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Abstract

In this work we have addressed the question of
whether it is possible to extract parametric models of
screw-threads from 3D range data. Results, example
times for analysis and comparisons with known ground
truths are given.

1 Introduction

Shape analysis of objects from range data (captured
three dimensional co-ordinates of surface points) is a
key problem in computer vision with several impor-
tant applications in manufacturing, such as assembly,
quality control and reverse-engineering.

The measurement of large screw threads is both a
difficult and costly operation requiring the attention
of skilled engineers. It is also vitally important to the
engineering industry that these measurements are ac-
curate and timely. In the oil industry, for example,
threads of radius 50cm are not unusual and must be
machined to high tolerances. When being fitted it is
of great importance that manufacturing tolerances can
be assessed before installation.

In this work we have examined whether it is possible
to extract the parameters of screw threads from 3D
scanned data as well as gaining some insight into the
manufacturing tolerances used.

2 Data
2.1 Quality and Sampling
Data collection is performed using a moving-head,

orthogonal laser stripe ranger which provides data in
0.1lmm steps in the X-Y plane. Noise on the data is

around 15 microns standard deviation. In a single scan
we can sample with a depth of field of around 50mm
although when sampling over a volume we can achieve
around 120° of a large radius bolt. Typical scanned
data is shown in figure 3.

Artificial helix data has also been generated using
a wide range of parameters with Gaussian noise added
in order to test algorithm robustness.

2.2 Models

We have modelled the thread as its underlying math-
ematical structure allows, that is as two co-axial he-
lices with the same progression parameter but different
radii. The helical parameters are shown in figure 1. In
the canonical orientation (axis n = (0,0,1)) the helix is
given parametrically by:

x = r.cos(t) (1)
y = r.sin(t) (2)
z2="0bt (3)

where r is the helix radius and b is the helical progres-
sion. In our case this is expressed as movement in the
direction of n in millimetres per radian.

In an acanonical orientation, if the axis n is com-
puted, then the helix can be rotated into the canonical
orientation.

3 Algorithm

The method is split into the following parts: data
collection, rotation to canonical alignment, radius as-
sessment and residual calculations, progression analy-
sis. Each is discussed below and the processing pipeline
is shown in figure 2, below.



Figure 1. Helix Parameters

3.1 Scanning

Data scanning was performed using a 3D Scanners
flat bed laser range sensor with a 5 degrees of free-
dom scanning head. In our case, because we were us-
ing orthogonal (volume) scanning, only 3 degrees of
freedom were used (X, Y and Z). Artificial data was
generated with a random axis rotation with Gaussian
noise added with various kernel sizes. The minimum
size was 0.2mm which is designed to be much larger
than the accuracy with which we can detect the peaks
and troughs in the scanned data.

3.2 Rotation to Canonical Alignment

In order to perform the re-alignment, the dual helix
axis has first to be found. This is a two stage process:

1. Stage 1 - Peak and trough finding. First we have to
find the maximal and minimal points of the screw
thread lying on the inner (minor) radius and the
outer (major) radius. This de-couples the helices
from the rest of the screw. We do this by perform-
ing a nearest-neighbour analysis. Because of the
screw structure, the points which have the highest
number of neighbours are those that are at turning
points in the data (figure 4). An implicit assump-
tion is that the screw is scanned in a direction
that is approximately orthogonal to the direction
of the screw axis. This ensures that both the top
and bottom of the screw cut is visible.
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Figure 2. Screw Thread Detection Processing
Pipeline

2. Stage 2 - Inner and outer heliz separation and

axis fitting. This optimization is performed us-
ing a genetic algorithm. The data taken from
the peak and trough finder is treated as belonging
to two co-axial cylinders of differing radii. The
function on which the optimization is performed
is the least-squares fitting of the two cylinders.
The chromosome used for this fitting is as fol-
lows: < Nx, Ny, Nz, Pz, Py, Pz, R1, R2 > where
the first 3 terms are the axis normal direction, the
second three terms are a point in 3D and the final
two are the two different cylinder radii.

Automatic segmentation is also made implicit in
the evaluation function:

for all points, 1

{

X points[i] [1]

y = points[i][2]

z = points[i] [3]

dl = distance(X[1] - X[6], X[7], x,y,2)
d2 = distance(X[1] - X[6], X[8], x,y,z)
fitness=0.0

if(dl < d2)

{

fitness+=d1
}

else



Figure 3. Typical Scanned Data
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Figure 4. Screw Cross-section

fitness+=d2
}
}

Note that we are minimizing the fitness function.
The function distance() returns the distance from
the passed point to the cylinder with the passed
parameters. The distance to each cylinder is as-
sessed and the lowest value is taken.

3.3 RadiusAnalysis

Once the data axis has been found we can estimate
the inner and outer radii at various points along it to

Figure 5. End of Stage 1, Peaks and Troughs
Detected

ensure that the screw cut is consistent. This gives us
both radial measurements (with standard deviation).
Note that we could also deal with eccentric helices by
using the guaranteed ellipse fitter [1] on the data pro-
jection onto the base plane. An example of the inner
radius estimate histogram is shown in figure 6, below.
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Figure 6. Radius Estimates Histogram

3.4 Progression Analysis

We can estimate the progression rate by finding
pairs of points which lie approximately in alignment
with the helix pair axis direction, but are separated in
the Z direction, as shown in figure 7. Thus, we require
a distance, d = kb, such that for a point Py we can find
another point P; satisfying :

Pk:P0+k}bIl (4)

where b is the progression rate and n is the axis normal
for the two helices and k is the integer multiple of the
progression step to move to the next thread.
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Figure 7. Progression Rate Finding

Plotting d gives a graph of progression distances in
7, as shown in figure 8. Finding the progression rate
is then simply a matter of grouping and averaging the
distances between groups. Computing the standard
deviation around the fit will also give a measure of
consistency in the cutting of the thread.
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Figure 8. Progression Rate Estimation

4 Results

Results are presented for both real and generated
data together with example timings.

4.1 Parameterisations

Generated Data

For 100 sets of randomly generated pairs of helix
data, representing screw threads of a wide range of radii
and progession rate and at random orientations we
found that radii were found to 0.01mm (< 0.1%) even
when subjected to Gaussian noise on all three compo-
nents of values between 0.2mm and 0.4mm. This level

of error is higher than we would realistically expect,
however, by at least an order of magnitude.

The progression rate, however, was less accurate due
to the smaller number of data points. This had an
average estimate error of 0.02mm/radian (1%), which
is satisfactory for this approach.

Scanned Data

Several large screw threads were scanned, each of
the same radii and for which ground truth was known.
In each case the amount of data collected from one or-
thogonal scan only was considered and this represented
around 30° of the screw in each case. The scanned
area (60mm by 40mm) generates around 100,000 points
when scanned at 100 points/mm? in the XY plane.

An example graph of the convergence of the least
squares error of the GA is shown in figure 9. An exam-
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Figure 9. GA: Error Convergence

ple of the convergence of the inner/outer radii is shown
in figure 10. Note that this convergence is from a set
of random starting values.
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The unit axis value convergence is shown in figure
11. Note that one value changes very quickly from -1
to 1. This is a boundary mutation operation that is a
standard part of the GA operator set.
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Figure 11. GA: Axis Convergence

Four scanned data sets were analysed and their pa-
rameters were compared to their measured ground-
truth. Two tables of results are shown in table 1 and
table 2, below.

Screw  Absolute inner/mm  Absolute outer/mm
radius error/mm radius error/mm
1 0.09 0.07
2 0.09 0.07
3 0.07 0.04
4 0.11 0.10

Table 1. Radius Estimate Errors for Large
Screw Threads (True values 16.36mm and
17.77mm)

Screw  Absolute progression error in mm/radian
1 0.0010
2 0.0009
3 0.0012
4 0.0021

Table 2. Progression Estimate Errors for
Large Screw Threads (True Value = 0.37
mm/radian)

4.2 ExampleTimings

The timings presented here, with the exception of
scanning, are using a 7T00MHz Athlon PC.

Scanning

Scanning of large threaded areas, say 60mm x 60mm
takes approximately 10 minutes at a resolution of
0.1mm x 0.1mm.

Rotation to Canonical Alignment (Axis Find-
ing)

The most CPU intensive part of the analysis is the
peak and trough finding which has to perform an O(n?)
nearest neighbour calculation. With around 100,000
points per dataset this can take 90 minutes.

The axis finding GA takes around 25 minutes when
using a 10,000 point peak/trough set and a random
starting position on the solution manifold. If good do-
main constraints are used, utilising a priori knowledge
then this time is heavily reduced. A search population
of 200 was used, together with a reference population
of 100 chromosomes. The strategy was as described in
[2].

Radius Assessment and Residual Calcula-
tions

The radius assessment and residual calculations take
a very short time, less than 10 seconds for a 100,000
point dataset.

Progression Analysis

Progression analysis also takes less than 10 seconds
for a 100,000 point dataset.

5 Conclusions

In this paper we have addressed the question of
whether it is possible to measure large screw threads
in an analytical, rather than a physical way by direct
measurement. We have shown that to a great extent
this is not only possible but can be done robustly to
give not only the parameters of the thread but some in-
dication of manufacturing quality and stability. These
are two factors that make this technique particularly
useful to industry.

In our results, as expected, we found that randomly
generated data gave roughly comparable results to real
data. The inner and outer radius finding is especially
good even when using fairly poor data (machined metal
does not scan particularly well) so long as the scan is
performed across the thread, rather than down it.

It is entirely possible that the method here could be
used equally well in a stand-alone scanning unit.
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