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Abstract
Images of co-planar points in 3-dimensional space
taken from different camera positions are a homogra-
phy apart. Homographies are at the heart of geometric
methods in computer vision and are used in geometric
camera calibration, 3D reconstruction, stereo vision and
image mosaicking among other tasks. In this paper we
show the surprising result that homographies are the ap-
posite tool for relating image colors of the same scene
when the capture conditions – illumination color, shad-
ing and device – change.

Three applications of color homographies are inves-
tigated. First, we show that color calibration is cor-
rectly formulated as a homography problem. Second,
we compare the chromaticity distributions of an image
of colorful objects to a database of object chromaticity
distributions using homography matching. In the color
transfer problem, the colors in one image are mapped
so that the resulting image color style matches that of a
target image. We show that natural image color transfer
can be re-interpreted as a color homography mapping.

Experiments demonstrate that solving the color ho-
mography problem leads to more accurate calibra-
tion, improved color-based object recognition, and we
present a new direction for developing natural color
transfer algorithms.

1 Introduction
In image formation there are two important parts, the
geometry of how points in space map to image loca-
tions and the photometry of how illumination, surface
reflectances and camera sensors combine to form the

colors in an image. Broadly, the mathematical tools
underlying our understanding of image geometry are
non-linear reflecting the non-linear perspective nature
of image formation. Important non-linear concepts in-
clude “solving for the homography” (e.g. relating sub-
sequent frames in panorama stitching [1]) and epipolar
geometry in stereo vision [2]). In contrast, the major-
ity of methods in color/photometric computer vision are
linear which, at least for simplified scenes such as the
eponymous Mondrian world [3, 4] (the world consists
of a patchwork of flat co-planar reflectances), reflects
the physics of how images are formed. Linear color
problems include, color correction [5–7] (e.g. mapping
RAW colors from camera to display RGB) and mod-
eling illuminant color change [8] e.g. for color object
recognition [9].

In Figure 1a, we illustrate a homography as the term
applies in geometric computer vision. Here π1 might
denote the image – a perspective projection – of a
plane (in 3-dimensions) and π2 denotes the same plane
viewed in a second image. The homography H relates
the two planes.

In Figure 1b, Ball 1 is the image of the side-view of a
4-color ball where the ball is lit from behind the camera
with a white light. The same ball is lit from above with
a bluish light, image Ball 2. The images are carefully
registered so they are in pixel-wise correspondence. In
an attempt to color correct panel Ball 2 to match Ball 1,
we, naively, carry out a linear regression – for locations
where both images have non-zero response – and find
the best 3×3 matrixM mapping the corresponding pix-
els. The result of the regression results in image Ball 3.
Notice that while the color cast due to the bluish light
appears lessened, viewed closely, the colors are incor-
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Figure 1: Top left, panel (a), images of two planes are
related by a homography. Right, panel (b), 4 images of
a colored ball are shown. Ball 1 is the reference image
where the illumination color is white and placed behind
the camera. Ball 2 is the object illuminated with a blue
light from above. Respectively, Ball 3 and Ball 4 are
the least-squares mapping and the homography match
(in both cases the aim is to correctly undo the illumi-
nation color) from Ball 2 to Ball 1, Bottom right, panel
(c), the chromaticities from Ball 2 matched to corre-
sponding chromaticities in Ball 1.

rectly mapped. In particular, notice that the red color
segment looks wrong. Now, we now transform Ball 2
image to the image Ball 4 using the correct linear trans-
form H .

In this paper, we propose that to map one photomet-
ric view to another we must map the colors correctly
independent of shading. Since shading only affects the
brightness, or magnitude, of the RGB vectors we wish,
in effect, to find the 3 × 3 map which maps the color
rays (the RGBs with arbitrary scalings) in one photo-
metric view to corresponding rays in another. We note
that this “ray matching” is precisely the circumstance in
geometric computer vision when co-planar points in an
image are mapped, via a homography, to corresponding
points in a second image [2]. In analogy to the geo-
metric case, at least 4 non-coplanar rays are required to
solve for a color homography.

An RGB measurement without shading can be en-
coded as the (r, g) chromaticity coordinate: r =
R/(R+G+B) and g = G/(R+G+B) (since the vec-
tor [R G B]ᵀ has the same orientation as [r g 1−r−g]ᵀ.
In Figure 1c, the 4 reflectances from the ball corre-
spond to 4 points in an rg-chromaticity diagram and
these define the quadrilaterals shown in the left and
right of the panel (for respectively for the images Ball 2

and Ball 1). Assuming the illumination color change is
linear, the mapping between the two chromaticity dia-
grams is precisely a homography (a fact we formally
prove later).

We apply color homographies to help solve problems
in three applications. In Figure 2a, we show the pic-
ture of an image in the RAW RGB space of a cam-
era and the corresponding reproduction when the colors
are corrected for display (where both images are also
tone mapped for printing in this paper). In computer vi-
sion, the idea that pervades color correction is that all
we need to do is find the best least-squares transform
mapping the color checker shown in the RAW image
to pre-measured correct display RGBs with some of the
problem focus directed towards automatically finding
the checker in the image [11, 12]. However, consistent
with other recent work [13, 14], we found that the illu-
mination intensity could vary significantly over the im-
age of a checker. When shading varies, the color correc-
tion transform is found by solving for the homography
relating the colors from the RAW to reference display
RGBs.

Consider that we have a database of colorful objects
where the color content of each image is represented by
its chromaticity distribution. By matching color distri-
butions we can obtain surprisingly accurate color object
recognition [15, 16]. However, object recognition per-
formance degrades when the light color changes [17].
The role of homographies in color object recognition is
summarized in Figure 2b. Clearly, image I1 matches
image I2 (it is of the same object) but image I3 is an
image of a different object. The distribution of rg chro-
maticities for image I1 is shown in purple in both chro-
maticity diagrams in the middle of Figure 2b. The rg
distribution of images I2 and I3 are overlaid in green.
Notice, however, that the distributions do not match in
either case. Indeed, even though images I1 and I2 are
of the same object their chromaticity distributions don’t
match because images I2 and I3 are taken with respect
to a warmer illumination color.

Our hypothesis is that the chromaticity distributions
for the same scene lit by two different lights but where
the image shading might change will be related by a
homography. In the last row of Figure 2b, we show the
output of homography matching for chromaticity distri-
butions for I1 matched to I2 and I1 matched to I3. We
see the chromaticity distribution of H(I1, I2) (the col-
ors in I1 homographically transformed to match those
in I2) now overlap and we can conclude the two im-
ages plausibly have the same color content. In contrast
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Figure 2: a) Color correction (mapping RAW to display sRGB [10]) is a homography problem. b) The top contains
3 images of colorful objects. Histogram matching of chromaticity distributions of images I1 with I2 and I1 with
I3 are shown in the middle (chromaticity distribution for I1 is in purple and for I2 and I3 is in green). Solving
for the color homographies best mapping I1 to I2 and I1 to I3 (respectively, H(I1, I2) and H(I1, I3)) results in
the histograms shown in the bottom row. The distributions for I1 and I2 now match and the object is correctly
identified. c) Color transfer for matching the colors of an input image I to the colors of a target image J can be
reinterpreted as a simple color homography mapping H(I,O).
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H(I1, I3) fails to match the chromaticity distributions.
Note this latter match is poor (even poorer than the in-
put) due to the mechanics of how the match is made
which we discuss in Section 3.2. The matching method
in this case actually informs us that no good match is
possible, but for purposes of illustration, we show the
weak match that was found.

Finally, we consider color homographies in the con-
text of image color transfer. Automated color transfer is
often required in professional photo editing. Artists can
choose a desired target picture and manipulate another
picture to match its color styles to the target. In Fig-
ure 2c, Image I has its colors transferred to map those
shown in Image J and the result of the method [18]
is denoted O = f(I, J). Using our color homography
theorem, we can approximate the color transfer resultO
by a color homography model which produces a close
approximation imageO′ = H(I,O) (I mapped by a ho-
mography to approximateO). By enforcing color space
homography the resulting image can be physically in-
terpreted as being an image of the same scene as the
input image but under a different illumination. We can
re-interpret most color transfer effects using a color ho-
mography model. This result is useful because, unlike
many of the color transfer algorithms, color homogra-
phies can be computed quickly. Indeed we have found
that we can run a computationally expensive algorithm
on a thumbnail image, compute the homography and
then apply the homography to the full-resolution image.
Another benefit of our homography-based model is that
we often remove the artifacts introduced by some color
transfer algorithms. That is, we run a color transfer al-
gorithm (whose output has artifacts) and approximate it
as a homography. Because of the simpler transfer that
is enforced by the homography many of the spatial arti-
facts either disappear or are mitigated.

Experiments demonstrate the power of our color
space homography idea. Regarding color correction we
report a significant improvement in color accuracy com-
pared to the commonly used color correction methods.
For object recognition on the Amsterdam Object Im-
age Database [19] (> 100000 images encompassing a
range of capture conditions), homographically match-
ing chromaticity distributions supports state-of-the-art
color-based object recognition. Finally, we found that
existing color transfer algorithms can be re-interpreted
as a color homography mapping.

In Section 2, we review the homography problem
from geometric computer vision and relate this to linear
image formation in color/photometric vision. Section 3

presents the color homography theorem together with a
discussion on how to, in practice, solve for a color ho-
mography. Experiments in color correction, color ob-
ject recognition and color transfer are reported in Sec-
tion 4. We discuss application of homographies to non-
RAW images in Section 5. The paper concludes in Sec-
tion 6.

2 Background

2.1 Geometry
For the geometric planar homography problem, we
write: αx

αy
α

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x′

y′

1

 , x = H(x′)

(1)
In Equation 1, (x, y) and (x′, y′) denote corresponding
image points – the same physical feature – in two im-
ages. In homogeneous coordinates the vector [a b c]ᵀ

maps to the coordinates [a/c b/c]ᵀ and so, in Equa-
tion 1, the scalar α cancels to form the image coordi-
nate (x, y). For all pairs of corresponding points (x, y)
and (x′, y′) that lie on the same plane in 3 dimensional
space, Equation 1 exactly characterises the relationship
between their images [2]. To solve for a homography
(e.g. for image mosaicking), we need to find distinc-
tive feature points in pair of images, match them to find
candidate corresponding points, then solve for the best
homography and finally warp the image to bring one
image into the coordinate frame of the other [20, 21].
Homographies are at the heart of geometric methods in
computer vision and are used in geometric camera cali-
bration [22], 3D reconstruction [23], stereo vision [24]
and image mosaicking [25] amongst other tasks.

2.2 Color
A physically accurate model of Lambertian image for-
mation where the illumination impinging on a scene is
a single color is written as

ρx = αx
∫
ω

E(λ)Sx(λ)Q(λ)dλ (2)

where respectively E(λ), Sx(λ) and Q(λ) denote the
spectral power distribution of the light, the spectral re-
flectance of a surface, and the vector of R-, G- and B-
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spectral sensitivities of the camera. And, the integral is
taken over the visible spectrum ω. The superscript x de-
notes spatial dependency and αx is a scaling factor en-
coding brightness changes due to the relative interplay
between where the lights are positioned and the orien-
tation of the surface in the scene (e.g. Lambert’s law)
and the quantity of light (e.g. to model extended light
sources). It is well established [26–28] that surface re-
flectance can often be written to a tolerable approxima-
tion as the weighted sum of three basis functions:

S(λ) ≈
3∑
j=1

Sj(λ)σj (3)

Whenαx = 1 (so we can ignore spatial dependency) we
have the so-called Mondrian-world [3]. There we have
no shading in images and this simplifies consideration
of how colors change with illumination and/or imag-
ing device. Under the Mondrian-world assumption, we
write:

ρ = ΛE(λ),Q(λ)σ

Λ
E(λ),Q(λ)

ij =
∫
ω
E(λ)Sj(λ)Qi(λ)dλ

(4)

In Equation 4, image formation is a 3×3 linear matrix
Λ multiplying a 3 × 1 weight vector σ. Two important
results follow from Equation 4. First, that the 3 × 3
matrix

ΛE2(λ),Q(λ)[ΛE1(λ),Q(λ)]−1 (5)

maps colors viewed under illuminant E1(λ) to those
recorded under E2(λ) assuming the same camera sen-
sitivities Q(λ). Second that the 3×3 transform relating
colors recorded by cameras with the respective sensitiv-
ities Q

1
(λ) and Q

2
(λ) is written as

ΛE(λ),Q
2
(λ)[ΛE(λ),Q

1
(λ)]−1. (6)

assuming the same illuminant E(λ).
Of course it is well known that Equation 3 is only

approximate. Indeed, illuminant metamerism [29] –
the phenomenon that two surfaces look the same un-
der one light can look different under another – cannot
be described by a 3 × 3 matrix of illuminant change.
Yet, metamerism (illuminant or sensor) is rare. More-
over Marimont and Wandell [30] extended the linear
model formalism to incorporate image formation into
the derivation of the optimal linear basis and found that
3 × 3 matrices could well account for illuminant and
sensor change. A similar result was reported by Funt

et al. [31, 32]. While most of the literature assumes a
single global illuminant, other recent work are also pro-
posed to solve multi-illuminant color constancy [33–
35], which is an emerging and challenging area of re-
search.

That illumination (or device) colors map across im-
ages using a linear transform is a common assumption
and is widely reported in the literature including, in
color correction [5–7] color object recognition [9, 36]
and illuminant estimation [4]. However, the Mondrian-
world does not generally hold. Indeed, color intensity
can and does vary on a per-pixel basis due to the relative
position of light and surface and also due to the quantity
of light varying across a scene. When illumination color
is held fixed then a chromaticity representation of color
can be used to factor out per pixel shading variation e.g.
[37].

To deal with a changing light color, the so-called “di-
agonal” model of image formation is often employed
with respect to which color change across images is
modeled as a diagonal matrix [38, 39] multiplying the
image colors. The diagonal model is at the heart of the
“comprehensive color image normalization” [40] and
the m1m2m3 coordinate system [41] both of which are
light color plus shading invariant image features. Fur-
ther, specially chosen spectral band ratios (for example,
R/G and B/G) have an analogous diagonal property
(the 2-d band ratios are mapped across illumination by
a 2 × 2 diagonal matrix). This property is exploited
in illuminant color and shading-independent histogram
matching for object recognition [42] and illuminant es-
timation [43, 44].

Of course moving to a chromaticity representation
means one of the 3 degrees of freedom measured in an
RGB image has been lost. In calibrated color correction
– mapping the RAW RGBs recorded for a known color
chart to a standard color space – it is possible to find the
full 3× 3 matrix mapping the orientation of input color
vectors to the orientation of output colors by a search-
ing strategy [13]. Alternately, in [14], solving for the
best shading while simultaneously finding the color cor-
rection matrix was formulated as an Alternating Least-
squares approach. Both these methods deliver signifi-
cantly lower correction error compared with a shading
blind linear least-squares optimization. In display cali-
bration [45] it was shown that 4 chromaticities sufficed
for color calibration.
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3 Color Homography
Let us map an RGB ρᵀ to a corresponding RGI (red-
green-intensity) cᵀ using a 3× 3 matrix C:

ρᵀC = cᵀ R
G
B

ᵀ  1 0 1
0 1 1
0 0 1

 =

 R
G

R+G+B

ᵀ (7)

interpreting the right-hand-side of Equation 7 as a ho-
mogeneous coordinate (e.g here, as chromaticities) we
see that

c ∝
[
r g 1

]ᵀ
, r =

R

R+G+B
, g =

G

R+G+B
(8)

In the following proof it is useful to represent 2-d chro-
maticities by their corresponding 3-d homogeneous co-
ordinates.

Theorem 1 (Color Homography). Chromaticities
across a linear change in capture condition (light color,
shading and imaging device) are a homography apart.

Proof. First we assume that across a change in illumi-
nation or a change in device where the shading is the
same (e.g. for the Mondrian-world) the corresponding
RGBs are related by a linear transform M (i.e. Equa-
tions 5 and 6 hold). Clearly, H = C−1MC maps col-
ors in RGI form between illuminants. Due to different
shading, the RGI triple under a second light is repre-
sented as c′ᵀ = αcᵀH , where α denotes the unknown
scaling and ᵀ denotes transpose. Without loss of gen-
erality let us interpret c as a homogeneous coordinate
i.e. assume its third component is 1. Then, chromaticity
coordinates cᵀ and c′ᵀ are a homography apart.

In geometry, homographies are applied for mapping
spatial coordinates in one image to correspondences in
another. In color homography we are also interested in
this 2D-2D match problem (chromaticity to chromatic-
ity mapping). However, for some applications – e.g.
color transfer – the homography that maps 3D colors to
3D color matches (in a shading independent way) is the
apposite tool.

3.1 Color Homography Estimation by Al-
ternating Least Squares

Suppose A and B denote respectively n × 3 matrices
of n corresponding pixel RGBs with respect to two im-
ages of the same scene where the illumination changes

(and, also possibly the camera properties). The color
change is modeled as a linear transform (Equations 5
and 6) but because of the relative positions of light and
surfaces there might also be per-pixel shading perturba-
tions. Assuming that the Lambertian image formation
is an accurate physical model, the relationship between
A and B is written as

DAH ≈ B (9)

where D is an n × n diagonal matrix of scalar shading
factors and H is a 3 × 3 homography color correction
matrix. If both D and H are applied to A, then we call
this a shading homography. We can solve Equation 9 by
using Alternating Least-Squares (ALS) [14, 46, 47] de-
scribed in Algorithm 1. There ‖.‖F denotes the Frobe-
nius norm. And, at iteration i, Hi and Di are found
using the closed form Moore-Penrose inverse. The
least squares fit of A to B is equal to (AᵀA)−1AᵀB.
Each scalar component at the jth diagonal element of
Di is the result of a least squares fit of the jth row of
Ai−1 to the jth row of B (where again we use Moore-
Penrose inverse). The effect of the individual Hi and

Algorithm 1: Homography from alternating least-
squares

1 i = 0, minD0

∥∥D0A−B
∥∥
F

, A0 = D0A;
2 repeat
3 i = i+ 1;
4 minHi

∥∥Ai−1Hi −B
∥∥
F

;
5 minDi

∥∥DiAi−1Hi −B
∥∥
F

;
6 Ai = DiAi−1Hi;
7 until

∥∥Ai −Ai−1∥∥
F
< ε;

Di can be combined into a single matrix D =
∏
iD

i

and H =
∏
iH

i (where the product is taken by post-
multiplying matrices). That is, DAH ≈ B. ALS con-
verges to a local minimum [48].

Finally, note how we initialize the matrix A0 to be
the closest least-squares fit of the rows of A to the rows
of B. This initialization is performed for two reasons.
First, we find slightly better visual results if we applied
D before H . Secondly, it simplifies the proof of Theo-
rem 2.

To motivate the theorem below we know from geo-
metric computer vision that given the images of the two
planar regions each enclosed by 4 corner points in two
views (assuming certain assumptions) there is a unique
homography and that this can be found directly [2]. In
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Theorem 2, we capture the conditions where the ALS
method can find the unique homography given 4 pairs
of colors captured across viewing conditions.

Theorem 2 (ALS Uniqueness). The ALS method finds
the homography – unique, up to a scalar multiplier –
when there are 4 pairs of corresponding non-collinear
colorsA andB each of which is a 4×3 full-rank matrix
(i.e. rank(A) = rank(B) = 3) and the null space –
which is represented by the 4-vector vi – of (Ai−B) at
convergence is not sparse. A vector vi is sparse if 1, 2
or 3 (but not all 4) of its entries are 0.

Proof. In this case, A and B are 4 × 3 matrices. Be-
cause the elements of A and B are strictly positive and
full rank, the 3 × 3 cross product matrices AᵀA and
AᵀB are also full rank. We point this out because this
in turn implies that at every time we calculate Di and
Hi in the ALS method that these matrices themselves
are full rank. That is, so long as A and B begin as
full rank matrices the matricesAi, B, Di andHi are all
themselves full rank i.e. we never encounter the circum-
stance where an individual least-squares fit introduces
rank deficiency.

Now let us suppose that, the stopping condition of
the ALS procedure is met in the ith iteration. To prove
Theorem 2, we need to first prove the following lemma.

Lemma 1. When the ALS algorithm converges at step
i then Di = I4×4 and Hi = I3×3 where I denotes the
identity matrix.

Proof. Let us assume Lemma 1 is false then when
the algorithm converges it must follow we can write
DAi−1H = Ai (where here D and H are respectively
a 4 × 4 diagonal matrix and an arbitrary 3 × 3 linear
transform). This can only be true if the rows of Ai−1

are row Eigenvectors of H . This cannot be the case be-
cause then two of the rows of Ai−1 would be the same
(up to a scalar) i.e. collinear and in the statement of the
theorem this was assumed not to be the case (i.e. to get
to Ai involves multiplying A by a series of full rank
matrices. If the rows of A are not collinear then neither
are the rows of Ai).

Let us now prove Theorem 2 by contradiction. We
will show that if the alternating least-squares procedure
has converged and the unique homography has not been
found then the assumption of convergence cannot hold
(and, yet, we know the algorithm converges [48]).

Let us assume that Ai 6= B. It follows that

B = Ai + v wᵀ s.t. vᵀAi = 0

where respectively v and w are 4 × 1 and 3 × 1 vec-
tors, and v spans the column null-space of Ai. From
Lemma 1, on convergence, both Di and Hi are identity
matrices. Let us consider the final step in the algorithm
(step 5 just before the algorithm stops). By Assumption
the algorithm converges and Ai 6= B and Hi = I3×3
(from Lemma 1):

Ai + v wᵀ = B = DiAiHi = DiAiI.

The least-squares per-row scalar returned in Line 5 of
Algorithm 1 can be written in closed form (we are sim-
ply using the Moore-Penrose inverse)

Di
jj =

aᵀj (aj + vjw)

aᵀj aj
=

∥∥aj∥∥2 + vja
ᵀ
jw∥∥aj∥∥2

where the jth row of Ai, denoted aᵀj , has a magnitude∥∥aj∥∥ > 0, because Ai has full rank and no two points
are collinear. It can be shown that the scaling of the
jth row of Ai that best matches the jth row of B in a
least-squares sense can be written as:

Di
jj = 1 +

vj∥∥aj∥∥2 aᵀjw
which implies Di

jj = 1 ⇐⇒ aj w = 0. Because
Ai is assumed to be full rank, it is possible that three of
its four rows can satisfy aᵀj w = 0. However, this can
not hold for the fourth row otherwise A is not full rank.
And by our assumption of non-sparsity all elements of
v are either non-zero or zero. If they are all non-zero i.e.
the algorithm has not converged (when by assumption
it has). We have a contradiction that Di 6= I.

Of course the reader will have noticed a sleight of
hand on our part. We made a non-sparsity assumption
on the null-space of Ai − B at convergence. Albeit
rarely, we found the alternating least-squares procedure
might terminate with a sparse null space vector and in
this case with Ai 6= B (the algorithm stops but we do
not find the unique homography).

To investigate convergence empirically, we uni-
formly randomly generated 4 × 3 matrices A (matrix
elements in the interval [0, 1] to 2 decimal places) and
then randomly generated matrices D (elements chosen
uniformly and randomly from [0, 1]) and H (elements
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chosen from the standard normal distribution N(0, 1)).
Then, we computeB = DAH . The matrixB created in
this way could plausibly be matching colors under dif-
ferent lights or different devices. We then ran the ALS
procedure to solve for the homography, to discover D
and H .

Over 10,000 runs the ALS procedure converged to
the correct answer (the non-sparsity condition was sat-
isfied) over 96.5% of the time. For the remaining 3.5%
of the cases that did not converge we mapped A and B
to new matrices A′ and B′ according to:

A′ = DAAHA , B′ = DBAHB

where DA and DB are randomly chosen positive ma-
trices (entries in [0, 1]) and HA and HB are 3 × 3 ma-
trices with elements drawn from N(0, 1). We then run
our procedure a second time. Assuming convergence to
the correct answer i.e. we find matrices D′ and H ′ such
that D′A′H ′ = B′. It follows that D = [DB ]−1D′DA

and H = HAH ′[HB ]−1. In all cases, this kind of ran-
dom perturbation sufficed to make ALS converge to the
correct answer. In all cases (even without the pertur-
bation), the % difference ‖DAH −B‖ / ‖B‖ between
the actual and fitted homography, between DAH and
B was less than 0.5% (and usually orders of magnitude
smaller). Indeed, we have not found a compelling vi-
sual example where the output of the ALS procedure –
when it converges to the wrong answer – appears dif-
ferent from the overall best answer (zero error for the 4
point homography fitting). In Appendix A we present
a numerical example where the 4 point ALS minimiza-
tion fails to solve for the homography.

Finally, in thinking about solving for a homography
by mapping the original matrices A and B to coun-
terparts (which, for ALS then converges correctly) we
were, as a side-effect, able to write the homography cal-
culation directly as a simple matrix computation (see
Appendix B). While wholly equivalent to the “direct
method” [2], the form of the equation appears novel.

3.2 Homography-based Chromaticity
Matching

In geometric computer vision we find the homography
relating two images in three steps. First, we find dis-
tinctive features, second we find candidate matching lo-
cations by pairing distinctive features which also have
similar underlying image structure and third, we find
the best homography match accounting for as many of

our paired image points as possible. See [20] for a gen-
eral discussion for finding corresponding feature points
between two images. Here, we treat the chromaticity
distributions as images and seek to find and match these
distributions analogously to the geometric case (i.e. we
find and match interest points found for chromaticity
distributions). An interesting technical issue is that we
would, ideally, like to be able to find the same fea-
ture points robust against the image transformation we
are trying to discover. The ASIFT [21] algorithm is a
methodology for matching images that is fully invari-
ant to affine image modification. In the top of Figure 3,
we show the ASIFT match for the color distributions of
images I1 and I2 from Figure 2. Visually, we see that
structurally similar (corresponding to the shape of the
chromaticity distribution) points are found in both im-
ages. Pairs of correspondences found by RANSAC [2]
matching are also shown (as the lines joining the ASIFT
points in the two distributions). Among other popular
feature point matching algorithms, such as SIFT [20],
MSER [49], SURF [50], and Harris corner feature [51],
we found ASIFT delivers the best chromaticity match-
ing result.

The result of solving for the homography relating
matched points is shown in the chromaticity diagram
shown bottom left of Figure 2b. There the green dis-
tribution shows the chromaticities of image I2 and in
purple the homographically transformed chromaticities
from image I1. The distributions, and so the images,
match. The result of applying the best homography re-
lating the distributions for images I1 and I3 (based on
the matched points shown in the bottom of Figure 3),
does not match the chromaticity distributions (see bot-
tom right, Figure 2b). We can conclude that the object
in image I1 does not match the object in image I3.

While there are many ways of matching color distri-
butions we found that a simple structural match score –
a measure of how well a homography matches ASIFT
points – provided a powerful way to determine whether
one chromaticity distribution matched another. Sup-
pose ASIFT returned N and M points of interests
from a pair of chromaticity distributions and that (via
RANSAC) we found that we could match m pairs of
points by finding the best homography. Then, our struc-
tural match is defined as:

structural match =
m√
MN

(10)

A structural match score of 1 means all ASIFT points
found in both chromaticity distributions are, placed
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Figure 3: Top: ASIFT [21] can match the chromaticity
distributions of images I1 and I2. Bottom: ASIFT can-
not match the chromaticity distributions of image I1 to
image I3 (images I1, I2 and I3 shown in Figure 2b)

in correspondence, a homography apart. Section 4.2
shows an application of object recognition which adopts
this structural match score as a measure of image sim-
ilarity. Later we will see that the number of ASIFT
points extracted from a chromaticity distribution –
which we call its structural complexity – can be used to
predict whether a homography-based distribution match
will, in fact, be possible.

It is known that ASIFT is about 13.5 times the cost
of SIFT [21]. Importantly, efficient implementations
of SIFT exist including in real-time on mobile de-
vices. Also, in general SIFT operates on large (> 1
megapixel) images. In contrast, though we use the more
expensive ASIFT to match thumbnail images: our “im-
ages” are small: chromaticity distribution that have just
320×320 bins. Thus, despite the 13.5× cost multiplier
compared to SIFT, the cost of ASIFT in matching chro-
maticity distributions is similar to running SIFT on full
size images.

4 Experiments

4.1 Color Correction

4.1.1 Color Correction using a Color Chart

In color correction – mapping RAW RGBs to a dis-
play color space – the target RGBs are known to vary
in intensity. Indeed, serious photographers will take
a picture of a color target (such as the Macbeth color
checker [52] shown in Figure 2a) and a second picture
of a uniform gray target with same size in the same
location. By dividing the RGB image of the checker
by the image of the gray-target the shading is removed
and then the shading corrected RGBs can be mapped to
known reference display color coordinates using simple
least-squares. However, in computer vision, and even
for the vast majority of photographers, this two-step ap-
proach to calibration is rarely taken (e.g. see [11, 12]).
If nothing else it is invasive and in some cases cannot be
done at all (e.g. in an on-going surveillance situation).
However, the photographic “best practice” allows us to
measure useful data to evaluate homography vs. lin-
ear least-squares color correction. We can find the best
least-squares 3×3 matrix mapping the non-shading cor-
rected checker to a reference target and then apply this
matrix to the shading corrected target. Or, we trans-
form the target using a homography. This experimental
methodology is described in detail in [13].

Because the display RGBs are measured in coordi-
nates relevant to human vision, e.g. sRGB [10], the
color error can be converted to the CIE Lab, CIE Luv,
RGB error metrics. The CIE formulas [29] return a ∆E
error of 1 if two patches are just discernible from each
other. The ∆E RGB error between two RGB vectors
p and q is calculated as ||p − q||. Similarly, ∆E in Ta-
ble 1 is also for the Luv and Lab representations. In Fig-
ure 2a, we show the RAW and rendered (JPEG) images
of one of our images. Two examples containing outdoor
and indoor lighting conditions for our color correction
evaluation are shown in Figure 4. In total, we captured
13 images at Norwich cathedral and around the Uni-
versity of East Anglia campus. Our image set contains
both indoor and outdoor illumination. To calculate the
best homography we randomly chose 4 matching col-
ors (according to the known correspondences) and us-
ing RANSAC, chose the homography that minimized
correction error (∆E Luv). The mean, median, 95%
quantile and max ∆E errors calculated over the 13 im-
ages are reported in Table 1 where we compare per-

9



Figure 4: Two example images with non-uniformly
shading used for color correction test.

formance to simple least-squares, root-polynomial [53],
and ALS [14] (which is shown to be improved on [13]).
Compared with the ALS color correction, all mean er-
rors are improved by about 9%, and all median errors
are improved by about 21%, at the cost of getting a
slightly higher 95% quantile error and maximum error
(except for RGB metric). Compared to the least squares
and root-polynomial methods – which are shading de-
pendent – the advantage of using the homography based
formalism is quite significant (e.g. the median errors –
for all 3 error metrics – are halved).

4.1.2 Color Correction for Single Color Objects

The solution for a color homography requires at least
4 non-collinear chromaticities. For a perfect convex-
shaped monochrome Lambertian surface viewed under
a single light source, the resulting chromaticity distri-
bution – in the idealized case – will comprise a single
point. However, most objects are not perfectly Lamber-
tian – there is a highlight component – and are not con-
vex and so there could be inter-reflections. Both specu-
lar highlights [54, 55] and inter-reflections [56–58] lead
to the chromaticity distribution of a single object be-
ing more than a single point. Indeed, in the presence
of specular highlights and inter-reflections we expect a
spread of points in 3D RGB space and a spread (not all
collinear) points in chromaticity space.

In columns A and B of Figure 5 we show, respec-
tively, 4 monochrome objects viewed in 2 viewing con-
ditions (different colored light in different positions). In
column C we show, in green, the chromaticity distribu-
tions of images in column A and in pink the chromatic-
ities of the images in B. Clearly, there is a spread in
chromaticities in both viewing conditions. If we are to
match chromaticity distributions by solving for a ho-
mography then it is a necessary condition that the im-
ages (and their chromaticities) in columns A and B are
related by a homography. Using the ALS method (the

A B ED FC

Figure 5: Given pixel-wise correspondence between
Images A and B, a color homography is solved for to
convert Image A to Images D (with shading correction)
and E (without shading). Image F is the worse conver-
sion result when linear least-squares is adopted. Image
C shows the rg chromaticity spread (Image A in green,
Image B in pink).

pixels are in correspondence) we solve for the best 3×3
matrix and shading correction that relates the images in
column A to counterparts in column B. Mapping the
images in A with the solved shading and color correc-
tions results in the fitted images, shown in column D.
Visually, the fit is excellent. In column E we apply just
the 3×3 homography matrix (no shading correction) to
the inputs from A. Now we have the object mapped to
viewing condition B but the original shading preserved.
Finally, in column F we find a pixel-wise least-squares
fit. Here the wrong 3 × 3 matrix is found (since it is
attempting to best compensate shading and colour cor-
rection in a single matrix).

4.2 Color Object Recognition
The Amsterdam Object Image Database [19] is a large
1000 object database widely used to benchmark color-
based object recognition. Importantly, each object in
the database has its image captured with respect to 72
rotational views (range from 0◦ to 355◦, at 5◦ reso-
lution) and 24 illumination angles, and 12 illuminant
color temperatures (2175K to 3075K). In total the ALOI
dataset comprises in excess of 100,000 images. We
match objects by matching their underlying distribu-
tions. Simply, in color-distribution-based object recog-
nition, if two images have similar underlying color dis-
tributions then this is taken as evidence of a possible
object match.
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Table 1: Errors for Color Correction (X-Rite Classic Color Checker)
Method Mean Median 95% Max

∆E (Lab)
Least-Squares 6.16 5.67 12.27 13.83
Root-Polynomial 5.67 4.67 14.60 16.97
ALS 3.71 3.27 8.24 9.02
Homography 3.40 2.59 9.20 10.28

∆E (Luv)
Least-Squares 7.02 6.63 14.23 15.55
Root-Polynomial 6.69 5.46 16.88 19.19
ALS 4.17 3.70 8.93 9.89
Homography 3.88 2.97 9.97 10.76

∆E RGB (×10−2)
Least-Squares 7.58 6.34 19.07 30.11
Root-Polynomial 9.07 7.21 24.72 30.60
ALS 4.36 3.16 14.01 26.05
Homography 4.01 2.82 14.62 24.44

We wished to evaluate how well homography-based
chromaticity matching would support color-based ob-
ject recognition. In our approach we use the ASIFT
procedure to find distinctive points in the chromaticity
distributions of all the images in the database. Then,
for each testing condition (viewing angle, illumination
angle or illumination color), we use a standard refer-
ence dataset and use the remaining images as query
images. The standard reference capture condition is:
frontal view (i.e. 0 degree of rotation), frontally lit and
the light has a 3075K yellow color.

We compare the homography-based color object
recognition (H) with Swain’s color indexing algo-
rithm which uses an rg-chromaticity space [15] (rg),
comprehensive color image normalization [40] (CN)
and Gevers and Smeulders’ [41] m1m2m3 approach.
The Comprehensive Normalization and m1m2m3 tech-
niques are chosen both because they explicitly incorpo-
rate shading invariance into their formalisms and also
they supersede early work (e.g. Comprehensive Nor-
malization delivers better results than aligning chro-
maticity distributions by matching their means with a
diagonal matrix [38, 39]).

The recommended bin sizes for rg and CN are 16 ×
16. The recommended bin size for m1m2m3 is 32× 32
(note the distribution of these bins is non-linear with
the partition found by a calibration procedure [41]).
For our ASIFT-based chromaticity distribution match,

a 320 × 320 histogram is used. For all methods we as-
sess recognition performance using the simple Average
Match Percentile (AMP). An average match percentile
of 99% informs us that the correct matching answer is
in the top 1% of matches.

We run the recognition experiment given all 1000 ob-
jects where, relative to the standard viewing condition,
either the viewing angle, illumination angle or illumi-
nation color are individually varied. As shown in Ta-
ble 2, the pure homography-based chromaticity match-
ing supports the second best performance for viewing
angle and illumination angle tests. Of course, as al-
luded to in the color correction section, to match chro-
maticity histograms using homographies the underly-
ing distributions need to have sufficient 2-dimensional
structure. Visually, we found that ∼ 80% objects in
the ALOI dataset are comprised of objects with 3 or
fewer reflectance colors and we know we need 4 points
to solve for a homography. This said, the overall per-
formance of the homography-based method is good i.e.
it performs well for many objects with fewer than 3 col-
ors present. Potentially, a good match remains possi-
ble because the effect of specular highlights and inter-
reflection increase the dimensionality of the RGB sig-
nal recorded for a single object (see discussion at the
end Section IV-A-2).

Intrinsic to our ASIFT based matching is the notion
of color structural complexity which is simply defined
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Table 2: Average Match Percentile Results for all 1000 objects

Test rg m1m2m3 CN H Hybrid H

Viewing Angle 98.8 95.3 96.8 97.3 97.0
Illumination Angle 92.2 88.3 94.8 93.8 95.1
Illumination Color 87.3 98.2 98.0 97.2 98.2

Average 92.8 93.9 96.5 96.2 96.8

Table 3: Average Match Percentile Results for Query Image with Color Structure Complexity. Numbers in bracket
indicate percentage of color-homography-compatible queries.

Test rg m1m2m3 CN H

Viewing Angle (12%) 98.6 94.8 96.3 97.4
Illumination Angle (19.4%) 91.5 90.1 94.8 96.3
Illumination Color (24.4%) 92.1 99.1 99.3 99.5

Average 93.4 94.3 96.4 97.7
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Figure 6: Plot of Color Structure Complexity Percentile
and Matching Percentile. The result is filtered by a
moving Gaussian convolution kernel (width = 10% of
total color structure complexity span, σ = 1/6 kernel
width). The dashed line indicates the threshold, over
which homography-based method works better.

as the number ASIFT points found for a given chro-
maticity distribution. We hypothesize that, empirically,
we can find a threshold of the structural complexity to
determine whether color homography indexing is likely
to work (e.g. there is sufficient structure in the chro-
maticity distribution to find matches using homogra-
phies in a database).

To test this hypothesis, for the “Illumination Color”
test, in Figure 6, we plot the percentiles of the structural
complexity (i.e. we rank images according to the num-
ber of ASIFT points found in their chromaticity distri-
butions) and plot against the corresponding match per-
centiles. Clearly, there is a good correlation between the
two measures and this indicates that as structural com-

plexity increases so the homography-based measure de-
livers better object recognition. We find a similar pos-
itive correlation for the m1m2m3 and comprehensive
normalization approaches.

In this example, assuming we wish to find the cor-
rect match in the top 1% of a database we need to use
a threshold structural complexity as defined by the 75th

percentile image. For our test the 75th percentile im-
age and above have a structural complexity of at least
520 points. Importantly, notice, that in this top quan-
tile range, the homography match is better than either
the CN and m1m2m3 methods. Note that a threshold
of 75% for the color structural complexity means that
only 25% of the query images, can be homographically
matched.

Suppose, we seek to match only the chromaticity
distributions with 520 or more ASIFT points. We re-
port the results in Table 3. The percentage shown are
the number of chromaticity distributions in the database
that have more than 520 ASIFT points. Note this is less
than 25% (compared to our test in Figure 6). Because
under some illumination and viewing angles, there are
fewer object colors so fewer ASIFT points. For images
whose chromaticity distributions have sufficient struc-
tural complexity, the homography method delivers bet-
ter results compared with competing techniques. In the
last column of Table 2, we show the performance of a
Hybrid method (Hybrid H): if the chromaticity distribu-
tion has more than 520 ASIFT points then homography-
based matching is used. Otherwise, we adopt the CN
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method. The hybrid method delivers the best results for
the illuminant colour and illumination angle test condi-
tions and the best result overall.

4.3 Color Transfer
Color transfer is an image editing process that adjusts
the colors of an input image I to match the palette of a
target image J . Instead of adopting often computation-
ally costly non-linear color mappings (e.g. [59]), we in-
vestigate whether color transfer can also be interpreted
as a simple linear color homography mapping which re-
visualizes an image with respect to real physical scene
changes (e.g. from summer to autumn) and/or illumina-
tion. Our experiment is a continuation of our previous
work [60] which is built on recent research [61]. The
recent work [61] has demonstrated that it is possible to
find a simple 3D similarity transform to linearly approx-
imate some of the effects of color transfer.

There are three important reasons for visualizing
color transfer as possibly being a color homography.
First, if true, it would indicate a surprising result.
Specifically, color transfer, though defined quite gener-
ally, tends to generate images which have a real-world
physical interpretation. Second, the homography for-
mulation is simpler compared with some of the trans-
fer algorithms. This simplicity means that spatial arti-
facts are less likely to be introduced (a fact borne out
by our experiments). Lastly, the homography calcula-
tion is fast. As we will show below, we can calculate an
expensive color transfer on a thumbnail, calculate the
homography and then apply the result to a full resolu-
tion image.

We start with the color transfer output Image O and
try to approximate its color transfer result by color ho-
mography. An example is shown in Figure 2c where
Image O′ is the color transfer approximation result. In
the discussion that follows it is useful to think of the
image I (or O) being a simple n × 3 matrix of RGB
pixels, which can be reconstituted into an image grid
for display purposes. Mathematically, we write:

O′ = H(I,O) ≈ O (11)

To solve Equation 11 using our ALS algorithm, we re-
spectively convert the images I and O images to the
corresponding n × 3 matrices A and B. Further, the
ALS computed output DAH mapped back to an image
is denoted O′. Here, the homography matrix H can be
understood as a global chromaticity shift and distortion,

the matrix D can be interpreted as shading change fac-
tors which simulate the change of surface reflectance or
position of illuminant.

The visual results of color transfer approximations of
four color transfer methods [18, 62–64] are shown in
Figure 7. In our experiments, the number of ALS itera-
tions is set as 10. As can be seen, the global 3D Similar-
ity mapping [61] does not perfectly reproduce the shad-
ing adjustments of color transfer. Our homography-
based method offers a closer color transfer approxima-
tion.

We can also quantify this visual closeness by calcu-
lating the error between the color transfer approxima-
tion result and the original color transfer result. We
adopt three error metrics:
PSNR (Peak Signal-to-Noise Ratio). PSNR is the ra-
tio between the maximum possible value (power) of
a signal and the power of distorting noise that affects
the quality of its representation. Acceptable values for
wireless image transmission quality loss are considered
to be over 20 dB [65].
SSIM (Structural SIMilarity) [66]. SSIM is a model
that considers image degradation as perceived change
in structural information. SSIM can be used to assess
the artifacts of color transfer. A SSIM value “1” indi-
cates a perfect match.
HI (Histogram Intersection) of rgb Chromaticities.
This is a score for measuring the similarity between two
rgb chromaticity distributions, which is also shading-
independent. A similarity score “1” indicates a perfect
match.
We show the average color transfer approximation re-
sult in Table 4 (see the supplementary material for the
complete table and their visual results). The quantita-
tive test is based on 7 classic color transfer image pairs
and 4 color transfer methods [18, 62–64]. Our color
homography transfer produces the best results overall
for the PSNR and SSIM tests. For the chromaticity
mapping test (HI), our color homography approxima-
tion performs better for Pouli and Reinhard [63, 64].

We note that both the PSNR and SSIM metrics op-
erate on the images output from our method. But, the
histogram intersections are on the chromaticities of the
original and matched images. The chromaticity map-
ping takes all RGBs and scales them so they sum to
1. This has a dramatic effect especially for dark pixel
values. Yet, these values are precisely those that are de-
weighted in the ALS method (which operates by least-
squares). They are also the pixels in the image that we
cannot see.
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Original Color TransferSource Image 3D Similarity [61] Shading Homography
PSNR: 25.37; SSIM: 0.97; HI: 0.93 PSNR: 32.68; SSIM: 0.96; HI: 0.88

PSNR: 26.68; SSIM: 0.87; HI: 0.73 PSNR: 36.05; SSIM: 0.98; HI: 0.62

PSNR: 30.45; SSIM: 0.96; HI: 0.91 PSNR: 33.58; SSIM: 0.98; HI: 0.97

PSNR: 25.76; SSIM: 0.78; HI: 0.81 PSNR: 44.49; SSIM: 0.99; HI: 0.79

Figure 7: Visual result of color transfer approximations (in the order of [18], [62], [63], [64]). The images in
Column 4 (Homography) are generally more similar to those in Column 2 than those shown in Column 3 (3D
Similarity).

Table 4: Errors of color transfer approximation.

Ngu. [18] Pitie [62] Pouli [63] Rein. [64]

PSNR (Peak Signal-to-Noise Ratio)
3D Similarity [61] 26.85 26.04 26.92 28.49
Homography 34.05 31.91 37.28 36.31

SSIM (Structural SIMilarity)
3D Similarity [61] 0.91 0.85 0.84 0.88
Homography 0.94 0.91 0.97 0.98

HI (Histogram Intersection)
3D Similarity [61] 0.87 0.75 0.75 0.81
Homography 0.78 0.71 0.76 0.87

14



Original Approximation 50% Downsampling 2-4 Downsampling
PSNR: 32.49; SSIM: 0.96; HI: 0.88 PSNR: 32.43; SSIM: 0.96; HI: 0.88

Total Time: 1.172sTotal Time: 1.824s

PSNR: 32.68; SSIM: 0.96; HI: 0.88

Figure 8: Color transfer approximation for [18] from
downsampled images. The sizes of source images and
target images (i.e. I and J) are reduced by the corre-
sponding factors. The original color transfer (MAT-
LAB) takes about 3.630s. The 3 evaluation measure-
ments and the total estimation time with down-sampling
(MATLAB) are shown over the images. As it is shown,
image down-sampling barely affects the color transfer
approximation quality. And, it takes less time to color
transfer an image by using our down-sampling trick.

To reduce the computational cost, it is also possi-
ble to estimate the shading homography (i.e. H and D)
from the down-sampled images. In addition to the orig-
inal ALS, we also upsample the smaller shading matrix
returned by ALS (from the downsampled input images)
by using Joint Bilateral Upsampling [67] (guided by the
chromaticity-transferred result AH). We find that im-
age down-sampling barely affects the color homogra-
phy mapping quality. In Figure 8, we show an example
corresponding to the result of Row 1, Figure 7. This can
be useful because we can run a computationally costly
color transfer algorithm on thumbnail images, extract
the color transfer effect from the downsampled results,
and apply the extracted effect to a full-resolution source
image. For some computationally costly color transfer
algorithms (e.g. [18, 62, 63]), this offers a similar qual-
ity color transfer result but requires a reduced amount
of processing time.

Color homography is also useful for color transfer
enhancement. Figure 9 shows an example where the
original color transfer result contains some obvious arti-
facts. These artifacts are usually caused by sharp image
gradient changes. Since a color homography transform
barely modifies the original image gradient, the decom-
posed shading component absorbs most of the artifacts
(e.g. original shading in Figure 9). By spatially smooth-
ing the original noisy shading component with a bilat-
eral filter [68], we can remove the gradient artifacts in
the shading component (e.g. smoothed shading in Fig-
ure 9). The original color transfer result is improved by

Original Color Transfer

Shading Smoothing

Source Image Original Approximation

Direct RGB Smoothing

Figure 9: Color transfer enhancement. A source image
is color transferred by [63] with some noticeable imper-
fections (on the clouds). This issue is fixed by approxi-
mating the original color transfer effect with a shading-
smoothed shading homography. Visually, the enhanced
result also preserves more texture details compared with
the result obtained by directly smoothing the original
approximation RGB.

applying the modified shading homography (i.e. origi-
nal color homography + smoothed shading).

When we proved the Uniqueness theorem – that the
ALS procedure could be used to find the homography
for the 4 point case – we introduced the idea of perturb-
ing the data to find the unique homography. The data
was perturbed when, albeit very rarely, the ALS proce-
dure did not converge to the unique homography (see
discussion after the proof of Theorem 2 in Section 3).
For the color transfer problem we explored perturbing
the input image by a random homography to investigate
whether, overall, a better color transfer (a better fit) is
found. We did not find that this was the case. This result
is perhaps not surprising since for the 4 point case when
the ALS procedure converged to the wrong answer the
fitting error was, empirically, very good (typically less
than 1 percent).

5 Raw vs Rendered Images
That a color homography is a tool for describing
color change across viewing conditions appears, at first
glance, to hold only for RAW linear images. Empiri-
cally, our work on color transfer also indicates we can
apply the homography method to non-linear (rendered)
images. An example of RAW-to-rendered mapping ap-
proximation by our shading homography is shown in
Figure 10 where the approximation result is visually
close to the rendered – actual camera output – image
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Figure 10: RAW-to-JPEG Approximation. Left: The
non-linear mapping from a RAW image to its rendered
camera output image can be well approximated by a
shading homography. Right: RMSE between estima-
tion and ground truth using our shading homography
model of the 24 RAW-capable cameras in the Middle-
bury dataset [69].

where the RAW and rendered pair is drawn from the
Middlebury dataset [69]. But, why should a shading
homography relate a RAW input to a camera output?

To a first approximation that an n × 3 matrix of pix-
els, A, are captured under RAW (i.e. linear conditions)
and that a corresponding sRGB image B, to a tolerable
approximation [70] – for real cameras – can be repre-
sented as

B ≈ f(AH) (12)

where H is a 3× 3 matrix and f() is monotonically in-
creasing function (a camera curve). This formalism is
similar to the homography formalism. Indeed the form
of f is far from arbitrary. If bᵀj = aᵀjH (the color cor-
rected jth pixel value), then one of the requirements for
f() is that

f(bj) ≈ γjbj (13)

where γj is a scale factor. That is, the function f()
changes the magnitude of the vector but not its direc-
tion. If this was not the case then, as the same object
is seen at different brightness levels in the same image,
its color will change significantly. If we map RAW to
rendered using a homgraphy then

f(bj) = γjbj (14)

In [69], for a series of 24 cameras, several RAW and
sRGB images (with intensities in [0, 255], for different

illuminants), of a 140 patch Macbeth SG color checker
are captured. Chakrabarti et al. analyzed the RMSE er-
ror between the predicted sRGB images and those ac-
tually recorded where f() in Equation 12 is a monoton-
ically increasing 5th order polynomial. We repeat the
same experiment for our homography-based approach
and RMSE errors are reported in Figure 10 where for
convenience we sort the cameras from lowest to high-
est error. The reader is referred to Figure 4 in [69] for
comparison.

Broadly, the errors we found by homography fitting
are on the same order as those found in the antecedent
work [69]. However, some camera data is fit with lower
error (e.g. the Canon Powershot P1 has a mean RMSE
of 7.1 for the homography-based method but 12 us-
ing [69]). In contrast for the Olympus E500, the ho-
mography error is larger (6.9 compared with 2). How-
ever, overall the range of fitting error of the homography
based method and [69] is about the same (both have an
overall RMSE of ∼ 5).

6 Conclusion

In this paper, we demonstrated the surprising result that
colors across a change in viewing condition (changing
light color, shading and camera) are well related by a
homography. We apply color homographies to color
correction (mapping RAW RGBs to display counter-
parts), color object recognition and color transfer. Our
homography-based color correction algorithm delivers
improved color fidelity compared with the state-of-the-
art. Matching chromaticity distributions using homo-
graphies delivers leading color-based object recogni-
tion. Re-interpreting color transfer as color homogra-
phy mapping inspires a new direction for natural color
transfer algorithm development.

Appendix

6.1 Numerical ALS convergence to the
wrong answer

The matrices A and B defined below are – when rows
are interpreted as “rays” as a consequence of the Planar
Homography theorem [2] – a homography apart. Equiv-
alently, there exists a 4×4 diagonal matrixD and a 3×3
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linear transform H such that B = DAH . Suppose,

A =


5 5 8
6 9 2
1 7 3
4 7 10

 B =


78 76 96
107 82 71
531 270 423
87 74 111

 (15)

Let us find a matrixK = DAH ≈ B using ALS to find
D andH . On convergence, to 2 decimal places, we find
K:

K =


78.31 76.23 96.41
109.33 56.28 85.89
532.63 276.44 421.57
87.37 73.94 111.62

 (16)

The % error (‖K −B‖ / ‖B‖) between K and B is
almost 4%. According to our Theorem 2, when we
converge to the wrong answer the null-space vector of
B − K should be sparse (1, 2, or 3 of the elements
should be non-zero but not all 4). For this example, the
unit length vector v which is orthogonal toA−B, again
to 2 decimal places is: v =

[
−0.74 0 0 0.68

]ᵀ
(as

a numerical check, vᵀ(A−B) =
[
0 0 0

]
, to 2 dec-

imal places).

6.2 Closed-Form Homography

Here we present a new closed form solution for solv-
ing for the Homography matrix H that maps 4 points in
one view to corresponding points in a second view. Let
us denote the paired matching points in the 4 × 2 ma-
trices A and B (the x and y coordinates are in the first
two columns). Moving to homogeneous coordinates –
we add a vector of 1’s to each matrix – to make 4 × 3
matrices A and B. Let the operator diag(v) return a di-
agonal matrix with components of v along its diagonal.
LetM1:3 denote the first 3 rows of a matrix and thatMk

is the kth row vector.

Theorem 3 (Closed-Form Homography). The
Homography matrix H relating the 4× 3 ma-
trices A and B (for the 4× 2 matched A and
B, where no three points in either matrix are
collinear) can be written in closed-form as:
H = [A1:3]−1diag(A4[A1:3]−1)−1diag(B4[B1:3]−1)B1:3.

Proof. From the non-collinearity assumption A1:3 and
B1:3 are full rank 3 × 3 invertible matrices. We define
X:

X = A[A1:3]−1 =

[
I

A4[A1:3]−1

]

Xdiag(A4[A1:3]−1)−1diag(B4[B1:3]−1) =[
diag(A4[A1:3]−1)−1diag(B4[B1:3]−1)

B4[B1:3]−1

]
LetD denote a 4×4 diagonal matrix such that the upper
left 3× 3 sub-matrix (first 3 rows and columns) is

diag(B4[B1:3]−1)−1diag(A4[A1:3]−1)

and the 4th component along the diagonal of D is 1. We
define Y :

Y =DXdiag(A4[A1:3]−1)−1diag(B4[B1:3]−1)

=

[
I

B4[B1:3]−1

]
which follows that Y B1:3 = B i.e. the matrix B. Sub-
stitute for Y and X and post-multiply by B1:3, we can
write:

A[A1:3]−1diag(A4[A1:3]−1)−1diag(B4[B1:3]−1)B1:3 = DB.

Dividing by the first two columns of DB by the third
we end up with the original point set B.
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