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AbstractIn this work we have addressed the question ofwhether it is possible to extra
t parametri
 models ofs
rew-threads from 3D range data. Results, exampletimes for analysis and 
omparisons with known groundtruths are given.1 Introdu
tionShape analysis of obje
ts from range data (
apturedthree dimensional 
o-ordinates of surfa
e points) is akey problem in 
omputer vision with several impor-tant appli
ations in manufa
turing, su
h as assembly,quality 
ontrol and reverse-engineering.The measurement of large s
rew threads is both adiÆ
ult and 
ostly operation requiring the attentionof skilled engineers. It is also vitally important to theengineering industry that these measurements are a
-
urate and timely. In the oil industry, for example,threads of radius 50
m are not unusual and must bema
hined to high toleran
es. When being �tted it isof great importan
e that manufa
turing toleran
es 
anbe assessed before installation.In this work we have examined whether it is possibleto extra
t the parameters of s
rew threads from 3Ds
anned data as well as gaining some insight into themanufa
turing toleran
es used.2 Data

2.1 Quality and SamplingData 
olle
tion is performed using a moving-head,orthogonal laser stripe ranger whi
h provides data in0.1mm steps in the X-Y plane. Noise on the data is

around 15 mi
rons standard deviation. In a single s
anwe 
an sample with a depth of �eld of around 50mmalthough when sampling over a volume we 
an a
hievearound 120o of a large radius bolt. Typi
al s
anneddata is shown in �gure 3.Arti�
ial helix data has also been generated usinga wide range of parameters with Gaussian noise addedin order to test algorithm robustness.
2.2 ModelsWe have modelled the thread as its underlying math-emati
al stru
ture allows, that is as two 
o-axial he-li
es with the same progression parameter but di�erentradii. The heli
al parameters are shown in �gure 1. Inthe 
anoni
al orientation (axis n = (0,0,1)) the helix isgiven parametri
ally by:x = r:
os(t) (1)y = r:sin(t) (2)z = b:t (3)where r is the helix radius and b is the heli
al progres-sion. In our 
ase this is expressed as movement in thedire
tion of n in millimetres per radian.In an a
anoni
al orientation, if the axis n is 
om-puted, then the helix 
an be rotated into the 
anoni
alorientation.3 AlgorithmThe method is split into the following parts: data
olle
tion, rotation to 
anoni
al alignment, radius as-sessment and residual 
al
ulations, progression analy-sis. Ea
h is dis
ussed below and the pro
essing pipelineis shown in �gure 2, below.
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Figure 1. Helix Parameters

3.1 ScanningData s
anning was performed using a 3D S
anners
at bed laser range sensor with a 5 degrees of free-dom s
anning head. In our 
ase, be
ause we were us-ing orthogonal (volume) s
anning, only 3 degrees offreedom were used (X, Y and Z). Arti�
ial data wasgenerated with a random axis rotation with Gaussiannoise added with various kernel sizes. The minimumsize was 0:2mm whi
h is designed to be mu
h largerthan the a

ura
y with whi
h we 
an dete
t the peaksand troughs in the s
anned data.
3.2 Rotation to Canonical AlignmentIn order to perform the re-alignment, the dual helixaxis has �rst to be found. This is a two stage pro
ess:1. Stage 1 - Peak and trough �nding. First we have to�nd the maximal and minimal points of the s
rewthread lying on the inner (minor) radius and theouter (major) radius. This de-
ouples the heli
esfrom the rest of the s
rew. We do this by perform-ing a nearest-neighbour analysis. Be
ause of thes
rew stru
ture, the points whi
h have the highestnumber of neighbours are those that are at turningpoints in the data (�gure 4). An impli
it assump-tion is that the s
rew is s
anned in a dire
tionthat is approximately orthogonal to the dire
tionof the s
rew axis. This ensures that both the topand bottom of the s
rew 
ut is visible.
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Figure 2. Screw Thread Detection Processing
Pipeline2. Stage 2 - Inner and outer helix separation andaxis �tting. This optimization is performed us-ing a geneti
 algorithm. The data taken fromthe peak and trough �nder is treated as belongingto two 
o-axial 
ylinders of di�ering radii. Thefun
tion on whi
h the optimization is performedis the least-squares �tting of the two 
ylinders.The 
hromosome used for this �tting is as fol-lows: < Nx;Ny;Nz; Px; Py; Pz;R1; R2 > wherethe �rst 3 terms are the axis normal dire
tion, these
ond three terms are a point in 3D and the �naltwo are the two di�erent 
ylinder radii.Automati
 segmentation is also made impli
it inthe evaluation fun
tion:for all points, i{x = points[i℄[1℄y = points[i℄[2℄z = points[i℄[3℄d1 = distan
e(X[1℄ - X[6℄, X[7℄, x,y,z)d2 = distan
e(X[1℄ - X[6℄, X[8℄, x,y,z)fitness=0.0if(d1 < d2){ fitness+=d1}else



Figure 3. Typical Scanned Data
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Figure 4. Screw Cross-section{ fitness+=d2}}Note that we are minimizing the �tness fun
tion.The fun
tion distan
e() returns the distan
e fromthe passed point to the 
ylinder with the passedparameters. The distan
e to ea
h 
ylinder is as-sessed and the lowest value is taken.
3.3 Radius AnalysisOn
e the data axis has been found we 
an estimatethe inner and outer radii at various points along it to

Figure 5. End of Stage 1, Peaks and Troughs
Detectedensure that the s
rew 
ut is 
onsistent. This gives usboth radial measurements (with standard deviation).Note that we 
ould also deal with e

entri
 heli
es byusing the guaranteed ellipse �tter [1℄ on the data pro-je
tion onto the base plane. An example of the innerradius estimate histogram is shown in �gure 6, below.

Figure 6. Radius Estimates Histogram

3.4 Progression AnalysisWe 
an estimate the progression rate by �ndingpairs of points whi
h lie approximately in alignmentwith the helix pair axis dire
tion, but are separated inthe Z dire
tion, as shown in �gure 7. Thus, we requirea distan
e, d = kb, su
h that for a point P0 we 
an �ndanother point P1 satisfying :Pk = P0 + kbn (4)where b is the progression rate and n is the axis normalfor the two heli
es and k is the integer multiple of theprogression step to move to the next thread.
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Figure 7. Progression Rate FindingPlotting d gives a graph of progression distan
es inZ, as shown in �gure 8. Finding the progression rateis then simply a matter of grouping and averaging thedistan
es between groups. Computing the standarddeviation around the �t will also give a measure of
onsisten
y in the 
utting of the thread.

Figure 8. Progression Rate Estimation4 ResultsResults are presented for both real and generateddata together with example timings.
4.1 ParameterisationsGenerated DataFor 100 sets of randomly generated pairs of helixdata, representing s
rew threads of a wide range of radiiand progession rate and at random orientations wefound that radii were found to 0:01mm (< 0.1%) evenwhen subje
ted to Gaussian noise on all three 
ompo-nents of values between 0:2mm and 0:4mm. This level

of error is higher than we would realisti
ally expe
t,however, by at least an order of magnitude.The progression rate, however, was less a

urate dueto the smaller number of data points. This had anaverage estimate error of 0:02mm=radian (1%), whi
his satisfa
tory for this approa
h.S
anned DataSeveral large s
rew threads were s
anned, ea
h ofthe same radii and for whi
h ground truth was known.In ea
h 
ase the amount of data 
olle
ted from one or-thogonal s
an only was 
onsidered and this representedaround 30o of the s
rew in ea
h 
ase. The s
annedarea (60mm by 40mm) generates around 100,000 pointswhen s
anned at 100 points/mm2 in the XY plane.An example graph of the 
onvergen
e of the leastsquares error of the GA is shown in �gure 9. An exam-
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Figure 9. GA: Error Convergenceple of the 
onvergen
e of the inner/outer radii is shownin �gure 10. Note that this 
onvergen
e is from a setof random starting values.

Figure 10. GA: Convergence of Radii



The unit axis value 
onvergen
e is shown in �gure11. Note that one value 
hanges very qui
kly from -1to 1. This is a boundary mutation operation that is astandard part of the GA operator set.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−1

−0.5

0

0.5

1

1.5

Evaluations

N
or

m
al

 V
al

ue

EA Normal Convergence

Nx
Ny
Nz

Figure 11. GA: Axis ConvergenceFour s
anned data sets were analysed and their pa-rameters were 
ompared to their measured ground-truth. Two tables of results are shown in table 1 andtable 2, below.S
rew Absolute inner/mm Absolute outer/mmradius error/mm radius error/mm1 0.09 0.072 0.09 0.073 0.07 0.044 0.11 0.10
Table 1. Radius Estimate Errors for Large
Screw Threads (True values 16.36mm and
17.77mm)S
rew Absolute progression error in mm/radian1 0.00102 0.00093 0.00124 0.0021
Table 2. Progression Estimate Errors for
Large Screw Threads (True Value = 0.37
mm/radian)

4.2 Example TimingsThe timings presented here, with the ex
eption ofs
anning, are using a 700MHz Athlon PC.

S
anningS
anning of large threaded areas, say 60mm�60mmtakes approximately 10 minutes at a resolution of0:1mm� 0:1mm.Rotation to Canoni
al Alignment (Axis Find-ing)The most CPU intensive part of the analysis is thepeak and trough �nding whi
h has to perform an O(n2)nearest neighbour 
al
ulation. With around 100,000points per dataset this 
an take 90 minutes.The axis �nding GA takes around 25 minutes whenusing a 10,000 point peak/trough set and a randomstarting position on the solution manifold. If good do-main 
onstraints are used, utilising a priori knowledgethen this time is heavily redu
ed. A sear
h populationof 200 was used, together with a referen
e populationof 100 
hromosomes. The strategy was as des
ribed in[2℄.Radius Assessment and Residual Cal
ula-tionsThe radius assessment and residual 
al
ulations takea very short time, less than 10 se
onds for a 100,000point dataset.Progression AnalysisProgression analysis also takes less than 10 se
ondsfor a 100,000 point dataset.5 Con
lusionsIn this paper we have addressed the question ofwhether it is possible to measure large s
rew threadsin an analyti
al, rather than a physi
al way by dire
tmeasurement. We have shown that to a great extentthis is not only possible but 
an be done robustly togive not only the parameters of the thread but some in-di
ation of manufa
turing quality and stability. Theseare two fa
tors that make this te
hnique parti
ularlyuseful to industry.In our results, as expe
ted, we found that randomlygenerated data gave roughly 
omparable results to realdata. The inner and outer radius �nding is espe
iallygood even when using fairly poor data (ma
hined metaldoes not s
an parti
ularly well) so long as the s
an isperformed a
ross the thread, rather than down it.It is entirely possible that the method here 
ould beused equally well in a stand-alone s
anning unit.A
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