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Abstract

We consider the completion of the hidden or missing
portions of 3D objects after the visible portions have
been acquired with 2 1

2D (or 3D) range capture. Our
approach uses a combination of global surface �tting,
to derive the underlying geometric surface completion,
together with an extension, from 2D to 3D, of non-
parametric texture synthesis in order to complete lo-
calised surface texture relief and structure. Through
this combination and adaptation of existing completion
techniques we are able to achieve realistic, plausible
completion of 2 1

2D range captures.

Introduction

Common 3D acquisition techniques in computer vi-
sion, such as range scanner and stereo capture, are re-
alistically only 2 1

2D in nature - such that the backs
and occluded portions of objects cannot be realised
from a single viewpoint. As a result capturing a com-
plete object in 3D can involve the time-consuming
process of multi-view capture and subsequent fusion
and registration [1, 17]. Often despite multi-view cap-
ture some small regions of the object are still missing
post-registration thus requiring hole-�lling techniques
to produce a completed 3D model [4].

To date the majority of prior work within this area
has considered smooth surface continuation in small
missing surface patches [2, 4, 15, 23, 21, 12] or the
completion of geometrically conforming shapes through
the use of shape �tting and parameterisation [5, 3, 10].

This prior work solely concerns itself with the com-
pletion of the underlying surface shape and not any
texture or features present on the surface. By contrast,
here we consider how the localised 3D surface texture
and features (relief ) of a surface can be completed,
through the propagation of knowledge from the visible

Figure 1. Completion of a 2 1
2D golfball

to the unknown surface portion, given that the under-
lying shape itself can be completed by one of these
earlier techniques. For example, we complete both the
geometric sphere and surface dimples of a 2 1

2D golfball
as shown in Fig. 1. Here we see the successful com-
pletion of the surface pattern (C/D) over a geometric
completion (B) of the original 2 1

2D capture (A).

Our approach has 2 parts : �rstly to complete the
underlying surface shape using simple geometrical tech-
niques akin to [20, 5, 3] and secondly to propagate the
3D surface texture from visible portion to the geometric
completion using an adaptation of the 2D texture syn-
thesis technique of non-parametric sampling [8]. The
goal is the plausible completion of the surface based on
the propagation of knowledge from the visible to invis-
ible surface portions - this process itself governed by
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the geometric constraint of the earlier shape comple-
tion. Although the completions achieved will not be
a precise reconstruction of the invisible portion, which
is unobserved and hence unknown, they will at least
be visually acceptable to be viewer and plausible as an
original.

Concurrent work [19] has considered a similar ap-
proach to that proposed here based on propagating 3D
surface patches from visible to unknown surface por-
tions. However, as shown in [19], this patched based
approach relies on the existence of suitable propagat-
able patches in the original surface portion. Although
computationally more expensive, the �ne-detailed per-
{point|vertex|range sample} based approach proposed
here does not su�er this limitation and lends itself well
to the propagation of both tile-able surface textures
(see Fig. 7 & 9) and completion/extension of more
stochastic surface textures (see Fig. 8 & 10) derived
from the original without any apparent �tiling� or sim-
ilar repetitive artifacts.

Non-parametric sampling

Non-parametric sampling was proposed as a method
for texture synthesis in 2D images based on using a
statistical non-parametric model and an assumption
of spatial locality [8]. Unlike other approaches in the
texture synthesis arena (e.g. [24, 13]) which attempt
to explicitly model the texture prior to synthesis this
approach samples directly from the texture sample it-
self - a kind of implicit modelling akin to the robotics
paradigm �the world is its own best model�. As a result
it �is very powerful at capturing statistical processes for
which a good model hasn't been found� [8] and thus
highly suited to our work in 3D.

In 2D operation non-parametric sampling is very
simple - it successively grows a texture outwards from
an initial seed area, one pixel at a time, based on �nd-
ing the pixel neighbourhood in the sample image that
best matches that of the current target pixel (i.e. the
one being synthesised) and uses the central pixel's value
as the new value for the target.

Matching is based upon using the normalised sum of
squared di�erence metric (SSD) the between two pixel
neighbourhoods (i.e. the textured pixels surrounding
the target and those surrounding each sample pixel). In
addition, to give more in�uence to pixels closer to the
target, each pixel di�erence contributing to the metric
is weighted by a 2D Gaussian kernel across the neigh-
bourhood thus re�ecting its in�uence in inverse pro-
portion to its distance from the neighbourhood centre
(i.e. the target).

The neighbourhoods are de�ned as W × W square

Figure 2. Completion process inputs

windows around each pixel where W , window size, is a
free parameter perceptually linked to the scale of the
largest regular feature present in the texture. In de-
termining the set of similar neighbourhoods for a given
target pixel, the normalised SSD between the target
neighbourhood and all possible samples are computed.
From this set the top n% of matches are selected as
those with the lowest SSD values from which in turn
one is randomly selected to provide the value at the tar-
get. Here, as in the original texture synthesis work, we
set n = 10. As an additional constraint the randomly
selected match is only used to �ll the target provided
it has a normalised SSD value less than a speci�ed er-
ror threshold, e, related to the acceptable level of noise
in the synthesised texture - a factor directly related to
that present in the original sample.

3D non-parametric completion

We now adapt the 2D technique to 3D synthesis
across a geometric surface. The basic aspects of the
approach map well from 2D to 3D : the 2D image
becomes a 3D surface, the individual pixel becomes a
point on that surface, a pixel neighbourhood becomes
the set of nearest neighbours to a surface point and the
actual pixel values being synthesised become displace-
ment vectors mapping discrete points on a textured
surface to the in�nite geometric surface derived from
prior �tting.

The pre-processing stage estimates the underlying
geometric surface model for the visible scene portion
[11, 9] from which a set of displacement vectors, D(i),
and a corrected surface normal, ni, for each point i
can be derived (see Fig. 4). Additionally we derive
a completed �smooth� portion of the invisible surface
based on parametric shape completion [3] (e.g. Figure
1B).

The main input to our non-parametric completion
process is a geometrically completed version of the 3D
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Figure 3. 3D vertex neighbourhoods

surface represented as a discrete set of labelled points,
P . The originals, labelled as textured, are the sample
points, s ε samples, whilst those of those forming the
completed �smooth� portion, labelled untextured, are
the target points, t ε targets, as shown in Fig. 2A. Each
point also has an associated surface normal, n, and
each sample point an associated displacement vector,
D(s), as shown in Fig. 2B and Fig. 4. For convenience
and to aid the construction and spatial use of point
neighbourhoods on the surface this input is represented
as a combined homoeomorphic surface triangulation [6,
7] of both target and sample points (see Fig. 2C).
Hence, from now onwards we consider our points, i ε P ,
as vertices, i ε triangulation(P ).

The reconstruction algorithm adapts to 3D by con-
sidering vertex neighbourhoods on the 3D surface in
place of the pixel neighbourhoods of [8]. Each vertex
neighbourhood, N(i), is the set of vertices lying within
a radius of W edge connections from the vertex be-
ing reconstructed (see Fig. 3). W forms the window
size parameter synonymous to that of the earlier 2D
approach. The algorithm now proceeds, as follows, by
�nding the best sample region matching the textured
portion of a target vertex's neighbourhood.

Firstly, the set of target vertices currently lying on
the textured/untextured surface boundary are identi-
�ed as the current target list, L. The �rst target ver-
tex, t ε L, is then matched, using neighbourhood based
matching, against every available vertex s ε samples.
A match is then randomly chosen from the best 10%
of this set, based upon matching score. Provided the
matching score for this choice is below the speci�ed
acceptable error threshold parameter, e, this choice is
accepted and the current target vertex, t, is textured
by mapping the disparity vector, D(s), from the cho-
sen sample vertex, s, to t. The current target, t, is
now labelled as textured and then algorithm proceeds
to the next vertex in L. If the match is not accepted
(or no match was possible) the vertex is simply skipped
and returned to the pool of target vertices for future
synthesis - in this speci�c case the window size, W , as-

Figure 4. Sample vertex geometry example

sociated with t for future matching is reduced in size,
Wt = W−1, to facilitate matching on a scale of reduced
constraint, global →local, where required.

Once L is exhausted, the next set of boundary tar-
gets are identi�ed, based on the updated vertex la-
belling, and the process is continued until all t ε targets
are labelled as textured. To ensure target vertices are
processed in the order of most to least constrained L
is sorted by decreasing number of textured neighbours
prior to processing. Additionally, synthesis progress is
monitored over each target list constructed - should no
match choices be accepted over an entire list, the ac-
ceptable error threshold e is raised slightly (10%) to
relax the acceptable error constraint for synthesis as
per [8].

The remaining key element in this algorithm outline
is the matching of textured target neighbourhoods (as
shown in Fig. 3) to vertices in the sample region.
This is performed using an adaptation of the SSD met-
ric based on the projection of neighbourhood vertices
onto the surface at each sample point. In order to
compute the match between target vertex t, with tex-
tured neighbourhood vertices Nt(t), and a sample ver-
tex s with textured neighbourhood Nt(s), Nt(t) is �rst
transformed rigidly into the co-ordinate system of s.
This is based on knowing the local reference frames at
s and t, denoted Rs and Rt respectfully, which com-
bined with the positional translations given by t and
s facilitate the transformation of Nt(t) relative to s as
Nt(t)′. However, as t is itself untextured whilst s is tex-
tured, the natural misalignment (owning to the pres-
ence/absence of texture) has to be avoided by trans-
forming to the corresponding untextured position of s
on the underlying surface - s′, calculated using the dis-

placement vector at s,
−−→
D(s), as s′ = s−−−→D(s). Overall

we have a resulting, t → s′, transformation as follows:

Nt(t)′ =
[

[Rs] s′

0 0 0 1

] [
[Rt] t

0 0 0 1

]−1

Nt(t)
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Figure 5. Point matching via surface projec-
tion

In order to estimate this spatial transformation the
reference frames Rs and Rt are required. Given each
vertex normal this can be generally derived using ei-
ther localised curvature or more global �tting based
techniques. Both, however, have disadvantages - no-
tably their intolerance to noise and additionally the
underlying ambiguity of surface orientation on many
common geometric surfaces. Here, localised reference
frames are derived deterministically based on �nding
mutually perpendicular vectors, u v, to the surface nor-
mal, n = (x, y, z):

if x = min({| x |, | y |, | z |})
choose u = (0,−z, y)

v = n× u

And by similar construct when y or z is the smallest.
Although far from perfect, this ensures at least lo-

calised consistency whilst the problems of global incon-
sistency are solved by simply augmenting the algorithm
to match the target neighbourhood to every sample re-
gion at R di�erent rotational orientations around the
normal axis - additional parameter R speci�es the di-
visions of 2π giving a set of rotations (e.g. R = 4 gives
4 orientations at 0, π

2 ,π,
3π
2 ).

To aid understanding, an illustrative overview of the
surface geometry described here is shown in Fig. 3 and
Fig. 4.

The task now is to compute the SSD as a vertex match-
ing problem between this transformed neighbourhood,
Nt(t)′, and the textured surface vertices at s. Al-
though this seems to be a simple 3D point matching
problem the presence of sampled surface texture means
that simple Euclidean space �nearest point� matching
using the raw textured vertices can produce arti�cial
matches in common scenarios as shown in Fig. 5A. Al-
though such problems could be overcome by enforcing a

scheme of one-to-one minimal distance cross-matching
between the sets, this relies on the assumption that the
densities of both point sets are equal - this is both dif-
�cult to assert uniformly and, as we shall discuss later,
their inequality becomes a salient issue.

Here we ensure consistent vertex matching, indepen-
dent of relative density, by matching vertices, v1 → v2

v1εNt(t)′ v2εN(s), based on their relative projected
positions on the common surface model, embodied in
the displacement vector associated with every vertex,

v′i = vi−
−−−→
D(vi). This e�ectively matches vertices based

solely on their relative spatial surface position rather
than relative textured-related depth as shown in Fig.
5B. From these pairings in surface projected space,
v′1 → v′2, the SSD is calculated based on the original
vertex positions, v1 → v2.

It should also be noted that here we are not perform-
ing a neighbourhood, Nt(t)′, to closed neighbourhood,
Nt(s), match. Although our notation, Nt(s), concep-
tually represents the surface vertices in the local region
of s, Nt(t)′ actually is matched against the unrestricted
set of textured vertices, N(s) = (iεP | label(i) =
textured), with a viable match only being considered
when all matching partners, v2, of v1εNt(t)′ are them-
selves also textured (i.e. v2 has assigned label �tex-
tured�). When a viable match is found the SSD is
calculated based on the distance of each target vertex,
v1ε Nt(t)′, directly to the complete triangulated sur-
face (not just the closest vertex) - i.e. the minimum
squared distance to any surface triangle, 4j , that has
v2 as a vertex, 4j ε triangles(v2):

SSD =
Nt(t)′∑

v1

dv1 min
4jεtriangles(v2)

(dist(v1,4j)2)

Additionally, as in [8], a weight dvi , based on
a 2D Gaussian kernel is used to weight the SSD
vertex matches, v1 → v2, relative to the distance
t → v1 v1εN(t) (i.e. spatial proximity to t).
Pseudocode of the non-parametric 3D
completion algorithm is available at:
http://homepages.inf.ed.ac.uk/~s9808935/research/NP3D/alg.pdf.

Sampling in 3D

One aspect highly relevant to this work is the adap-
tation of common sampling theory to 3D capture. Al-
though the concepts of under-sampling, aliasing and
the Nyquist frequency for a given real world signal are
common to general signal processing in lower dimen-
sions [18] it would appear to have received little atten-
tion in 3D vision. The speci�c sampling question that
concerns us here is: given an existing surface capture

In Proc. 5th International Conference on 3-D Digital Imaging and Modeling, pp. 573-580 c©2005 IEEE



Figure 6. Aliasing in 3D completions

what is the required target vertex density to achieve
synthesis without su�ering aliasing e�ects? This is syn-
onymous to obtaining the Nyquist frequency for the
capture itself.

Based upon the Nyquist sampling theorem, that a
signal must be sampled at twice the frequency of its
highest frequency component, it can thus be derived
that the upper limit on the Nyquist frequency, fNy,
of a given signal capture is 1

d where d represents the
signal sampling density. This represents the minimum
frequency at which the capture must be sampled in
order to allow perfect reconstruction and is equal to
twice the highest frequency component, v, of the signal,
fNy = 1

d = 2v.
Transferring this principle back into the context of

3D triangulated surfaces, where the vertices are the
sample points and the depth value of the signal, we
have to consider that the sampling frequency across the
whole surface may be non-uniform due to variation in
the original capture process. Hence only a lower limit
on the sampling density required to successfully repre-
sent the maximum detail or highest frequency compo-
nents can be considered based on the maximum sur-
face sample density. This translates as the minimum
distance between any two signal samples or conversely
the minimum edge length, min(e), present in a Delau-
nay based triangulation (e.g. [6, 7]). This gives an
upper limit on the Nyquist frequency, fNy = 1

min(e) ,

and an upper spectral component limit, v = 1
2min(e) ,

for the surface capture.
Surface extension must thus use a vertex sampling

density, d, of at least min(e) to avoid the e�ects of
aliasing and ensure restoration of the surface (d ≥
min(e)). This is illustrated in Fig. 6 where for a syn-
thetic surface case we see that using a sampling density
for the target vertices set below that associated with
the Nyquist frequency (Fig. 6:A) causes aliasing, whilst
using the minimum edge length removes the aliasing
artifacts, (Fig. 6:B).

Our �nal issue in 3D sampling arises from remem-

bering that here we are sampling and reconstructing
from a �nite digitised representation of a signal, a set
of vertices representing surface sample points, rather
than the in�nite analogue signal commonly considered.
Although the in�nite surface is arguably represented by
the surface lying through these points, embodied here
in a triangulation, the nature of the non-parametric
sampling technique requires �nite to �nite domain re-
construction, represented here by the sets of sample
and target vertices. This introduces an issue relating
to vertex alignment between the two regions. If there
exists a signi�cant phase shift between the target ver-
tex set and the samples this results in a scenario where
the suitable displacement value for a given target ver-
tex, given its spatial position on the surface, is not ad-
equately represented in the sample set - it in fact lies
at some other point on the in�nite surface. Due to the
nature of this technique and limitations in the ability
to identify/correct phase shifts in this domain we solve
this problem by oversampling the original surface cap-
ture - creating the intermediate samples as required.
It should now be clear that having an approach that
is independent of a common point density for the sam-
ple and target portions is highly desirable. Practically,
oversampling is achieved by subdividing the surface us-
ing an adaptation to surface tessellation such that each
triangle is replaced by 4 co-planar triangles. For v origi-
nal vertices, by reference to Euler's formula, this results
in v′ vertices where v′ ≥ 2v but with no increase in the
surface detail, and hence no increase in the Nyquist
related surface properties.

Overall, from our 3D sampling discussion, we now
have a practical means of determining a suitable sur-
face reconstruction, the minimum triangulation edge
length, and an oversampling solution for phase align-
ment problems.
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Figure 7. Completion of synthetic examples

Results

Here we present a number of 3D surface completions
using our approach. Firstly, in Fig. 7 we see the suc-
cessful completion of synthetic wave and noise patterns
over planar surfaces and the completion of localised
surface shape on cylindrical surfaces. Surface comple-
tions based on using real object portions, scanned with
our 3D Scanner's Reversa laser scanner, are presented
in Figures 1, 8, 9, 10. These show the successful com-
pletion of a range of surface types from the propaga-
tion of golfball dimples across the completed sphere
(Fig. 1), natural tree bark texture realistically com-
pleted over an extended cylinder (Fig. 8) and struc-
tured surface completion of a scale model of the Pisa
tower (Fig. 9). The extension of natural surface tex-
ture from a small surface sample over a wider region is
shown in Figure 10. Additionally we show the suitabil-
ity of this technique to realistic surface hole-�lling (Fig.
11) akin to the untextured approach of [2, 4, 15, 21, 12].

These results are based on using Euclidean [9] or
least squares �tting [11] for initial geometric surface
completion, oversampling the original portion once and
Cocone surface triangulation [6, 7]. Mersenne twister
[16] provided the random source and k-d search trees
provided fast point location queries. All completions
are based on using only the set of original textured
points as the sample vertices. (The variation called
�boot-strapped� completion, whereby the usable sam-

Figure 8. Completion of natural textures - tree
bark

Object Original Completion % di�.
Fig. 7 bottom right 0.247123 0.252846 2.32%
Fig. 9 bottom right 0.807048 0.828891 2.71%

Fig. 8 1.18208 1.24769 5.55%
Fig. 10 left 1.22093 1.30366 6.77%
Fig. 10 right 0.417207 0.476877 14.30%

Fig. 11 0.659935 0.549649 16.71%

Table 1. Mean Integral below surface texture.

ple regions grow as the textured surface area grows, is
not considered.)

Overall the results produce realistically structured
and textured surface completions representing plausi-
ble completion. Erroneous completions were, however,
encountered in some cases due to the e�ects of accu-
mulated error and illustrate the reliance on good pa-
rameter choice (see Fig. 12). Future work will aim to
address this issue.

As a means of quantitative evaluation, the mean
integral of the volume between the geometric surface
�t and the original and synthetic (completed) surface
portions for a sample of results are shown in Table 1.
These statistics support the visual similarity of the re-
sults but also show a statistical increase in di�erence
where either the original sample is limited (i.e. Fig.
11) or the texture is stochastic in nature (i.e. Fig. 8
& 10). In both cases the statistics identify a di�erence
not apparent to visual inspection (see Fig. 8, 11 &
10) and hence arguably within the bounds of visually
plausible completion - our desired goal.

Additionally, despite extensive pre-computation and
memoisation, this technique is computationally very
expensive. (©(stw) for s samples and t targets and
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Figure 9. Completion of tower of Pisa

window size w. Fig. 8 requires ∼13 hours on a 2.6Ghz
Pentium 4 with t = 7200, s = 12852.)

Improvements maybe gained upon this computa-
tional bound by constraining the set of samples con-
sidered for matching to a given target, t ε targets, to
a subset of those available from the original 2 1

2D sur-
face, s ε S ; {S} ⊂ samples. In cases where reasonable
regularity or texture repetition in the original 2 1

2D sur-
face can be assumed a randomly chosen set of samples,
S, may provide adequate sampling to facilitate plausi-
ble completion. However, if the set, S, is too small or
this assumption invalid then aliasing and �tiling� arti-
facts may become apparent in the resulting completion.
Such sample selection could be random for each given
target t or utilise a precomputed match heuristic such
as the shape signatures of [19] and remains an area for
future work.

Alternatively, in terms of practical computation, the
proposed technique lends itself well to a parallelism.

Both these limitations, in computation and error ac-
cumulation, echo those identi�ed in the earlier 2D work
[8].

Conclusions and further work

We have presented a method for 3D surface com-
pletion that, given the underlying surface geometry,
plausibly completes textured surfaces without strict lo-
calised surface geometry. This extends earlier work in
this �eld based on surface hole �lling [4, 15, 23, 21, 12]
and strict geometric completion [20, 3, 5, 10] and also a
related use of this technique in completing range data

Figure 10. Extension of natural surface tex-
tures

Figure 11. 3D completion for hole filling

based on explicit intensity knowledge of the unknown
area [22].

In contrast to the work of [19] this technique does
not su�er the limitations of such a patch based ap-
proach, at the expense of computational cost, but does
rely on knowledge of the underlying �smooth� surface
completion - here derived from geometric �tting but
possibly obtainable from prior techniques in smooth
surface completion [4, 15, 23, 21, 12] and �tting [14] in
future work.

A number of further possibilities remain with this
work including the integration of intensity data, the
extension to non-analytic base surfaces, sub-sampling
to reduce computation and the adaptation of other 2D
texture synthesis approaches to this problem domain.
It is also hoped that future work in pursuing a multi-
resolution variant to this technique will address the is-
sues of accumulated error identi�ed previously.

Additionally, interesting issues related to approx-
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Figure 12. Accumulated error due to surface
noise

imating the Nyquist frequency of a 3D surface and
in synthesising surfaces through in�nite representation
models still require investigation - this is of equal in-
terest in 3D storage, transmission and compression as
it is in synthesis.

[This work was supported by EPSRC and QinetiQ PLC]

References

[1] P. J. Besl and N. D. McKay. A method for registra-
tion of 3D shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239�256, 1992.

[2] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,
W. R. Fright, B. C. McCallum, and T. R. Evans. Re-
construction and representation of 3D objects with ra-
dial basis functions. In Proc. 28th SIGGRAPH, pages
67�76. ACM Press, 2001.

[3] U. Castellani, S. Livatino, and R. Fisher. Improv-
ing environment modelling by edge occlusion surface
completion. In Int. Symp. on 3D Data Proc. Vis. and
Trans., pages 672�675, 2002.

[4] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filling
holes in complex surfaces using volumetric di�usion. In
Proc. First Int. Sym. on 3D Data Proc., Vis., Trans.,
pages 428� 861, 2002.

[5] F. Dell'Acqua and R. B. Fisher. Reconstruction of
planar surfaces behind occlusions in range images.
IEEE Trans. Pattern Anal. Mach. Intell., 24(4):569�
575, 2002.

[6] T. K. Dey and J. Giesen. Detecting undersampling in
surface reconstruction. In Proc. of the 17th ann. symp.
on Comp. geo., pages 257�263. ACM Press, 2001.

[7] T. K. Dey and S. Goswami. Tight cocone: a water-
tight surface reconstructor. In Proc. of the 8th ACM
sym. on Solid modeling and applications, pages 127�
134. ACM Press, 2003.

[8] A. Efros and T. Leung. Texture synthesis by non-
parametric sampling. In IEEE Int. Conf. on Comp.
Vis., pages 1033�1038, 1999.

[9] P. Faber and R. Fisher. Euclidean �tting revisited. In
Workshop on Visual Form, page 165 �., 2001.

[10] R. B. Fisher. Applying knowledge to reverse engineer-
ing problems. Computer Aided Design, 36(6):501�510,
May 2004.

[11] A. Forbes. Least-squares best-�t geometric elements.
Technical Report 140/89, National Physical Labora-
tory, Teddington, UK, 1989.

[12] T. Ju. Robust repair of polygonal models. ACM Trans.
Graph., 23(3):888�895, 2004.

[13] A. Kokaram. Parametric texture synthesis for �lling
holes in pictures. In Proc. Int. Conf. on Image Proc.,
pages I: 325�328, 2002.

[14] V. Krishnamurthy and M. Levoy. Fitting smooth sur-
faces to dense polygon meshes. In Proc. SIGGRAPH,
pages 313�324. ACM Press, 1996.

[15] P. Liepa. Filling holes in meshes. In SGP '03: Proc.
of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing, pages 200�205. Eurographics As-
sociation, 2003.

[16] M. Matsumoto and T. Nishimura. Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Trans. Model. Com-
put. Simul., 8(1):3�30, 1998.

[17] M. Rodrigues, R. Fisher, and Y. Liu. Special issue on
registration and fusion of range images. Comput. Vis.
Image Underst., 87(1-3):1�7, 2002.

[18] C. Shannon. Communication in the presence of noise.
Proc. Inst. of Radio Engineers, 37(1):10�21, 1949.

[19] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based
surface completion. ACM Trans. Graph., 23(3):878�
887, 2004.

[20] F. Stulp, F. Dell'Acqua, and R. Fisher. Reconstruction
of surfaces behind occlusions in range images. In Proc.
3rd Int. Conf. on 3-D Dig. Imag. and Modeling, pages
232�239, 2001.

[21] L. Tekumalla and E. Cohen. A hole-�lling algorithm
for triangular meshes. Technical Report UUCS-04-019,
School of Computing, University of Utah, Dec. 2004.

[22] L. Torres-Mendez and G. Dudek. Range synthesis
for 3d environment modeling. In Proceedings of the
IEEE/RSJ Conf. on Intelligent Robots and Systems,
page 8, 2003.

[23] J. Wang and M. Oliveira. A hole-�lling strategy for
reconstruction in smooth surfaces in range images. In
16th Brazilian Symp. on Comp. Graphics and Image
Proc. IEEE Computer Society, 2003.

[24] S. Zhu, Y. Wu, and D. Mumford. Filters, random-
�elds and maximum-entropy (frame): Towards a uni-
�ed theory for texture modeling. Int. Journal of
Comp. Vis., 27(2):107�126, 1998.

In Proc. 5th International Conference on 3-D Digital Imaging and Modeling, pp. 573-580 c©2005 IEEE


