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Second-order volumetric features (e.g. ridges, dents,
bumps, etc) were previously defined to extend the SMS
object modeling system. Here, we show that one can
extract surface features from range data that can be de-
scribed in this vocabulary of second-order features. The
process is based on a classification of regions found by an
approach based on local surface shape, and has a natural
scale structure. Algorithms and results are given.

1 Introduction

There has been considerable emphasis on range data in-
terpretation in recent years. Most of the emphasis of
this work has been on surface patch extraction, of which
Besl's work1 is an excellent example. The main motiva-
tions for surface patch extraction were three-fold:

We previously defined second-order volumetric features2

for use in the SMS (Suggestive Modeling System) mod-
eling system3. They can also be considered surface fea-
tures, because they represent variations of the detail of
the main volume, which are manifested as changes to the
surface shape.

Each of the features are defined with respect to a lo-
cal reference frame, and can thus be used as part of a
model-independent scene description, containing surface
patches, volumetric groupings and second-order volumet-
ric features. Hence, the second-order surface features add
additional detail to the topographic surface description4.

Scale is a factor in the question of what is a feature: a
small spherical patch on a larger spherical patch can be
considered as a pair of surface patches, or as a bump on
a spherical patch, or as simply a bit of noise on a larger
bump. While there is no well-agreed understanding of
scale at present, we also show that the feature extraction
algorithms have a natural scale behavior.

1. large amounts of image data could be represented by
compact surface patch descriptions,

2. results from differential geometry provided a sound
basis for unique classification of local surface points,
which could then be grouped according to their clas-
sifications and

3. much subsequent image interpretation, such as ob-
ject recognition, needs to proceed using symbolic
representations (i.e. compact, discrete, sparse and
information rich).

Surface patches are not the only symbolic representations
that can be extracted from range data, and this paper
introduces second-order surface features. These features
correspond to classes of shapes that also lie within hu-
man experience. The positive (extruding) features are:
bump, spike, ridge and fin and the negative (intruding)
features are: dent, hole, groove and slot (described fur-
ther in Section 2). They are called "second-order" in two
senses: (1) they are often smaller features that add detail
to the surface, rather than specify the overall shape, and
(2) they denote more specific, higher-level shapes.

SMS and Second-Order Volu-
metric Features

SMS3 is a modeling system designed for representing the
salient visual characteristics of objects, as needed by an
object recognition system5 that primarily receives three-
dimensional image evidence. SMS represents both view-
point independent structural and viewpoint dependent
observable structures and relationships. The primitive
structural elements include points, space curves, surface
patches and volumes. Complete objects are defined by a
subcomponent hierarchy listing the feature and the ref-
erence frame transformation mapping the feature's coor-
dinate system to that of the object.

The main volumetric primitives are the STICK, the
PLATE and the BLOB6, which are designed for repre-
senting 1, 2 and 3 dimensions of extension. That is, a
STICK represents elongated structures, the PLATE rep-
resents flattish structures and the BLOB represents more
compact structures, having similar dimensions. Second-
order features2 were added to the first-order volumetric
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Figure 1: Positive Second-Order Features
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Table 1: Principles of Feature Classification

the HOLE (dual of the SPIKE positive feature), which
sticks into a volume. The second one dimensional nega-
tive feature is the GROOVE (dual of the RIDGE), which
lies on the surface of a volume. The two dimensional
negative feature is the SLOT (dual of the FIN), which
is intended to represent something like a GROOVE, but
which extends substantially into the object. The three
dimensional negative feature is the DENT (dual of the
BUMP), which represents a small hemi-ellipsoidal intru-
sion into a volume.

Some of the shape feature representation and ideas have
been based on Kyprianou7, whose work attempted to de-
duce the more global structure of a surface feature from
a local boundary (surface, edge and vertex) description,
such as the existence of a protrusion from a set of con-
nected planes.

Figure 2: Negative Second-Order Features

primitives, to represent many obvious visual details, such
as small intruding features, like holes, and small extrud-
ing features, such as bumps.

The second-order volumetric features are classified ac-
cording to their having one, two or three primary direc-
tions of extension, and are positive or negative according
to whether they protrude from or extend into the surface.
The first one dimensional positive feature (Figure 1) is
the SPIKE, which sticks out from a volume and possibly
bends. The second one dimensional positive feature is
the RIDGE, which lies on the surface of a volume. The
two dimensional positive feature is the FIN, which repre-
sents something like a RIDGE, but extends substantially
out of the object. The three dimensional positive feature
is the BUMP, which represents a small hemi-ellipsoidal
extrusion from a volume.

The first one dimensional negative feature (Figure 2) is

3 Extracting The Features

We wish to find and classify surface regions that are dif-
ferent from the surrounding surface, which is assumed to
be part of the "first-order" surface - surface features that
might be extracted as patches by more traditional range
data segmentation algorithms. The features are also as-
sumed to be small, and thus describable as a whole, in-
stead of being large enough to be described as a collection
of distinct surface patches. Hence, finding the features
is a difficult problem, because it requires a global under-
standing to decide which features should be described by
the surface or second-order method.

The decision can also be dependent on the requirements
of the later processing stages, and any intrinsic or extrin-
sic scale considerations. As we are not specifying these
factors in this paper, we therefore do not strenuously
limit the size of a second-order feature here.

The most basic properties of the second-order features
are: (l) they protrude from or intrude into the surround-
ing surface and (2) they are isolated (i.e. are surrounded
by non-feature uniform surface). These properties are
exploited to locally classify (e.g.) protruding pixels, and
then group them to form regions.
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To reduce noise and suppress small features, a smoothing
process proceeds the region finding. Iteratively smooth-
ing and repeating the segmentation produces a scale hier-
archy, wherein new features appear and smaller features
blend into the background.

Finally, the segmented image regions are classified into
the taxonomy given in Section 2.

3.1 Preprocessing

To remove data defects and reduce minor data variations,
several preprocessing stages occur:

1. "conservative smoothing" to remove outstanding
data values,

2. expand and shrink to fill pixels with no value (due
to deep holes or shadowed regions) and

3. two iterations of the smoothing convolution de-
scribed in the next section.

3.2 Surface Smoothing

The surface data at each new scale level was smoothed us-
ing two iterations of a repeated-averaging (convolution)
smoothing with the following kernel:

1
2
1

2
4
2

1
2
1

This smoothing approximates a Gaussian smoothing, is
fast, and can repeated to produce scale-effects. (The
smoothing is known to produce shape changes at object
boundaries, but they can be controlled8. Such control
was not used here for simplicity.)

3.3 Region Finding

Figure 3: The Test Pieces

between the mean and the central point, which is equiv-
alent to looking at the sign of the following convolution
(applied to the smoothed data):

-1
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-1
8
-1

-1
-1
-1

The pixels have their signs classified and are then
grouped, if:

• are 4-connected (N/S/E/W),

• have the same sign and

• are not where the original background pixels were
(the smoothing process diffuses the object into the
background).

Features are based on surface regions that protrude from
or extend into the surface. The approach used here was
based on a local least-square planar surface patch fit.
If the central point was closer than the estimate based
on the best-fit surface at that point, then the point was
classified as positive, otherwise it was negative.

The best plane fit was estimated over a 3*3 window lo-
cally. In this case, the least squares estimate for the
center position (using all 3D values for the points) is the
mean of the range values in the neighbourhood. Hence,
the determination of the relative position of the central
point is equivalent to looking at the sign of difference

3.4 Region Rejection

When examining the results of the region location, it is
obvious that not all regions should be features. Several
tests are applied to eliminate unsuitable regions:

• isolation test: Regions adjacent to more than one
region cannot be isolated by a surrounding region
(and with no interior regions).

• background test: The background is eliminated.
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<length> - whether the feature is LONG or SHORT.
This classification is based on a heuristic related to
compactness:

Figure 4: Shape Sign Classifications for Scales 1 & 2

• background surround test: Regions adjacent to
the background cannot be features, as features must
be surrounded by non-feature surface.

• size test: regions with small areas (less than 10
pixels) are eliminated, because the region finding
method is sensitive at low levels of smoothing.

• depth test: regions with shallow depth (less than
1.5 mm) are eliminated, because the region finding
method produces regions from shallow changes in
depth.

Estimating feature depth is somewhat complicated,
because neither the absolute, nor the local depth is
desired, but the deviation of the feature from its
surround, which might not be level. To account for
this, the maximum depth is estimated along each
raster scan that crosses the region:

1. finding pixels just before and after the region.

2. fitting a line through the two pixels.

3. finding the maximum deviation of the region
pixels from this line.

3.5 Feature Classification

Regions are classified into features based on their sign,
length and depth. These properties are estimated by:

<sign> - whether the feature is ABOVE or BELOW
the surrounding surface.

compactness =
perimeter

in x area

A feature is classified as LONG if its compactness
(minimum value 1.0) exceeds a threshold (2.0).

<depth> - whether the feature is DEEP or SHAL-
LOW. This classification is based on comparing a
heuristic width W with an estimated depth D: If
D/W > 2 then the feature is DEEP. The depth is
obtained during the depth test described above,
and the width is estimated by:

W =
Sarea1-5

perimeter2

The feature classification algorithm is based on Table 1.

4 Experiments

Figure 3 shows intensity images of the test objects -
sculpted blocks of plasticine clay, each with one planned
instance of each second-order feature. Object 1 is roughly
hill-shaped, with a number of surface irregularities, and
sits flat beneath the scanner. Object 2 has a nearly flat
surface, but was scanned with its rightmost edge raised
about 20 degrees to illustrate how the classification is
based on features intrinsic to the surface, not the im-
age. The raw data (not shown) was obtained from a laser
striper with approximately 0.5 mm depth resolution.

We applied the above processes to range data taken from
these objects. Figure 4 shows typical region sign maps for
scales 1 and 2 of the first test part (black shows negative
regions, grey shows positive regions). Note the encroach-
ing dark region (shape deformation) at the object edge
(referred to in Section 3.2).

Figure 5 shows the extracted features for several consec-
utive scales of analysis, where positive features are white
and negative features are black. The scales and classifi-
cations of the features are in Table 2. All features but 8
and 16 were deliberately placed on the object, and were
intended to be one instance of each feature type.

Object 1 has all but one feature located (the last was
a shallow groove near the left edge of the object). A
large shallow region, classified as a GROOVE, appeared
at scale 2, but then disappeared. All feature classifica-
tions were initially correct, but feature 3 (a HOLE) was
reclassified as a DENT at higher smoothings.

Object 2 is reported for scales 2, 3 and 4, be-
cause it's nearly-flat surface shape introduced more
ABOVE/BELOW transitions at finer scales. As before,
all but one intended feature was found, a BUMP near
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Feat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Sign
+
+

+
+

-
+
+

-
+

Intended
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
Y

Class
RIDGE
BUMP
HOLE
SLOT
DENT
FIN
SPIKE
GROOVE
DENT
FIN
SPIKE
GROOVE
HOLE
SLOT
HOLE
HOLE
RIDGE

Scales
1,2
1,2,3
1
1,2,3
1,2,3
1,2,3
1,2,3
2
2,3
2,3,4
2,3,4
2
2,3,4
2,3,4
2,3
2,3,4
3,4

Table 2: Classification of Features in Figure 5

the left edge, apparently lost because of interference with
nearby features. This was also the apparent cause of
the unexpected feature 16 formed from the hollow at the
base of the BUMP. The intended DENT (13) was mis-
classified as a HOLE, but it is deep enough for this classi-
fication. The RIDGE (17) initially is linked to a shallow
adjacent region on the surface, but additional smoothing
reveals the true feature.

Note that, as smoothing increases, the features that re-
main are mainly the deliberately introduced ones.

Results on other test objects are broadly similar, except
that less prominent features are not always detected, be-
cause smoothing blends them into the surrounding sur-
face before the local noise is reduced. If several features
are close to each other, smoothing effects can introduce
unexpected regions and classifications.

5 Discussion

Three techniques for finding the regions were explored.
The first partitioned the surface by the sign of the output
of a Laplacian operator, based on the analogy of finding
lighter or darker regions from traditional image process-
ing. While the zero-crossings of the sign are more com-
monly used (to find edge-like features), the zero cross-
ings form closed boundaries, generally surrounding re-
gions that are closer (or further) than the surrounding
image.

While this method produced decent results, it was felt
that it did not take explicit account of the local 3D shape,
such as on curved surfaces. Hence, a second method
based on the sign of the mean curvature of the local sur-
face neighbourhoods and a third method (described in
Section 3.3) were tried.

Scale 1 Scale 2

Scale 2 Scale 3

Scale 3 Scale 4

Figure 5: Extracted Features for Test Parts
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The Laplacian and the least-squares methods (imple-
mented as convolutions) produced similar results, mainly
because the least-square convolution mask is identical to
a mask often used for small Laplacian operators. The
mean curvature approach also produced similar results,
but was slower and tended to be less sensitive, partic-
ularly near curved surface features, where the Gaussian
curvature was negative.

Because the range data is repeatedly smoothed, scale-
based effects occur. While we have not made any
systematic study of phenomena related to scale here,
Witkin9 and Yuille10 explained how zero-crossings move
and merge in (mainly) one dimension, when applied to
Gaussian smoothed intensity data. As the features are
extracted by a similar process, similar results are ex-
pected here. Cai11 investigated the scale behavior of
smoothed surfaces, but his features were surface patches
defined using the mean and Gaussian curvature signs.

Noble12 treated intensity images as 3D surfaces. Then,
by applying morphological operators, surface features
like edges, corners, ridges, etc. were extracted. Similar
methods could be applied to range images, representing
the corresponding 3D surfaces, resulting in features that
complement those extracted here.

The interference between features that occurs as the
smoothing scale increases is desired, because this removes
minor features to reveal larger surrounding features. This
can sometimes happen quickly, because, when features
have gentle slopes at their edges, the features merge more
quickly with their surrounding surface.

There is an element of figure/ground dilemma about fea-
ture classification. For example, one could classify the
center of a torus as a hole, or the surrounding surface
as a torus, or both. Here, we concentrate only on the
second-order features.

One might detect surface patches first, and then assemble
them into second-order features, but the small feature
size make reliable patch extraction difficult.

The techniques described here should be extended for
handling depth discontinuities around features, such as
by not smoothing or classifying shapes across boundaries.

The second-order descriptive primitives introduce new
descriptive features for scene representations. They ex-
tend the existing first-order scene descriptions (e.g. sur-
face patches or volumes) to add the finer details that
help distinguish identity. With the isolated and classi-
fied features, we can then extract their shape parameters
and local reference frames, as defined in the SMS second-
order feature primitives. On the other hand, the details
of the feature may be less important than the presence
of the feature, and its placement in the scene, relative to
other scene features. With the more detailed scene de-
scriptions, we can now more efficiently and discriminately
recognize the objects in the scene.
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