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Abstract

Visual analysis tasks are often very difficult and computer systems for tackling them are most effectively
implemented as a network of routines which solve constituent subproblems with well-defined specifica-
tions. Most of these tasks do not have a clear-cut best algorithm, particularly dealing with real-world
data. The problem arises how to characterise the performance on these sub-tasks in order to choose
the best implementation for a given application, particularly when several techniques are used within a
dataflow graph, with the output of later algorithms dependent on the output of earlier routines. In this
work we look at competing algorithms for a simple behaviour recognition task within the framework of
the CAVIAR modular vision platform.

1 Introduction

Creating software for challenging real-world visual analysis tasks is made much more tractable by adopting a modular
approach, decomposing the problem into well-defined subtasks. Selecting the best algorithms the various sub-tasks is
predicated upon characterising the performance of these routines.

Although the subtasks may correspond to operations a human is aware of performing – eg, detecting sudden
movement – often they are motivated by creating intermediate data representations for use as a stepping-stone between
low- and high-level representations, eg, consider image segmentation. This can be defined as dividing an image
into contiguous regions maximising some measure of ‘intra-region homogeneity and cross-region difference’. Many
applications segment an image into ‘potential objects’ before processing this reduced data to, eg, detect moving objects
or decide if certain objects are present. Segmentation is clearly a useful and meaningful computer vision sub-task.
However, virtually no real world task has subjects aware of segmenting their visual fields.

For a natural task, performance can be characterised by obtaining a ground truth dataset for an input dataset from
human test subjects and then comparing this with the system’s output via established methodologies such as Receiver
Operating Characteristic (ROC) curves [3]. This assumes ‘success’ is defined by human performance on the task. The
extension to less natural sub-tasks by explaining the task to test subjects and getting them to produce ground truth data
raises two issues: Firstly, the task definition has often been guided by algorithmic foreknowledge, so there can be an
influence on the supposedly independent ground truth by the algorithm. More significantly, success is really defined
not by human performance on this subtask, but rather by how the overall system performance on the end application
(measured wrt a ground truth) is affected by using a given sub-algorithm. As an example, imagine a system for
detecting cars starting with segmented images where the detection performance is governed just by the how accurately
the distinctively shaped wing-mirrors are segmented, making comparison against a general segmentation ground truth
misleading. If one knew wing-mirrors were crucial a tailored ground truth could be created, but in general one does
not know these details; indeed, black box modules make non-experimental determination of the important aspects of
the subtask output impossible. (We use segmentation in this and our later examples to illustrate the framework since
segmentation is a more widely known basic subtask than the specialised behaviour analysis tasks which we evaluate
later.)

This paper looks at how the final performance of a pipeline of analysis modules, which build up estimates of the
behaviour of tracked individuals in a video sequence, varies with the performance of the earlier modules, an issue
arising within the development of the surveillance system CAVIAR. It is important because the potential interac-
tions/correlations between subtasks make attempting to tune the module in isolation misleading. This problem will
worsen as the vision system becomes more modular.

Previous work. There has been much impressive work in the vision community on building systems for complex
visual analysis, especially recently (see eg, the survey article [14]). Since in this work we are focusing on performance
evaluation within the context of a larger task, we discuss in detail previous work in the setting of understanding and
characterising algorithm performance.

Most machine learning focuses on two errors: false positives p and false negatives n, which a given algorithm
can trade-off by varying its parameters. Algorithms thus have ROC curves [3] in p–n space characterising achievable
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Figure 1: From [SEGMENT1, in=Image, out=Regions] and [SEGMENT2, in=Image, out=Regions] CAVIAR deduces
SEGMENT1 & SEGMENT2 are functionally equivalent

results. To build a system we choose a p–n ratio and select the associated parameters. Work such as [5] extends this to
the general situation where we have N measures – eg, runtime, storage, etc – where it’s difficult to specify the trade-off
a priori and there are multiple algorithms to compare. It should also be noted there is extensive literature (eg, [7, 9])
on statistically valid ways of estimating the variance of performance outputs with respect to variability in the input
data, particularly given limited test data. Estimates of variance are necessary to decide whether differences between
algorithms are significant.

In this paper we consider pipelined processes where the output of earlier modules becomes the input of later
ones. In this vein, [16] considers the task of retrieving images with between l% and h% of the image being in some
class (eg, sky, foliage, etc). Their detectors process sub-blocks of the image independently but can produce both
false positives and negatives. A preprocessing module is developed which converts the user query to an synthetic
query (l′,h′) designed to ‘cancel out’ expected detector errors and produce output matching to the original query.
[11] investigates how the performance of various face recognition algorithms depends upon the accuracy of the eye
localisation algorithm used for preprocessing. Experimental results suggest (counterintuitively) that absolute eye
position errors have less effect on the recognition rates than merely eye separation and orientation (essentially because
these features are used for normalisation). Finally, [10] analyses the performance of region classification algorithms
given different segmentation algorithms in terms of extended ROC curves highlighting performance (with variance)
for multi-class assignment. They demonstrate that a sensitivity to the choice of segmentation algorithm that is (again
non-obviously) class-dependent.

2 The CAVIAR modular vision architecture

The name ‘CAVIAR system’ [2] refers to both a general software framework for implementing modular vision systems
and a test system using example modules for visual surveillance/behaviour analysis. We give an overview, concentrat-
ing on issues of relevant to performance characterisation and omitting other interesting aspects of the architecture.

One way to look at the CAVIAR system is to start with the notion of dataset descriptions. These are ‘meta-data’
which essentially specify names and associated data structures. For example, there is a dataset named TrackedObjects
which defines an syntactic representation for bounding boxes of individuals as they move through a video sequence.
The lowest-level software element is the module, which is a block of code combined with a record of the datasets it
takes as input and produces as output. The module shares the common understanding about what datasets mean, anal-
ogous to programming language interfaces, (eg, ‘TrackedObjects describes individuals from a low-level tracker’).

The highest level software is the controller, a standard routine which is responsible for taking a collection of
modules and figuring out firstly how they connect to form a complete system and then running this system over some
input data. Connections are determined by building a directed-graph-like structure with two kinds of nodes – modules
and datasets – and edges connecting a module with its inputs and outputs. In the case where each dataset is listed as
an output for exactly one module this generates a simple dataflow analogous to a flowchart. However, the real utility
arises when there is more than one module producing output x. In the simplest case (illustrated in Fig 1) we have two
modules SEGMENT1 and SEGMENT2 which both produce dataset Regions as output. The controller automatically
deduces that it can obtain Regions from either SEGMENT1 or SEGMENT2. This knowledge of functional equivalence
can be used by the system controller to prompt the user to make a fixed choice of modules before running the system, to
switch based upon static rules learned from offline performance characterisation, or to use a sophisticated auto-critical
framework utilising intra-module feedback to swap modules (cf [4]). The first two approaches can use the analyses
we develop here.

This highlights that the system is ‘discovered’ from the bottom up rather than specified top down: the controller
does not have any built-in expectation about what inputs the Regions dataset needs or whether a single or multiple
modules (using intermediate datasets) generate it, instead it splicing together modules to generate all outputs.

3 Behaviour analysis & interpretation

We used 80 image sequences of 500–2700 frames obtained from 3 separate camera-setups France, PortugalAcross,
PortugalFront (taken from the CAVIAR datasets available from [1]). The ground truth describes the behaviour of both
the individuals in the sequence and of groups of people, although here we only use individual behaviour. Since we will
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Figure 2: (a) some context graphs; (b) excerpt from ground truth/module output format (see [8]); (c) images 100
frames apart from typical sequences from the test datasets

be assessing performance against a pre-existing ground truth, the human interpretation incorporated into the ground
truth must be structured into a form algorithms can output. The ground truth describes the behaviour of people within
the sequences at a various levels of sophistication via four attributes per frame (expanded upon in [4])

The two low level attributes are move and role. move divides the gross individual motion into {inactive, active,
walking, running}. The role, which specifies more intensional short-term behaviour such as browsing, walking and
shop-entering/shop-exiting, provides an immediate indication of the type of activity. (The role extends to describing
relationships between individuals during group interactions, eg, context fighting involves participants in with roles of
fighter and victim.)

Whole-sequence behaviour is specified via a set of transition graph models, with some typical examples shown in
Fig 2c. The type of node is called the situation and identifies individual frame activity within the context of the overall
behaviour and is typically probabilistically related to the move and role determinations. The arrows show allowable
transitions between the situation nodes for adjacent frames (including the explicitly shown self-transitions). Finally
an x indicates that the given situation node must occur in order for the behaviour to occur. Without this we could, eg,
match the Idleness graph in Fig 2a:iii against a sequence of move nodes, a result which is both intuitively wrong
and creates ambiguity with the Walk behaviour.

By providing these whole-sequence constraints the system can identify a whole sequence as, eg, browsing, even
though the frames containing ‘looking into shop-windows’ might be a small fraction of the frames where the individual
is walking between windows. The ‘true’ behaviour of an individual over the video sequence is (by fiat) described by
only one graph: we refer to this choice as the context. Matching the sequence against the context graph requires
associating a node in the transition graph with each frame (ensuring the graph topology is respected and additional
constraints are met).

The graphs were finalised before sequences were annotated with ground truth. A typical set of images from one
video sequence and the common data representation used for both the ground truth and analysis output is shown in
Fig 2c,b. Consistency with the context graphs was enforced during markup by the labelling tool. However, the context
graphs still leave many features that might be used for modelling unspecified, eg, module PROBCONTEXT estimates
transition probabilities to enable HMM-based decoding.

This division into low- and high-level attributes is not completely clear-cut. The role can be relatively high level,
e.g., browsing, but they are fundamentally discernable using only short-term analysis. In contrast, the situation de-
scribes a stage within a specific behaviour. Although we use this progression from move & role to situation and finally
context in our analysis framework, it may not be necessary to get lower level attributes totally correct to get higher
level ones correct: in particular within the correct context graph the precise frames where transitions between situation
nodes occur may be highly ambiguous; however the overall match with the correct context may be clear.

Modular behaviour analysis. We want to break down the behaviour inference into three stages: estimating the
move, estimating the role and estimating the situation & context. We also want to experiment with hard assignment
and probabilistic assignment based estimation algorithms. This leads to the overall structure in Fig 3. The two
inputs to each ‘pass-through switch’ node©? are estimates of the same quantity (eg, the move values for the top right
©? ). In the full CAVIAR system the controller dynamically adjusts these switches based upon various performance
feedback and other information. If instead we hardwire each switch node to pass through a given one of its inputs, we
obtain eight distinct ‘systems’ which can produce the final output containing the estimates of all four attributes. (We
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Figure 3: How various modules and implementations can be combined to generate a complete analysis in 8 distinct
ways, where switches©? pass through a selected input

assume move and role estimation are independent.) Clearly we would like to know how accuracy varies between these
‘implementations’ of the system.

There are two further sources of variability. Firstly, different kinds of deployment can have visual scenes, different
camera details, and varieties of behaviour attributes, eg, surveillance of a shopping centre atrium vs web-cam based
workplace analysis. Secondly, each module has settable module parameters which affect its output. Ideally, the
parameters would be ‘tuned’ to compensate for the first type of variability. However, good system tuning (particularly
with limited ground truth) is non-trivial, so we want to understand how performance varies with the degree of tuning of
component modules, especially since low-level module performance may not relate linearly to high-level performance.

If each move module has 1 parameter quantised into 16 values, we have 16×2 ways of generating the move output.
With the same assumptions on the role, a context module has (16×2)2 unique inputs. Thus there are 2×(16×2)2=2048
systems to consider for optimal performance over our test data. We could use, eg, hill-climbing to attempt to find
the maximum of this ‘black-box function’ without exhaustively mapping the space. However, because we want to
understand the spectrum of behaviours rather just obtain a single number we choose here to exhaustively evaluate the
possibilities.

Our fundamental representation is to associate with each individual within each frame a set of hypotheses (π ,
move, role, situation, context), ie, a probability and values for the various attributes (some of which may be unset);
this is allowed for by the XML representation in Fig 2 and is useful because hard assignment can be incorporated
by represented by a single probability 1 entry, whilst input to a hard decision module takes the highest weighted
hypothesis and resets its weight to 1. In practice we can take a few highest weighted entries without much error,
reducing storage requirements. We now give very brief sketches of the estimation algorithms with more complete
descriptions available in [13], using Ti to denote module parameters which are going to be systematically varied.

Fitting moves and roles. We define some common notation: the images contain multiple numbered individuals with
the bounding box record for individual i in frame τ denoted bi[τ ]. The vector bi[τ ].p denotes the estimated ground
plane position for box i at τ and the number of the currently considered frame is always t. Finally, we take the current
velocity (estimated over a fixed temporal window w) as v=bi[t].p−bi[t−w].p.

• LOGICALMOVE. This module only distinguishes between inactive/ active and walking/ running since simple rules
were unable to distinguish further.

1. move← if |v|<T1 then {(1/2, inactive),(1/2,active)} else {(1/2,walking),(1/2, running)}

• LOGICALROLE. In rules 2 & 3 signed vel=signum(v·e)|v|, where e is a chosen vector along the direction out of
the shop doorway.

1. if bi[t ′]∈browse areas forall t ′∈[t−T2..t] then role←(1,browse)

2. if bi[t].p∈shop doorway and signed vel>0 then role←(1,shop-enter)

3. if bi[t].p∈shop doorway and signed vel<0 then role←(1,shop-exit)

4. if no other rule has triggered, then role←(1,walker)

These rules were found by guessing a functional form from training data; the motivation was to obtain a simple, fast
module to compare with PROBROLE.

• PROBMOVE & PROBROLE. We want to approximate the generating distribution of a class from a training set. The
Kernel Density Estimator (KDE) [12] estimates the density of observation f for class c from set of training points
{fci}N

i=1 using

p(f|c) = (1/N)ΣN
i=1K(f, fci ;Tk) (1)

K(x,y;Tk) = max(1−||x−y||2/T 2
k ,0)/Z (2)



(where Tk is a parameter affecting the width of the local kernels and Z is a normalisation factor). Providing kernel K
is roughly bell-shaped the exact form doesn’t particularly affect the accuracy; we use the Epanechnikov kernel [12]
which has optimal asymptotic performance, a simple form allowing efficient implementation and converges to the true
distribution as N→∞, Tk→0.

We use KDE for both the move and role. To obtain the feature vectors we apply a simple image-to-ground-plane
transformation to the bounding boxes and then select a subset of effective values into an observation vector. In common
with many other density estimators, KDE methods have two disadvantages: As they perform less implicit smoothing
than other methods, eg GMMs, the estimate closely approximates the training set, even if this is non-representative.
Secondly, the higher the dimension of the feature input space the more samples are needed for adequate estimates
(‘the curse of dimensionality’). We found that for testing we could divide the ground truth into training and testing
sets containing equal numbers of sequences and use 4 parameters to form the feature vectors in Eq 1. We use the
position of the centre of the box projected onto the ground plane, |v| and

√

(change in box area) (both over a 32 frame
window), applying empirical scale factors to each component to attain the same degree of variability over all axes.

Fitting against context graphs. As the ground truth satisfies the context models in Fig 2, we could find the correct
context directly if we could assume perfect lower-level attributes. As this is unrealistic, we need matching techniques
which are tolerant of errors. The first task is to convert lists of (move,role) pairs into situations (with probabilities).
From the ground truth data we can tabulate (move, role,situation) triples to obtain function f :move×role×situation→R
giving the probability of a situation given the move and role. We can use this to extend the set of hypotheses
{(πi,mi, ri)} to a new set {(πi× f (mi, ri,s j),mi, ri,s j)} which now incorporates the situations. (In the case of logi-
cal inputs we discard all but the highest entry.) We now ignore all but the probability and situation when matching the
sequence against the context graphs.

• LOGICALCONTEXT. Each context c is considered in turn against the situation list:

1. Run length compress the situations list wrt the situation node labels.

2. Unwind the graph representation into a tree and apply interpretation tree matching (with wild-cards allowed)
technique to find the least cost match [6].

3. Take ‘probability’ of context c, with situations s0:N , as ∝exp−λ (#wild card frames).

• PROBCONTEXT. We generate probabilities for each context c using observation probabilities πτ,sτ and situation
transition probabilities p(si|si−1) using a HMM algorithm:

1. For each final situation sτ=s: find most likely situation assignment s0:sτ using the Viterbi recursion p(s0:sτ)
=πτ,sτ maxsτ−1 p(s0:sτ−1)p(sτ |sτ−1) (see [15]).

2. Choose most likely solution s0:sτ also satisfying the constraints on must-visit nodes.

3. Take ‘probability’ of context c, with situations s0:sN , as ∝∏t
τ=0 πτ,sτ p(sτ |sτ−1).

4 Experiments

We used the CAVIAR system to run the behaviour interpretation algorithms over the 80 test sequences (using the
module combinations shown in Fig 3) for a range of parameters for the move and role modules. Even with an optimised
implementation, this took 37 hours. For space reasons we present a limited number of preliminary, untuned examples;
more extensive data and analysis can now be found in [13]. (We abbreviate module names by initials, eg, PR is
PROBROLE.)

• movement/role performance on France dataset. Fig 4(a,b,d,e) show performance of the low-level modules as
functions of parameters Ti for the entire France dataset. (The ‘thresholding’ nature of logical rules explains the
‘steppiness’ in a & b.) For (d) & (e) the solid line is proportional to the probability weight on the correct attributes and
the dashed line is the proportion of times the highest probability attribute was correct. The graphs show that, except
for low parameter values for the PM module the two measures are essentially the same.

• situation/context performance wrt move/role. Fig 4(c,f) show the situation output as function of the inputs to LM
& LR and PM & PR and shows that, whilst smooth, the surface has many local maxima.

• move/role performance on all datasets. The top two rows of Fig 5 show the performance of LM, PM, LR & PR
over the three datasets. Note all modules have different scores for the same parameter value in different datasets, and
module PR clearly does not have a ‘dataset-independent’ optimal parameter value.

• situation/context performance wrt move/role module parameters. The bottom two rows of Fig 5 shows the
correctness of the context (third row) and situation output of the PC module with respect to the parameters of the LR
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Figure 4: For the France dataset: (a) LM (with parameter T1); (b) LR (parameter T2); (c) situation correctness from LC
as a function of T1 & T2;(d) PM (parameter T3); (e) PR (parameter T4); (f) situation correctness from PC module as a
function of T3 & T4

& PR modules, giving an indication of how sensitive the overall system performance at the given role parameter value
is to the setting of the move module parameter.

To explain the format, the first graph on the third row has a horizontal axis corresponds to the LR module’s
parameter value. For a complete network of modules from Fig 3 we also need a move module, so the solid line plots
the correctness achieved on context when LR module is used in conjunction with the LM module, averaged over all
possible parameter values for LM. The error bars show the standard deviation of this score wrt the LM parameters.
Likewise, the dashed line and error bars shows performance when the PM module is used, again with the average and
standard deviation wrt PMs parameter values. The plot shows that whilst on average the combination with LM gives
better results than the PM, the standard deviation (uncertainty) for PM is so large that using a single parameter values
for the move modules could lead to an erroneous plot suggesting PM is the better companion module. Indeed, there
are large error bars on all four plots.

In general the performance is relatively poor, indicating the need for some fine-tuning of details (eg, better features
for KDE); however these observations highlight the need to explore inter-module interactions when attempting to
evaluate module performance.

5 Conclusions & further work

We developed a system to run empirical tests to gain understanding of the performance characteristics of a modu-
lar system for behaviour recognition, in particular relationships between correctness and the parameters of multiple
modules; attempting to optimise module performance in isolation is can be confounded by interactions with other
modules.

In future we hope to develop an intelligent sampling approach to make tractable analysis of much more complicated
module ensembles. This will enable us to use the CAVIAR framework to characterise a wider set of vision algorithms
from the vision community.
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