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Abstract

In this work we examine the applicability of an evolutionarystrategy to the
problem of fitting constrained second-order surfaces to both synthetic and acquired
3D data. In particular we concentrate on the Genocop III algorithm proposed by
Michalewicz [8] for the optimization of constrained functions. This is a novel
application of this algorithm which has demonstrably good results when applied
using parametric models. Example times for convergence aregiven which compare
the approach to standard techniques.

1 Introduction

Shape analysis of objects from range data (captured three dimensional co-ordinates of
surface points) is a key problem in computer vision with several important applications
in manufacturing, such as assembly, quality control and reverse-engineering. The prob-
lem is generally formulated as a nonlinear programming problem (NLP), which tries
to optimally fit the data to candidate shape descriptions. The NLP optimises a function
subject to several constraining equations and inequalities. Especially with nonlinear
constraints, it is notoriously difficult to optimise and there is no known method to
guarantee a satisfactory solution. Traditional techniques, such as gradient descent, are
unsatisfactory for the solution of NLPs, due to the local nature of their search meth-
ods and the reliance on smooth derivatives in the search-space. In previous work [7]
we examined the applicability of evolutionary strategies to the problem of fitting lines
and surfaces to both synthetic and acquired object range data. In this paper we effec-
tively take the next step, which is to fit degenerate second order surfaces that havea
priori constraints and geometric relationships. The Genocop III algorithm developed
by Michalewicz [8], Ch.7 was used and extended in this paper by adding a complex
evaluation function. It is an evolutionary algorithm system which is specialised to han-
dle constrained function optimisation and particular to itis the handling of non-linear
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constraints. It uses real-valued genes, and includes methods to deal with linear, non-
linear, domain and inequality constraints. We have used a specialised fitness function
(described in section 2.3.3), applied to the problem of fitting parametric 3-dimensional
surface equation chromosomes to range data while simultaneously applying several
necessary geometric and domain constraints. The constraints applied are of two typical
types : domain, the restriction on the parameter size; relational, relationships between
surfaces that are knowna priori.

Since this problem has a specific context it is important to illustrate it. Our group is
researching the reverse engineering machined parts. Theseparts are often complex and
possess many surfaces which may have know geometric relationships. Segmentation
and parameterisation of the captured 3-dimensional range data is a difficult multi-part
task involving the following elements:

1. Data collection.This is performed using a moving-bed, orthogonal laser ranger
which provides data at up to 0.5mm steps in the X-Y plane. Noise on the data is
around0.15 mm.

2. Data registration. This is performed using a variation on theiterated closest
point algorithm [1].

3. Segmentation.There are many ways of segmenting the 3d dataset, most are based
upon changes in local surface curvature followed by some form of least-squares
optimisation, for example [9].

4. Exploitation of constraints.Constraints may be applied to exploit knowledge
about surface relationships.

The formulation of constraints and the application of constraint-based correction
and optimisation of surface fitting has been achieved previously [5] with notable suc-
cess using the several constraint application strategies.There are, however, some as-
sociated problems with this approach: complex formulationof the constraint function;
heavy reliance on the global convexity of the solution space; reliance on very accurate
initial estimate of solution.

The ‘processing pipeline’ that is required for this approach also can lead to a build-
up of problems that must be solved in the constraint application stage. In order to alle-
viate some of these problems a more holistic strategy is proposed where segmentation,
fitting and constraint management takes place simultaneously. Previously [7] it was
demonstrated that simultaneous fitting and constraint management could be achieved
in a single evolutionary algorithm with careful chromosomemanagement and good
generation of starting conditions.

In this paper, the technique has been explored and improved by:

1. Making the representation more efficientby only applying the technique to de-
generate quadric surfaces.

2. Enhancing the evaluationof chromosomes by applying specialised fitting func-
tions for degenerates.
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3. A simple objective function, the least-squares error metric, then using the con-
straints to define the manifold of allowable solutions.

4. Including a naive segmentation functionas part of the evaluation function.

2 Method

2.1 Data Generation

Free Quadrics
A free quadric is a second order surface of the type:

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7x + a8y + a9z + a10 = 0 (1)

This covers all second order shapes and these fall into several family groups : cylin-
ders, cones, paraboloids, hyperboloids, ellipsoids, planes. Some of these forms are
degenerate and there is sufficient variety in the shapes to cover all easily machineable
surfaces. Note that higher order free surfaces also exist onmachined parts, perhaps as
a result of casting, but are not considered here.
Degenerate Quadrics

In this paper, the degenerate forms of these surfaces are used, this is a small sub-
family of surfaces of the following types: spheres, cylinders, right circular cones. The
machined surfaces that we address rarely contain whole pieces of these shapes and the
surfaces are often fragmentary or partial. In order to generate synthetic versions of this
subfamily, patches of the given types were generated as shown in figure 1. These fell
into the following three groups:

1. Spherical sectionsgenerated about a given vector (spherical caps) as well as
whole spheres

2. Cylindersof differing radii, length and wedge angle.

3. Conesof differing slope-angle, wedge-angle and length. Truncated cones were
also used.

θθ

Cylinder WedgeConical RingConical Wedge
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Figure 1: Degenerate Quadric Patches
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2.2 Gene and Chromosome Formulation

In standard GAs binary encoding forms the chromosomes in thesolution, however in
an evolution program each gene is a floating point number. Genes are then concate-
nated into a chromosome. In the cases we have previously investigated, typical part-
chromosomes were parameter vectors (A = ai : i ∈ {1, .., 10} representing second
order surfaces. In the new parametric representations, thevectors may be any length.

In the case ofplanes, we have used the 4 gene parametric representation :
A :< n̂, d > wheren̂ is the unit normal describing the plane andd is the constant
defining its minimum distance from the origin. In the case ofspheres, we have used
the 4 gene parametric representation :A :< P, r > whereP is the centre point and
r is the sphere radius. In the case ofcylinders, we have used the 7 gene parametric
representation :A :< P, n̂, r > whereP is defined as the start point of the cylinder,n̂

is the axis direction andr is the radius. Forcones, the 7 gene representation used is :
A :< P, n̂, α > ,whereP is defined as the start point (or tip) of the cone,n̂ is the axis
direction andα is the half-angle between the axis and the slope of the cone.

A full chromosome,G, describing a given object, is a set of concatenated part-
chromosomes:G = {Aj}. The parametric representation of a set of degenerate
quadrics as a chromosome is much shorter than a set of generalquadrics as explored in
[7]. This cuts down the complexity of constraint representation and makes it amenable
to straighforward manipulation without the need to employ geometrical constraints on
the surfaces’ form, only on pairs of forms taken as systems.

2.3 Algorithm

2.3.1 Traditional Methods of Generating Constrained Populations.

Evolutionary methods have been shown to be useful for solving generalNLP prob-
lems [11][6][7]. There are four main techniques for dealingwith chromosomes that
contravene constraints on solutions [10]: rejection, which discards infeasible solutions
immediately throughout the process; repairing, which depends on methods to repair
solutions back to feasible; modifying operators, which means designing crossover, mu-
tation and other operators than only ever produce feasible offspring; penalties, which is
the most common technique for optimizing constrained functions. A penalty function
is one which punishes chromosomes for straying from the constraints by decreasing
their fitness or removing them from the population. There areno good guidelines for
designing such penalty functions however [10].

Almost all optimization problems are constrained in some way. What we required
is some way of generating solutions that are both iteratively improving as well as satis-
fying these constraints. Most optimization problems are defined on a search space,D,
as follows1 : D ⊆ Rq , whereD =

∏q

k=1
< lk, rk > and eachxk is in the interval

< lk, rk >. The setRq is thus a crucial characteristic of the problem. Significantopti-
mization theory only exists where this set is convex. In GENOCOP, this convexity is as-
sumed, i.e we seek to optimize :f(x1, . . . , xq) ∈ Rq , where(x1, . . . , xq) ∈ D ⊆ Rq.

1This brief account follows the one given by Michalewicz [8] which the reader is encouraged to read for
further details.
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D is convex and is defined by the range of variableslk ≤ xk ≤ rk for k = 1, . . . , q.
BecauseD is convex, for each point in the search space, there exists a range where

other variables remain fixed. We also assume that this range can be efficiently com-
puted. This property is useful for performingmutation. If the variablexk is to be
mutated, it can be moved inside its range so any offspring produced are feasible.

Also, for any two points,x1 andx2, in the spaceD, the linear combinationax1 +
(1 − a)x2, (wherea ∈ [0, 1]) is also inD. This is used forcrossover.

2.3.2 Genocop II and III

Calculus based methods assume that the objective function,f(x), and all constraints
are twice continuously differentiable functions ofx. The general approach is to trans-
form the non-linear problem (NLP) into a sequence of sub-problems and then solve
those, requiring an explicit computation of the objective function. Some of these meth-
ods become ill-conditioned and fail.

Genocop II uses a sequential quadratic penalty function andis formulated as the
optimisation of the function:

F (x, r) = f(x) + 1

2r
C

T
C , wherer > 0 andC is the vector of active constraints,

c1, . . . , cl

Attia has provided solutions to the instability of this approach [12]. The set of all
constraints,C, is divided into the linear constraints,L, the non-linear equations,Ne and
the non-linear equalities,Ni. A set of active constraints,A is then built fromNe and
the violated constraints fromNi (a constraint is said to be violated if it is more than
some toleranceδ from its correct value), which are calledV . The structure of Genocop
II is outlined in [8]. Inside its main loop, Genocop I optimizes the functionF (x, r) =

f(x) + 1

2r
A

T
A. Several mutation operators take an initially identical population and

introduce diversity to it. At convergence, the best individual,x∗, is saved and the the
value of the penalty parameter is decreased.

Most of the essential elements of Genocop III are the same as those of Genocop
II. However, in this algorithm two populations are kept, a reference setR and a search
setS. The reference population is a set of fully feasible individuals which satisfy all
the constraints whereas the search population may not. At each iteration, the search
population are allowed to move around the solution space andare repaired back onto
the constraint manifold. If the search point isS and the reference point isR, then a
random pointZ is created from the segment betweenS andR by generating a value,
a ∈ [0, 1] then :

Z = aS + (1 − a)R (2)

Once a feasibleZ is found, if it is better thanR, then that reference point is replaced
with some probability. As the iterations progress, the set of reference points converge
to the maximum or minimum on the search space.

2.3.3 Evaluation Function and Point Assignment for the Fitting.

In our application of Genocop III the evaluation function isalmost certainly more com-
plex than was initially intended for the algorithm. For eachpoint,xi, the true geometric
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distance to the theoretical surface is computed and this is used as the least-squares error
for that point relative to that surface.

ei = minp{dist(xi, Sp)} (3)

whereei is the error for the pointxi, p is the index ofM theoretical surfaces,i is
the index ofN points,Sp is the parameterised surface anddist is the distance to that
surface.

The evaluation function to be minimised is then the sum of these minima :

E =

i=N∑

i=0

ei (4)

It is possible to use this as a simple segmentation scheme (especially if the chromo-
some population variations are small and the start conditions are close to the solution).
The point assignment is thus straightforward. In some tests, such as the real object
discussed in section 3.3 the data is pre-segmented. If the assignment information is
available it should be used in order that the computation time can be reduced.

2.3.4 Starting Conditions and Relational Constraints

In virtually all cases, domain constraints on individual genes are used to narrow the
search space for that gene. These are represented as one permanent part of the se-
quential quadratic penalty function matrix [8] used in the evaluation function. A good
example of where domain constraints can reduce the search space is in the case of
the three parameters describing a unit normal. Each of theseparameters can never be
outside the range[−1, +1] so these make good domain constraints.

In-chromosome relational constraints are straightforward to formulate when a para-
metric form is used. For example, consider two planes,P1 =< x1, x2, x3, x4 > and
P2 =< x5, x6, x7, x8 > which are knowna priori to be orientated orthogonally. In
this case, the chromosome would have the formG = {x1, x2, x3, x4, x5, x6, x7, x8}
and the orthogonality constraint would then appear as a non-linear inequality of the
form: (x1 − x5)

2 + (x2 − x6)
2 + (x3 − x7)

2 ≤ ǫ whereǫ is the constraint tolerance
value.

In order to perform the optimisation, Genocop requires a starting position on the
constrained manifold. This is the seed for the search pointswhich are then mutated
around it. It is also used to produce the set of reference points as described earlier in this
section. In our case this means designing a chromosome whichis both close to being a
concatenation of the individual least-squares results forthe part-chromosomes as well
as fulfilling the domain and relational constraints. Starting conditions for increasingly
complex solutions with increasingly complex constraints have previously been found
to be difficult [7] for the general quadric. However, when a parametric representation is
used, start conditions become very simple to generate, evenwhen many constraints are
used. For example, when a parametric representation for a right, circular cone is used
the chromosome consists of seven floating-point genes with one constraint, that of nor-
mality for the axis vector. When a general quadric is used, however, the chromosome
consists of ten floating-point genes with six constraints toensure its form. When further
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constraints are added, a start condition for the reference population becomes difficult
to find for the general representation but relatively easy for the parametric one (since
the only constraint is normality for 3 genes in the whole sequence). The complexity
increases as further quadrics are added. Consider a chromosome with three general
quadrics representing three right, circular cones. In a general representation this would
be 30 floating-point genes together with 15 shape constraints and three relationship
constraints. In a parametric form it would be 21 genes and sixconstraints in total. This
reduction is quite marked but clearly relies on knowinga priori the classification of the
surfaces in the data.

3 Results

In total 70 single-object experiments were carried out, allof which reached successful
convergence, i.e the summed error over all points in the dataset stablized. The final
values for chromosome parameters are used as the test of value for each of the exper-
iments. Where there were significant convergence effects these have been noted. All
of the data used for the synthetic surfaces has Gaussian noise added with standard de-
viation 0.1mm. This is comparable with the laser range finderand therefore represents
typical data noise.

3.1 Caps, Rings and Wedges

Spherical Caps
Ten spherical cap datasets were generated for decreasing values ofθ from 170o to

30o to test feasibility of fitting and speed of convergence. Sphere radii were kept at
10 mm with centre position(0, 0, 15). The number of data points per data set was
1000 so the data at170o is much more descriptive of the shape than the data at30o,
illustrated in the convergence rate, fig.2(a).

One important aspect of these tests is that withθ = 30o data the variation in po-
sition genes is much higher than withθ = 170o (figures 2(b) and 2(c)). Intermediate
positions show that the rate of these variations and rate of convergence change gradu-
ally with angle. Note that our previous fitting tool which utilises Taubin accumulation
[4] fairs similarly in the tests, having almost exactly the same average error per point.
After 25, 000 evaluations all radii converged to the correct value given experimental
noise.
Cylinder Wedges

Ten cylindrical wedge datasets were generated for decreasing values ofθ from 170o

to 30o to test feasibility of fitting and speed of convergence. Cylinder radii were kept
at 10mm, data was generated around the normal(0, 0, 1) and the starting point was
(15, 10, 10). The length of the cylinder in each case was 20mm. Error graphs for the
cylinder wedges tell us little about convergence except that it is dependent upon the
initial reference population, which the algorithm generates internally. All of the test
examples converged within100, 000 evaluations with the axis correct to within around
0.5o and radius correct to around0.05mm, as shown in table 1.
Conical Wedges
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Figure 2: Error Graphs for Spherical Datasets
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θ Normal Error/o Radius Error/mm
170 0.5733 0.0287
155 0.4196 0.0012
140 0.0000 0.0027
125 0.5754 0.0040
110 2.5648 0.1464
90 0.5500 0.0032
70 0.5751 0.0191
50 0.5747 0.0033
45 0.0000 0.1213
30 0.0000 0.1851

Table 1: Absolute Errors on Cylinder Wedge Parameters

Ten conical wedge datasets were generated for decreasing values ofθ from 170o to
30o to test feasibility of fitting and speed of convergence. Coneslope half-angle was
kept at30o, axis was(0, 1, 0), apex position was(0, 25, 0) and cone depth was20mm.
1000 data points were used per set, with noise as before. Details of the results are
shown in table 2. The error on the cone normal increases as thewedge decreases. At
30o it is actually outside acceptable error bounds. This caveatmay be explained by the
error in the estimate of the apex position, which can be seen to drift as the wedge angle
decreases.

θ Normal Error/o Slope Angle Error/o Apex position estimate
170 0.5815 0.0375 -0.002763 25.008604 0.0161751
155 0.5314 0.4210 0.001005 25.012029 0.0150246
140 0.5747 0.0460 0.005348 25.018583 -0.0153982
125 0.5808 0.0204 0.021809 25.007158 -0.0135571
110 0.5727 0.0007 0.002103 25.007488 -0.0285622
90 0.5757 0.0059 -0.014792 24.991615 -0.0065875
70 0.7000 0.3159 -0.009692 25.162830 -0.1308158
50 1.5526 1.2332 0.006790 25.636304 -0.4279015
45 1.1866 0.8757 0.006669 25.655696 -0.4368368
30 3.0208 2.7954 0.000730 26.736854 -1.0613992

Table 2: Absolute Errors on Cone Wedge Parameters and Apex Estimate

Conical Rings
Ten conical ring datasets were generated for decreasing values of length, from

100mm to10mm from the base, from a cone of total length110mm measured base to
apex. Cone slope angle was kept at30o, axis was(0, 1, 0), apex position was(0, 25, 0).
A full 180o spread was also used and 1000 data points were used per set.

Convergence over all of the conical ring datasets was uniform. Errors are detailed
in table 3. Average error for the normal axis was around0.5o and the error on the cone
slope angle was less than0.01o. It can also be seen that the apex position estimates are
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much better that those in the cone wedge case.

Length Normal Error/o α Error/mm Apex Position
100 0.5730 0.0020 -0.010790 24.981763 0.027289
90 0.2149 0.0023 -0.014435 25.012355 0.012871
80 0.5630 0.0104 -0.000247 25.026578 -0.005360
70 0.4681 0.0042 0.037935 24.979377 0.002949
60 0.5464 0.0012 0.001648 24.981952 -0.002780
50 0.5723 0.0017 0.005134 24.981803 0.000237
40 0.4681 0.0046 -0.031845 25.003873 0.090405
30 0.3621 0.0021 0.006406 24.984144 -0.004444
20 0.5630 0.0430 0.043338 24.811958 -0.014173
10 0.5835 0.0037 -0.025032 24.973985 -0.342472

Table 3: Absolute Errors on Cone Ring Parameters and Apex Estimate

3.2 Constrained Degenerate Quadric Pairs

Distance Constraints
Spheres were fitted with the distance constraint applied to their centres. The sphere

parameters used were as follows:
Sphere 1:Position(0, 0, 10), Radius5, complete/half sphere, 1000 data points.
Sphere 2:Position(0, 0, 0), Radius3, complete/half sphere, 1000 data points.

Summed errors for the fitting are shown in fig. 3(a) and the convergence of the radii
genes is shown in fig, 3(b). Position for both spheres was found accurately to within
0.001mm and the radii were found to within0.01mm. Since the results were similar
for both half-spheres and spheres, only whole spheres are shown.

Convergence for spheres and half-spheres that were overlapping produced similar
results although using slightly more chromosome evaluations. It was also noted that
the quality of results obtained was as good as without constraints in both cases, i.e radii
to within 0.001mm and position parameters to within0.005mm.
Mixed Constraints

In mixed constraint experiments whole cones and cylinders were used. In the first
set of experiments cones were used with four constraints : two unit normal constraints
on the axes, a distance constraint between apexes and an orthogonal constraint on the
axes. Data for the cones was as follows:

Cone 1:Apex position(0, 0, 0), Axis (0, 0, 1), Length20, half-angleα = 30o or
0.5235988 radians.

Cone 2:Apex position(0, 0, 20), Axis (0, 0, 1), Length20, half-angleα = 30o or
0.5235988 radians.

Cone 3:Apex position(20, 0, 0), Axis (1, 0, 0), Length20, half-angleα = 30o or
0.5235988 radians.

Once again, Gaussian noise is applied with a standard deviation of 0.1mm.
Two Cones with Apex Distance and Same Axis Constraints
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(a) Summed Errors for Constrained Sphere Fitting (Whole Spheres)

(b) Radii Convergence for Constrained Sphere Fitting using
Whole Spheres with Distance Constraint (true values are 3mmand 5mm)

Figure 3: Constrained Sphere Fitting Graphs
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In this experiment, cones 1 and 2 were used. The starting vector for the reference
population was simple to find since the constraints on the fitting have been much sim-
plified since earlier efforts to perform this test [7]. Previously, for two right circular
cones with a distance constraint and an axis constraint the total number of inter-gene
constraints would have been 16, now it is only 3. The cones aregenerated on the
same axis but with apexes 20mm away from each other. The vector for the reference
populations was as follows:

P1 = (0, 0, 1), n̂1 = (0, 0.141, 0.9899), α1 = 0.5 radians
P2 = (0, 0, 21), n̂2 = (0, 0.141, 0.9899), α2 = 0.5 radians

which is in the same order as the generation data above. Position for each of the two
part-chromosomes is 1mm away from the correct position and the slope angle is0.024
radians (1.35o) from the true value. The normal axis is also at an angle of around0.5o

to the correct value. These values were chosen because they are typical of values found
after registration using ICP [1]. The result vector was as follows :

P1 = (0.000216,−0.004444,−0.013367), n̂1 = (−0.000111, 0.000021, 0.999969),
α1 = 0.523469 rad.

P2 = (0.002930,−0.007804, 19.986713), n̂2 = (−0.000325,−0.000021, 0.999951),
α2 = 0.523393 rad.
This shows that the convergence to the correct cone models and constraint satisfaction
is remarkably good, to the noise level on the data set.
Two Cones with Apex Distance and Orthogonal Axis Constraint

In this experiment, cones 1 and 3 were used. The cones were generated on the
same axis but with apexes 20mm away from each other. The vector for the reference
populations was as follows:

P1 = (0, 0, 1), n̂1 = (0, 0.141, 0.9899), α1 = 0.5 radians
P2 = (0, 0, 21), n̂2 = (0, 0.141, 0.9899), α2 = 0.5 radians
The result vector was as follows :
P1 = (−0.006925,−0.001579,−0.024732), n̂1 = (0.000279,−0.000089, 0.999950),

α1 = 0.523178 rad.
P2 = (19.993097,−0.012630,−0.000523), n̂2 = (0.999949, 0.000792,−0.000378),

α2 = 0.523704 rad.
This shows that the convergence to the correct cone models and constraint satisfaction.

3.3 A Real Object

In order to test the overall application of these technique areasonably complex real
part was examined. This machined part (called the UFO) is an object consisting of
six surfaces, four planes and two quadrics as shown in figure 4. It is made to high
tolerances but is formed from eight data sets which are then registered together.

The object was first segmented into individual surfaces using a region growing
method and Taubin accumulation for the fitting [13]. Each of the different surfaces
was saved as a 3d data set. There were 7274 data points in total, representing the
polygon centres. This is a valid subsampling since the polygon mesh is statistically
representative of the original data set (many tens of thousands of points). The chromo-
some representing the constrained shape consisted of 30 individual genes as follows:
G = A1, ..., A6, whereA1 is the 7 parameter cylinder,A2 is the 7 parameter cone and
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UFO Part as Polygons UFO Part after Segmentation

Figure 4: Real Object Rendered as Polygons and Vertices

A3 to A6 are the 4 parameter planes. A total of 11 constraints were used, the first 6
were unit normal constraints and the final 5 were geometric asfollows:

1. Cylinder axis is the same as that of the back plate normal.

2. Cone axis is the same as the bottom plate normal

3. The back plate normal is orthogonal to the bottom plate

4. The back plate normal is orthogonal to the sloping side (side 1)

5. The sloping sides are at120o to each other

These five constraints fully constrain the object’s shape. The start conditions for this
object were simply the least-squares fit for each of the surfaces which were then ad-
justed to fit the constraints (obviously sub-optimally). The controlling ground-truth
used for this test was that the cylinder radius was known to be60mm and the cone
half-angle was known to be30o from the normal at its apex.

The graphs in figure 5 show the convergence of the parameters 500,000 evaluations.
The full set of estimations for the parameters is given below:

• Cylinder : P1 = 154.086,−2.184,−57.711, n̂1 = 0.995561, 0.005837, 0.088583,
radius = 60.366mm.

• Cone :P2 = 45.307,−5.697,−137.595, n̂2 = −0.044865, 0.039102, 0.998023,
α = 32.3o

• Planes

1. n̂1 = 0.995425, 0.003886, 0.091327, d = 46.62732)

2. n̂2 = 0.046830,−0.885180,−0.461808, d = 47.79109

3. n̂3 = 0.041421, 0.845461,−0.531490, d = 47.06203
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4. n̂4 = −0.092407, 0.041308, 0.995308, d = 14.12157

The numbers of points used was as follows: cylinder 1896, cone 1386, back-plate
616, side1 767, side2 839, bottom plate 1770. Time to reach a stable solution was
218.75 minutes when running on a 269MHz Ultrasparc 10 at approx 50% CPU usage.
These results have several important aspects. Firstly, thecone half angle is within the
same margin of error as the synthetic data when only a30o wedge is used. This is
explained by the fact that not only is this a60o wedge of a cone but it is truncated at
only 30mm out of its 140mm height. The cylinder parameters are very good since the
cylinder data describes only a60o wedge of the original data. It should also be noted
that all of the constraints are satisfied to within the tolerance prescribed(ǫ = 0.001)
which represents0.0573o error on axis constraints. The summed least-squares error
(Euclidean rather than algebraic) was 19.8367 over the whole of the six surfaces. This
should also be seen in light of the fact that there were around1% of outliers in the
whole dataset and the registration process is almost certainly imperfect.

4 Conclusions

4.1 Improvements

In previous work [7] we showed that optimal surface fitting under geometric constraints
was feasible with an evolutionary algorithm. In this paper we have demonstrated that
the method is more accurate when parametric models are used for degenerate surfaces.
We have also demonstrated that the geometric constraints for these models are much
simpler to formulate. This leads to the quicker formulationof starting reference popu-
lations.

We have shown that even a naive point-assignment algorithm can perform simple
segmentation when used in conjunction with geometric constraints and we have thus
tentatively proposed a full processing system for range-data. The pptimization of least-
squares surface fitting is comparable to methods currently employed for second-order
surfaces. In some instances (for example where data is sparse) it is actually superior.
This is due partially to the fact that data presentation is not ordered as it is in, say,
the Taubin accumulation process [3],[4]. No claims are madefor the segmentation
algorithm other than in circumstances where two sphere datasets overlap if a distance
constraint is applied the algorithm still convergenes in a time comparable to no-overlap.
Therefore segmentation is a plausible addition to the functionality of the algorithm. The
application of geometic and domain constraints has ensuredthat the convergence to the
optimal solution (subject to tolerance) has been achieved.When geometric constraints
have been applied they also have been fulfilled (subject to tolerance). These constraints
have been : distance, axis normality and relative axis position. These are the only
constraints applicable to the degenerate surfaces we have examined.

4.2 Caveats - New and Old

Of the problems mentioned in the first paper [7], none are now applicable. The formu-
lation of the initial vector for the reference set is easy forparameterized chromosomes.
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Generating two right cirular cones with orthogonal vector normals, for example, using
a parameterized model is straightforward whereas using theprevious representation
was difficult. When these initialisations were compounded the task was infeasible.

The problem of traversing the space different amounts in different dimensions is
somewhat mitigated by this parameterizarion since the units are at least within the same
order. The problem of what the slack constraint variables actually meanis still different
for each constraint. This problem is not so pronounced here as in other methods, for
example [5].

One new caveat is that the parametric versions of the objective functions are not so
easy to speed up by using off-line calculations. This can mean that for objects involving
many (possibly hundreds of) thousands of points the least-squares error calculations
will be time-consuming. A simple sub-sampling scheme has been implemented where
at each iteration a sample from such a huge dataset is taken and errors computed from
this. Although initial tests have been positive, the rates of convergence are not as
predictable as those found in this paper - even if the time to convergence is much
lower. It is widely held that evolutionary schemes, in fact GAs as a whole, are quick to
implement but slow to run. In the main this is true but with a computationally complex
evaluation function it is doubly so.

4.3 Further Work

This work is aproof of concept, i.e that an evolutionary algorithm could solve the
problem of constrained surface fitting, and as such is complete. There are many side
issues that should be addressed: speeding-up the chromosome evaluation; including
data registration, although how is not clear; outlier removal from the data at run time
would provide modest improvements; and weighting the surface errors to skew the fit
towards more important surfaces.
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(a) Cone Half Angle for Constrained UFO Fitting

(b) Cylinder Radius for Constrained UFO Fitting

Figure 5: Constrained UFO Fitting Graphs
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