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Abstract. This paper presents a novel “hierarchical selectivity” mechanism for
object-based visual attention. This mechanism integrates visual salience from
bottom-up groupings and the top-down attentional setting. Under its guidance,
covert visual attention can shift not only from one grouping to another but also
from a grouping to its sub-groupings at a single resolution or multiple varying
resolutions. Both object-based and space-based selection is integrated to give a
visual attention mechanism that has multiple and hierarchical selectivity.

1 Introduction

Machine vision research has recently had an increased interest in modelling visual at-
tention and a number of computable models of attention have been developed [8, 13,
1]. However, these models are all space-based and do not account for the findings
from recent research on object-based attention (see [2, 12] for object-based attention
views). These space-based attention models may fail to work in environments that are
cluttered or where objects overlap or share some common properties. Three different
requirements of attention are immediately identifiable: 1) attention may need to work
in discontinuous spatial regions or locations at the same time; 2) attention may need
to select an object composed of different visual features but from the same region of
space; 3) attention may need to select objects, locations, and/or visual features as well
as their groupings for some structured objects. For applying attention mechanisms in
real and normal scenes, a computational approach inspired by the alternative theory of
object-based attention is necessary. In contrast to the traditional theory of space-based
attention, object-based attention suggests that visual attention can directly select dis-
crete objects rather than only and always continuous spatial locations within the visual
field [4, 6, 12]. A complete computable model of object-based attention is still an open
research area. Moreover, as suggested in [12], “Attention may well be object-based in
some contexts, location-based in others, or even both at the same time.” Inspired by this
idea, here we present a “hierarchical selectivity” mechanism which is a part of our com-
putable model of object-based attention (not published in this paper). This mechanism
guides (covert) attentional movements to deal with multiple selectivity in a compli-
cated scene. The objects of selection can be spatial locations, objects, features, or their
combinatorial groupings. Hierarchical selectivity works on the hierarchical structure of
groupings competing for attention and navigates attention shifts between coarse group-
ings and fine groupings at single or multiple resolution scales. Stimulus-driven and top-
down biasing are integrated together. Also, Winner-Take-All (WTA) and “inhibition of
return” strategies are embedded within the mechanism. In the following section, the
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Fig. 1. An example of attention working on hierarchical grouping. a: the original display; b: Two hierarchical groupings
obtained from the display c: Possible space-based attention movements; d: Possible object-based attention movements by
hierarchical selectivity. Attention firstly selects the grouping consisting of the black circle and white bar and then shifts to
the sub-grouping, i.e. white bar. The black bar belonging to another grouping including four black bars is attended after its
parent is visited.
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background theory used to compute bottom-up salience is briefly introduced. Hierar-
chical selectivity is presented in Section 3 and experimental results are given in Section
4.

2 Background

The pivotal idea in our solution for object-based attention is the grouping-based salience
computation and attention competition (see [14] for detailed implementation). The salience
of a grouping measures how different this grouping contrasts with its surroundings and
depends on various factors, such as feature properties, perceptual grouping, dissimi-
larity between the target and its neighbourhood [3, 10]. A grouping is a hierarchical
structure of objects and space, which is also the common concept in the literature of
perceptual grouping [11, p. 257-266]. A grouping may be a point, an object, a region,
or a structured grouping. Figure 1 shows an example of attention working on hierarchi-
cal groupings. In this paper, we focus on presenting hierarchical selectivity and assume
that the scene has already been segmented into groupings of similar colour, texture, in-
tensity, etc. The input colour image is decomposed into 4 double-opponent colour (red
R, greenG, blue B, and yellowY) pyramids, one intensity pyramid and 4 or 8 ori-
entation pyramidsy(6) andé = [0, F, 7, m or6=1[0£.7, Snonsmo3m 7@T‘]_) to create
feature maps using overcomplete steerable filters [7, 8]. Then the salience of different
groupings at different resolution scales is obtained from these feature maps by the com-
putation of grouping salience. Finally, various groupings compete for visual attention
based on the interaction between their bottom-up salience and top-down attentional
setting through the hierarchical selectivity mechanism (see Section 3 for details). To
save space, the following mathematical description of the grouping salience computa-
tion omits the expression of resolution scale. But note that the salience of all groupings
is actually calculated at their current resolution and is dynamically varied with differ-
ent scales and surroundings. Therefore the salience maps (including the salience maps
for each grouping) are also multi-scale and dynamical. The discussion of recent psy-
chophysical findings that support the salience computation approach (such as center-
surround mechanisms used to encode the salience of visual objects, etc.) are omitted
too to save space (see [9, 14] for detailed and extensive discussion). Suppese
grouping in an image at a given resolutieny are any two points in the imagé, g, b)

are the red, green, and blue colour components of the input image. Then the colour
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Let & (x,y) be the colour-intensity contrast anldauss be the Gaussian weighted
distance betweer andy, A(H be the neighbourhood surroundimgy; C A H
(i=1...nxm—1,nx mis the input image size) be any neighbour. Then the colour-
intensity saliencé& (x) of x is calculated by:
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where| [x—Y]| is the chessboard distance betwaemdy: ||x—y|| = MAX (/i —h],|j —

k[), (i, ), (h,k) are the coordinates afy in the current resolution image. The Gaussian
scaleo is set ton7p andriis the largest of the width and length of the feature maps at the
current resolutionp is a positive integer and generallydmay be set to a percentage
of i, such as 2%, 4%, 5%, or 20%, 25%, 50%, et@and are weighting coefficients
and we here set them to 1. Define the orientation conBgét,y) betweerx andy as:
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wheremod is the standard modulus operatbis the number of preferred orientations,
¢ =1/{. When( is 4 or 8, is Ti/4 or /8. Lety;, (i = 1...nk) be a neighbour in the
distancek neighbourhood\ H (k) surroundingx (Distancek neighbourhood hask8
neighbours). The orientation contradss(x, A/ o(k)) of x to its k-th neighbourhood
is:
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wherewy = ng — 1 andng is the number of different directions withif # (k). § is a

parameter used to prevent a zero denominator and usually set to 1.

Let m be the number of “rings” (one ring consists of the neighbours that have the
same distance from their “centex) in a neighbourhood andyass(k) be the Gau35|an
distance of thé-th neighbourhood ta, w;jx be the value ok-th neighbour “ring” on
B; orientation map of;, n; be the number of “rings” in the whole neighbourhoodof
Then the orientation salien&(x) of x to all of its neighbours is:
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Let x; be an arbitrary component within a grouping(x; may be either a point or
a sub-grouping withi). Then visual saliencg of a groupingd is obtained from the
following formula:
S(O) =y zsu )+Yo ZS) 9)

whereyc, Yo are the weighting coefficients for the colour-intensity, and orientation
salience contributing to the grouping salience anddicates all components in the
grouping. More detailed mathematical descriptions for the computations of early feature
extraction and grouping salience can be found in another paper [14].



3 Hierarchical selectivity

Hierarchical selectivity operates on the interaction between bottom-up grouping salience
and the top-down attentional setting. It is concerned with “where” attention is going
next, i.e. the localization of the groupings to be attended, not “what” the identification
of attended groupings are. Therefore, any top-down control related to recognizing ob-
jects or groupings is not considered here. The top-down attentional setting is used as a
flag at each “decision point” (control whether to go to the next/finer level of a group-
ing or not) of each grouping in hierarchical selectivity, which is an intention request of
whether to “view details” (i.e. view its sub-groupings at the current resolution scales
or finer scales) of a current attended grouping. The competition for attention starts first
between the groupings at the coarsest resolution. Temporary inhibition of the attended
groupings can be used to implement inhibition of return for prohibiting attention from
instantly returning to a previously attended winner. More elaborate implementations
may introduce dynamic time control so that some previously-attended groupings can
be visited again. But here we are only concerned that each winner is attended once. If
continuing to check the current attended grouping, the competition for attention is trig-
gered first among the sub-groupings that exist at the current resolution and then among
the sub-groupings that exist at the next finer resolution. Sub-groupings at the finer res-
olution do not gain attention until their siblings at the coarser resolution are attended.
If “no”, attention will switch to the next potential winning competitor at the same or
coarser scale level. By the force of WTA, the most salient sub-grouping wins visual
attention. The priority order for generating the next potential winner is:

1. The most salient unattended grouping that is a sibling of the current attended grouping. The
winning grouping has the same parent as the current attended grouping and both lie at the
same resolution.

2. The most salient unattended grouping that is a sibling of the parent of the current attended
grouping, if the above winner can not be obtained.

3. Backtracking continues if the above is not satisfied.

A more precise algorithmic description of hierarchical selectivity is given in Figure 2.

According to [4], [5], and [6], the competition for visual attention can occur at mul-
tiple processing levels from low-level feature detection and representation to high-level
object recognition in multiple neural systems. Also, “attention is an emergent prop-
erty of many neural mechanisms working to resolve competition for visual processing
and control of behaviour” [4]. The above studies provide the direct support for the in-
tegrated competition for visual attention by binding object-selection, feature-selection
and space-selection. The grouping-based saliency computation and hierarchical selec-
tivity process proposed here, therefore, offer a possible mechanism for achieving this
purpose.

Two goals can be achieved by taking advantage of hierarchical selectivity. One is
that attention shifting from one grouping to another and from groupings/sub-groupings
to sub-groupings/groupings can be easily carried out. Another is that the model may
simulate the behaviour of humans observing something from far to near and from coarse
to fine. Meanwhile, it also easily operates at a single resolution level. Support for this
approach to hierarchical selectivity has been found in recent psychophysical research



. competition begins between the groupings at the coarsest resolution
if (no unattended grouping exists at the current resolution)  goto step 8;
. unattended groupings at the current resolution are initialised to compete for attention based on
their salience and top-down attentional setting;
4. attention is directed to the winner (the most salient grouping) by the WTA rule;
set “inhibition of return” to the current attended winner;
.if (the desired goal is reached)  goto step 10;
. if (“view details” flag="no”) (i.e. don’t view details and shift the current attention)
{ set “inhibition” to all sub-groupings of the current attended winner;
if (the current attended winner has unattended brothers at the current resolution)
{ competition starts on these brothers; goto step 2 and replace the grouping(s) by these
brothers;}  else goto step 9;
7. if (“view details” flag="yes") (i.e. continue to view the details of the current attended winner)
if (the current attended winner has no sub-grouping at the current resolution)  goto step 8;
else{ competition starts on the winner's sub-groupings at the current resolution;
goto step 2 and replace the grouping(s) by the winner’s sub-grougings;
8. if ((a finer resolution exists) and (unattended groupings/sub-groupings exist at that resolution))
{ competition starts on groupings/sub-groupings at the finer resolution;  goto gtep 2;
. if (the current resolution is not the coarsest resolution)
{ go back to the parent of the current attended winner and goto siep 2;
10. stop.
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Fig. 2. The algorithmic description of hierarchical selectivity

on object-based visual attention. It has been shown that features or parts of a single
object or grouping can gain an object-based attention advantage in comparison with
those from different objects or groupings. Also, visual attention can occur at different
levels of a structured hierarchy of objects at multiple spatial scales. At each level all
elements or features coded as properties of the same part or the whole of an object are
facilitated in tandem (see [2] and [11, p. 547-549] for further discussion and detailed
findings).

4 Experimentsand discussion

4.1 Grouping effect and hierarchical selectivity on a synthetic display

Figure 3 shows a display in which the target is the only vertical red bar and no one
of the bars has exactly the same colour as another bar. Three bars have the same exact
orientation and others are separated by different oriented/colour surrounding bars. (Here
we adopt the “orientation” of a bar following psychophysical experiments rather than
the known concept in computer vision). If not using any grouping rule, each bar is a
single grouping by itself. Then we obtain 36 single groupings. If segmenting the display
by the bar’s direction, the only structured grouping is formed by the 3 vertical bars (not
including any black points in the background) which includes the target (forms one sub-
grouping) and other two vertical green bars (forms another two-level sub-grouping). In
this way, 34 groupings can be obtained in total: a structured three-level grouping and
33 single groupings formed by other bars respectively. The resulting salience maps
of groupings and attention sequences for these two segmentations are given in Figure
3. The background (black pixels), colours, and orientations are all considered in the
computation for salience. The top-down attentional setting is set to the free state, so
this gives a pure bottom-up attention competition.

The results show different orders of paying attention to the targets. The target grouped
with two green bars (see Figure 3 (C1), (C2), (C3), and (C4)) has an advantage in at-
tracting attention much more quickly than the non-grouped target. When competition
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Fig. 3. An example for structured groups and hierarchical selection. In the display the target is the vertical bar at the third
row and the second column. A: orignal colour display used in the experiment. AA: monochrome display for A to improve
the visibility. All red, green bars are scaled to black, white bars respectively in the grey background. B1: salience map (in
shades of grey) in the case of no grouping. B2: attention sequence of most salient bars for B1. C1: salience map in the case of
grouping. C2, C3, C4: salience map of the grouped bars. C5: attention sequence of most salient bars for C1. B, C: histograms
of B1, C1 respectively. The locations of the bars are simply encoded row column by number 1 to 36, such as the 6 bars in
the first columns in B1 and C1 are identified 1 to 6 from left to right. Note the target (bar 9) is attended after 7 movements of
attention in B2 but only 3 in C5.

starts, the structured grouping of 3 vertical bars is the most salient and obtains attention
firstly. Then the competition occurs within this grouping between the target and another
sub-grouping formed by the two vertical but different colour bars. By competition, the
target is attended after the two-level sub-grouping is attended. This grouping advantage
for attentional competition has been confirmed by psychophysical research on object-
based attention [2, 12]. We have applied the model [14] to displays like Figure 3 where
we investigated how salience changes with feature (colour, intensity and orientation)
contrast, neighbourhood homogeneity and size, target distance, etc. The salience versus
changed property curves are similar in shape to the comparable psychophysical results.
Thus we claim the model has the desired heterarchical and hierarchical behaviours.
More synthetic experiments for testing different behaviours of our model comparing
results with those of human observers and other models can be seen elsewhere [14].
However, this research is not intended as a model of human attention, but instead aims



at developing a machine vision attention system (inspired by recent psychophysical
results) that has the high level of competence observed in humans.

4.2 Performance of hierarchical selectivity in a natural scene

Three colour images shown in Figure 4 are taken using different resolutions from far to
near distance (6464, 128<128, and 512512) for the same outdoor scene. The scene

is segmented (by hand) into 6 top groupings (identified by the black colour numbers:
one object grouping 6 and five regions here) and 5 of them are hierarchically structured
except grouping 4. In the coarsest image, only grouping 6 (one boat including two
people) can be seen. In the finer image, sub-groupings 5-1 and 5-3 within top grouping
5 appear but they lose details at this resolution. The smallest boat (i.e. sub-grouping 5-2
of grouping 5) can only be seen at the finest resolution. The salience maps of groupings
during attention competition are also briefly shown in Figure 4 where darker grey shades
denote lower salience.

The competition first occurs among the top groupings at the coarsest scene. The
most salient grouping 6 therefore gains attention. When giving a “yes” to the top-down
attention setting (“view details” flag), attention will shift to the sub-groupings of 6.
Two people and the boat then begin to compete for attention. If a “no” is given or after
grouping 6 is attended, attention will shift to the next winner grouping 2. If a “yes” is
given too to the “view details” flag of 2, attention will first select sub-grouping 2-1 and
then shift to sub-grouping 2-2. After attending 2-2, if continuing to view the remainder
of 2, attention will shift to the finer resolution to visit 2-3. When grouping 5 is attended,
the lake (excluding grouping 6) is visited first and then attention shifts to the finer
resolution scene where 5-1 and 5-3 start to compete for attention. In the case of giving a
“yes” to the top-down flag of the winner 5-3, attention will shift to the finest resolution
scene to check its details. Then attention goes back to the previous finer resolution scene
and shifts to 5-1. After that, attention shifts again to the finest resolution scene. Thus
the smallest boat 5-2 at the finest resolution is attended. Figure 4 shows the overall
behaviour of attentional movements performed on the scene. Using this same scene,
when stronger and stronger noise was added alovel7 for Gaussian noise, the
order of the attention movements changed. The above results clearly show hierarchical
attention selectivity and appropriated believable performance in a complicated natural
scene. In addition, although this model is aimed at computer vision applications, the
results are very similar to what we might expect for human observers.

Hierarchical selectivity is a novel mechanism designed for shifting attention from
one grouping to another or from a parent grouping to its sub-groupings as well as im-
plementing attention focusing from far to near or from coarse to fine. It can work under
both multiple (or variable) resolutions and single resolution environments. Here another
outdoor scene (figure 5) is used to demonstrate the behaviour of hierarchical selectivity.
In the scene, there are two groupings: a simple shack in the hill and a small boat includ-
ing five people and a red box within this boat in a lake. The people, red box, and the
boat itself constitute seven sub-groupings respectively for this structured grouping. The
salience maps computed for these groupings are shown in Figure 5 and the sequence of
attention deployments is shown in Figure 6. The attention visiting trajectory shown in
Figure 6 reveals the reasonable movements of visual attention for this natural scene.
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Fig. 4. An outdoor scene taken from different distances. The salience maps and identifiers (black numbers) of different
groupings and their sub-groupings are also shown. The dotted circles are used to identify groupings but not their boundaries.
The sequence of salience maps used for each selection of the next attended grouping is shown at the left bottom of the figure.
Attention movements driven by hierarchical selectivity is shown at the right bottom using a tree-like structure.



A sceneviewed ——po|
from far distance

The same scene
but viewed from
near distance

Salience maps of

the shack and boat

attended from far -
to near in the scene

Fig. 5. An outdoor scene photographed from far and near distance respectively. The obtained images shown here are the
same scene but different resolutions. The salience maps are shown too and the grey scales indicate the different salience of

the groupings.

Fig. 6. The attention movements implemented for the outdoor scene: solid arrows indicate attentional movements at fine
resolution and hollow arrows denote attention shifts at coarse resolution.
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Conclusions and futureresearch

Successful models of object-based attention require approaches different to the previ-

ou

s computable models of space-based attention (see [8] for a successful computable

model of space-based attention). The new mechanisms must consider the selections of
objects and groupings, without losing the advantages of space-based attention, such as

se

lectivity by spatial locations and by feature. A good solution should integrate object-

based and space-based attention together in a combined framework so that the attention
model can work in a dynamic and natural environment. In consequence, multiple (such

as

features, spatial locations, objects, and groupings) and hierarchical selectivity can

be implemented to deal with the complex visual tasks. The presented mechanism of
hierarchical selectivity in our object-based attention model shows performance similar

to

human behaviour and also explores details in a manner useful for machine vision

systems. Further research will extend the scope of top-down attention setting, for ex-
ample, to allow enhanced and suppressed top-down control as well as more elaborate
designation of whether it is “valuable” or not to check sub-groupings according to the

cu

rrent visual task.
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