 2D samples (77 subjects) from
the S3DFM dataset. For each subject, we randomly sampled 4 static frames
per sequence (4 frames × 10 sequences per subject, 40 frames × 77 subjects
in total). Each DNN model was initialized using a pre-trained model, then

23



Table 6: Performance of DNN-based 2D face recognition algorithms on our
2D intensity samples(%)

DNN model Input frame (pixels)
Feature
number

Recognition rate (%)

FaceNet 224×224 4096 79.2
VGG-Face 600×600 128 99.4

The input frames are without alignment & cropped

it is adjusted and fine-tuned on the new dataset via 5-fold cross validation.
The overall performance is the mean recognition rate of test samples over
the 5 folds. The feature dimensionality and performance of the two DNNs
on our 2D samples are listed in Table 6. In comparison with the benchmark
results of the DNN models, our test was on a relatively small scale dataset.
We did not pre-process images with face alignment and detection due to the
pure background of the images.

Although many 2D face biometric algorithms have been developed, the
3D face dynamics approach we propose here has some extra properties, in
addition to its good performance. While not quite as good as VGG-Face
on our dataset, the 3D face dynamics approach gives a private passcode
that has double value, namely: 1) the individual’s choice of the passphrase,
and 2) the subject-specific bio-modality arising from their individual mouth
motions. The behavior is performed highly collaboratively and is hard to be
captured unconsciously and reproduced elsewhere. These properties make
the 3D behavior hard to imitate, e.g. for criminal purposes. Thus, our
pipeline is suitable to be applications that require a higher anti-spoofing
level.

2D face data is easily captured and provides rich texture information, but
it lacks real 3D geometric information due to the image projection. The chal-
lenges in 2D face recognition always result from sensitivity to face orientation,
scale, appearance, lighting, etc. Deep representations have been striving to
minimize intra-class variations, but they need large training datasets. Com-
pared with 2D face recognition, a limitation of the 3D face community is
that the size of existing 3D datasets is smaller.
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Table 7: Performance of 2D & 2D+3D face recognition on the new dataset

Algorithm
Number of

features
Recognition rate (%)

2D Gabor Magnitude + PCA 29 87.0± 1.03
2D Phase Congruency + PCA 29 95.2± 0.34
2D Fisherface + PCA 29 94.5± 0.46
2D Gabor Magitude + 3D Visual 58 91.0± 0.69
2D Phase Congruency + 3D Visual 58 92.3± 0.58
3D Visual 29 93.6± 0.34
Selected 3D Visual (Ours) 18 96.1± 0.28

5.5 “Shallow”-feature-based 2D face recognition on the
intensity samples of S3DFM

We investigated the performance of 3 well-established 2D face recognition
pipelines via algorithmic “shallow” features extracted from our 2D intensity
samples, and compared it with the performance of 2D-3D combined face
modalities at person identification. The algorithmic “shallow” features are
constructed with explicit modelling or structure, in contrast to the deep-
net-based features in section 5.4. The compared features here are Phase
Congruency features [53], Gabor Magnitude features [54] and Fisherfaces
[55].

The 2D face identification experiment was conducted using the same 2D
intensity dataset (with 3080 samples) as above. The training and identifica-
tion used 5-fold cross validation. For each trial, we regarded one split as test
samples and used the remaining 4 splits for training a classifier. The recogni-
tion rate was calculated by counting correctly classified samples across all the
5 trials. The recognition rates of the different pipelines are compared in Ta-
ble 7. One can see that for the 2D Gabor Magitude, the combined 3D visual
features help improve the performance, while for the 2D Phase Congruency,
the recognition rate drops slightly. That means the 2D-3D joint features do
not always increase the performance, but the discriminative features play the
most important role in the task.
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5.6 Robustness against varying head poses

We mixed the 770 frontal face samples with 260 samples with continuously
changing head pose for data training and test. The head motion includes
rotation, pitching, and yawing. We calculated the changing 3D pose of each
3D face sequence via landmark tracking. Three examples of head motions and
an example of a frontal head are shown in Fig.11, where four representative
frames with tracked 2D facial landmarks are also shown above the 3D pose
curves of each motion. Then, we extracted facial signatures and constructed
a statistical feature for each face sequence, using the frames where the yaw
and pitch angles are within 10 degrees relative to frontal pose. The training
and test were performed through discriminative feature selection, minimizing
the mean recognition rate of 5-fold cross validation. The overall recognition
error rate when using sequential feature selection converges to a minimum,
as shown in Fig.12b. Overall, the algorithm performed on the mixed samples
achieves a best recognition rate of 96.0%, using the first selected 16 features.
It demonstrates that the proposed algorithm is robust against head pose
changing within 10 degrees.

5.7 Robustness against different frame rates

Our dataset records the 2D-3D face sequences with 500 fps. In order to
investigate whether the high frame rate sequences are over-sampling (contain
redundant frames) for biometrics, we subsampled all the sequences to lower
frame rates varying from 25 fps to 500 fps respectively and computed the
mean recognition rate of the proposed behaviometric algorithm. The result
is shown in Fig.12a. The performance degrades slightly when the frame rate
is less than 100 fps, while higher frame rates (125 fps to 500 fps) scarcely
improve the performance. It shows that 100 fps video is compatible with
the speech-driven facial dynamics. However, we preserve the raw sequences
with 500 fps in the public dataset, since the extra frames are also helpful in
generating improved 3D data by fusion-based spatio-temporal noise reduction
algorithms [56, 57].

5.8 Robustness to spoofing

This section presents qualitative and quantitative analyses on anti-spoofing.
Compared with 2D static biometric data, 3D behaviometric data usually has
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Figure 11: 3D pose estimation of head motions and frontal head: (a) frontal
head; (b) pitching; (c) rotating; (d) yawing.
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Figure 12: (a) Recognition rate vs. Frame rate; (b) Feature selection during
recognition on mixed samples of frontal faces and pose-changing faces.

a higher imitation difficulty. The proposed 3D speech-driven face modality
includes evidence from person-specific face motion. The 3D dynamics are
less likely to be stolen and mimicked, and help guard against occlusion-level
spoofing (masks) and appearance-level spoofing (painting, makeup). An im-
postor would need to match the subject-specific speech-driven motion, which
is the first-level prerequisite for passing the guard. Overall, the proposed 3D
behaviometrics have an intuitive advantage beyond the quantitative result in
enhancing information security.

In the S3DFM Dataset, since all the participants use the same passcode,
it is exactly the situation of imitation spoofing. We assume that only one
participant with the passcode is a genuine client, and all the rest are impos-
tors. We calculated the ROC curve of the proposed pipeline using selected
3D features, and compared it with those of using 3D static or 3D dynamic
features. The results are shown in Fig.13. In Fig.13a, the selected 3D features
demonstrate the strongest separability when measuring client and spoofing
scores, with 0 EER. Using the pure static features and dynamic features by
themselves show an EER of 11.53% and 8.90%, respectively.
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Figure 13: Verification score distribution and ROC curve: (a) selected 3D
features; (b) 3D static features; (c) 3D dynamic features; (d) ROC curves.
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5.9 Discussion on applicability

The applicability of the proposed pipeline is discussed from 4 aspects: main
use case, passcode, speaking speed, and computational cost.

5.9.1 Main use case

The proposed algorithm can be applied in any biometric system that aims for
high robustness against static face spoofing, such as 2D/3D mask occlusion.
For example, it could be deployed at a high-security door entry system, a
cash machine or places where fixed 3D video scanners could be installed
facing users. To ensure the algorithm works at its best performance, it is
suggested that the sensor system is stably installed with low vibration and
is calibrated as precisely as possible. The speaking face should be naturally
posing frontal to the scanners or is allowed to be moving slightly (within 10
degrees as discussed in Section 5.6). The speech-driven facial dynamics is a
prerequisite to access the protected system. That is, a candidate should show
a collaborative action by speaking a private passcode (set by the candidate
before) in front of the biometrics system, in order to get access.

5.9.2 Passcode

Although we used the same passcode across all the participants here, the pro-
posed algorithm is applicable to any passcode causing repeatable lip motions.
In real applications, a client would have a private passcode. Essentially, the
speech-driven facial dynamics is a passcode-guided motion. Both the pri-
vacy of the passcode and the subject-specific facial dynamics contribute to
the uniqueness of the biological modality. It is notable that the constrained
behavior (by passcodes) does not degrade the generalization of a biometric
system, but increases the spoofing difficulty of bio-modality and the security
level of the biometric system instead.

5.9.3 Speaking speed

The feature representation and behaviometrics proposed here are invariant
to speaking speed, but we think that speaking speed could be additional
bio-information used for biometrics in the future.
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5.9.4 Computational cost

The experiments were conducted using a Matlab implementation on a com-
puter with a 3.40 GHz 6-core CPU. The most time-consuming part is training
classifiers for constructing an offline gallery, which can be done once in an of-
fline stage and thus does not influence online probe tests. In the online stage,
given a 2D-3D sequence probe of 500 fps, facial landmark tracking across all
the frames of 600 × 600 pixels takes 150.4s. Actually, for online use, the
facial landmark tracking could be replaced by a detection algorithm, which
allows the facial landmark extraction to be performed in parallel. The facial
landmark detection in one frame takes 0.14s. Then, the feature construction
and classification for a sequence could cost on average 0.12s. Therefore, with
parallel computation, the online test of a probe could be done within 1s.

6 Conclusions and Future Work

This paper presents a 3D behaviometric pipeline based on speech-driven 3D
facial dynamics as a “3D visual passcode” and releases the first publicly
available Speech-driven 3D Facial Motion dataset (S3DFM). Experiments on
the new dataset verify that (1) the speech-driven dynamic face signatures
are repeatable and distinctive. The 29 statistical features have 100% sepa-
rability (see Fig.7b); the 77 subjects represented by the full 29 features have
98.7% separability (see Fig.7a); (2) The proposed approach improves the
identity recognition performance across 5 different classifiers, with the best
recognition rate of 96.1%. The comparable result with other feature sets
demonstrates the effectiveness of adding dynamic information to the static
3D descriptors; (3) The algorithm is robust against random head movement
within 10 degrees of yaw and pitch. The overall recognition rate on mixed
samples of frontal and non-frontal talking faces is 96.0%, which means that
adding non-frontal face samples hardly degrades the recognition performance.

In the future, we would like to further expand our dataset by adding
samples from more participants. The work presented here uses the same
passcode for every subject. Clearly, including more distinct passphrases
would increase discrimination between people. There are at least 3 major
directions for further investigations: (1) The passcode used across the par-
ticipants is a 2-syllable word. It would be interesting to investigate more
types of passphrases with 1, 3 or 4 syllables. The passphrases with good
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performance could constitute a recommended passcode gallery for users; (2)
Temporal modelling or prediction could be merged with the spatial features
for stronger speech-driven dynamic face representation; (3) At least 2 addi-
tional sources of information might be used for better anti-spoofing: time-
sensitive features related with the speaking speed and the synchronization
between the 3D video and audio properties.
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nockỳ, N. Poh, J. Kittler, A. Larcher, C. Levy et al., “Bi-modal person
recognition on a mobile phone: using mobile phone data,” in Multimedia
and Expo Workshops (ICMEW), IEEE Int Conf on, 2012, pp. 635–640.

[42] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. Narayanan, “Iemocap: interactive emotional

36



dyadic motion capture database,” Language Resources and Evaluation,
vol. 42, no. 4, pp. 335–359, 2008.

[43] “Dimensional imaging (di4d),” http://www.di4d.com/, accessible on
Jan 29, 2019.

[44] J. Zhang, K. Richmond, and R. B. Fisher, “Dual-modality talking-
metrics: 3d visual-audio integrated behaviometric cues from speakers,”
in 24th International Conference on Pattern Recognition (ICPR), Aug
2018, pp. 3144–3149.

[45] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2014, pp. 1867–1874.

[46] J. Zhang, C. Maniatis, L. Horna, and B. R. Fisher, “Dynamic 3d recon-
struction improvement via intensity video guided 4d fusion,” Journal of
Visual Communication and Image Representation, vol. 55, pp. 540–547,
2018.

[47] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms
for object detection and beyond,” in IEEE Int Conf on Computer Vision
(ICCV), 2011, pp. 89–96.

[48] A. W. Whitney, “A direct method of nonparametric measurement se-
lection,” IEEE Trans. on Computers, vol. 100, no. 9, pp. 1100–1103,
1971.

[49] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Conf. on Computer Vision
and Pattern Recognition, 2015, pp. 815–823.

[50] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. of the British Machine Vision Conf., 2015, pp. 41.1–41.12.

[51] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very deep neural networks,” CoRR, vol. abs/1502.00873, 2015.

[52] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Conf. on
Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.

37



[53] S. Gundimada, V. K. Asari, and N. Gudur, “Face recognition in multi-
sensor images based on a novel modular feature selection technique,”
Information Fusion, vol. 11, no. 2, pp. 124–132, 2010.
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