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Abstract

In this work we examine the applicability of an evolutionatyategy to the
problem of fitting constrained second-order surfaces th bphthetic and acquired
3D data. In particular we concentrate on the Genocop Il ritlym proposed by
Michalewicz [8] for the optimization of constrained furmtis. This is a novel
application of this algorithm which has demonstrably goesluits when applied
using parametric models. Example times for convergencgieea which compare
the approach to standard techniques.

1 Introduction

Shape analysis of objects from range data (captured thneergiional co-ordinates of
surface points) is a key problem in computer vision with saMienportant applications
in manufacturing, such as assembly, quality control andnserengineering. The prob-
lem is generally formulated as a nonlinear programming f@mmlb(NLP), which tries
to optimally fit the data to candidate shape descriptiong NbP optimises a function
subject to several constraining equations and inequalitiespecially with nonlinear
constraints, it is notoriously difficult to optimise and thds no known method to
guarantee a satisfactory solution. Traditional technégsach as gradient descent, are
unsatisfactory for the solution of NLPs, due to the locaunatof their search meth-
ods and the reliance on smooth derivatives in the searotespa previous work [7]
we examined the applicability of evolutionary strategieshe problem of fitting lines
and surfaces to both synthetic and acquired object range ttathis paper we effec-
tively take the next step, which is to fit degenerate secodérasurfaces that hawe
priori constraints and geometric relationships. The Genocopddtrahm developed
by Michalewicz [8], Ch.7 was used and extended in this papedusing a complex
evaluation function. It is an evolutionary algorithm syate/hich is specialised to han-
dle constrained function optimisation and particular tis ithe handling of non-linear



constraints. It uses real-valued genes, and includes metioodeal with linear, non-
linear, domain and inequality constraints. We have useckaialised fitness function
(described in section 2.3.3), applied to the problem ofifitfparametric 3-dimensional
surface equation chromosomes to range data while simuiteshe applying several
necessary geometric and domain constraints. The coristegiplied are of two typical
types : domain, the restriction on the parameter size;ioglalt, relationships between
surfaces that are knowapriori.

Since this problem has a specific context it is importantitsitate it. Our group is
researching the reverse engineering machined parts. Paetseare often complex and
possess many surfaces which may have know geometric redhijss. Segmentation
and parameterisation of the captured 3-dimensional raateid a difficult multi-part
task involving the following elements:

1. Data collection.This is performed using a moving-bed, orthogonal laser eang
which provides data at up to 0.5mm steps in the X-Y plane. &oisthe data is
around0.15 mm.

2. Data registration. This is performed using a variation on titerated closest
point algorithm [1].

3. SegmentationThere are many ways of segmenting the 3d dataset, most a@ bas
upon changes in local surface curvature followed by sonm fafrleast-squares
optimisation, for example [9].

4. Exploitation of constraints.Constraints may be applied to exploit knowledge
about surface relationships.

The formulation of constraints and the application of caoaiat-based correction
and optimisation of surface fitting has been achieved ptesho[5] with notable suc-
cess using the several constraint application stratediesere are, however, some as-
sociated problems with this approach: complex formulatibtihe constraint function;
heavy reliance on the global convexity of the solution spesl&nce on very accurate
initial estimate of solution.

The ‘processing pipeline’ that is required for this appitvatso can lead to a build-
up of problems that must be solved in the constraint apjdinatage. In order to alle-
viate some of these problems a more holistic strategy isqeegwhere segmentation,
fitting and constraint management takes place simultamgoRseviously [7] it was
demonstrated that simultaneous fitting and constraint gemant could be achieved
in a single evolutionary algorithm with careful chromosomanagement and good
generation of starting conditions.

In this paper, the technique has been explored and improxed b

1. Making the representation more efficidnt only applying the technique to de-
generate quadric surfaces.

2. Enhancing the evaluatioof chromosomes by applying specialised fitting func-
tions for degenerates.



3. A simple objective functigrihe least-squares error metric, then using the con-
straints to define the manifold of allowable solutions.

4. Including a naive segmentation functiaas part of the evaluation function.

2 Method

2.1 Data Generation

Free Quadrics
A free quadric is a second order surface of the type:

a12? + agy® + aszz® + ayxy + asxz + agyz + arx 4+ agy + agz +an =0 (1)

This covers all second order shapes and these fall intoaldaenily groups : cylin-
ders, cones, paraboloids, hyperboloids, ellipsoids, gdarSome of these forms are
degenerate and there is sufficient variety in the shapesvier @l easily machineable
surfaces. Note that higher order free surfaces also existachined parts, perhaps as
a result of casting, but are not considered here.

Degenerate Quadrics

In this paper, the degenerate forms of these surfaces atk tiée is a small sub-
family of surfaces of the following types: spheres, cylirgjeight circular cones. The
machined surfaces that we address rarely contain wholepi@these shapes and the
surfaces are often fragmentary or partial. In order to gateesynthetic versions of this
subfamily, patches of the given types were generated asrshofigure 1. These fell
into the following three groups:

1. Spherical sectiongenerated about a given vector (spherical caps) as well as
whole spheres

2. Cylindersof differing radii, length and wedge angle.

3. Conesof differing slope-angle, wedge-angle and length. Truedatones were

also used.
P
Spherical Cap Conical Wedge Conical Ring Cylinder Wedge

Figure 1: Degenerate Quadric Patches



2.2 Gene and Chromosome For mulation

In standard GAs binary encoding forms the chromosomes is¢héion, however in
an evolution program each gene is a floating point number.e6&ane then concate-
nated into a chromosome. In the cases we have previouslgtigeged, typical part-
chromosomes were parameter vectots=£ a; : 7 € {1,..,10} representing second
order surfaces. In the new parametric representationsgtiers may be any length.

In the case oplanes, we have used the 4 gene parametric representation :

A :< n,d > wheren is the unit normal describing the plane afds the constant
defining its minimum distance from the origin. In the casesulieres, we have used
the 4 gene parametric representatiod :< P,r > whereP is the centre point and

r is the sphere radius. In the caseogfinders, we have used the 7 gene parametric
representation A :< P, 7, r > whereP is defined as the start point of the cylinder,

is the axis direction and is the radius. Focones, the 7 gene representation used is :
A :< P,n,a > ,whereP is defined as the start point (or tip) of the conds the axis
direction andx is the half-angle between the axis and the slope of the cone.

A full chromosome G, describing a given object, is a set of concatenated part-
chromosomes:G = {A;}. The parametric representation of a set of degenerate
quadrics as a chromosome is much shorter than a set of gejuaidiics as explored in
[7]. This cuts down the complexity of constraint represéntaand makes it amenable
to straighforward manipulation without the need to emplegmetrical constraints on
the surfaces’ form, only on pairs of forms taken as systems.

2.3 Algorithm
2.3.1 Traditional Methods of Generating Constrained Populations.

Evolutionary methods have been shown to be useful for sglgieneralNLP prob-
lems [11][6][7]. There are four main techniques for dealimigh chromosomes that
contravene constraints on solutions [10]: rejection, widiscards infeasible solutions
immediately throughout the process; repairing, which deiseon methods to repair
solutions back to feasible; modifying operators, which nedesigning crossover, mu-
tation and other operators than only ever produce feasffdpring; penalties, which is
the most common technique for optimizing constrained fiomst A penalty function
is one which punishes chromosomes for straying from thetcaings by decreasing
their fitness or removing them from the population. Thererargood guidelines for
designing such penalty functions however [10].

Almost all optimization problems are constrained in somg.\W&hat we required
is some way of generating solutions that are both iterativeproving as well as satis-
fying these constraints. Most optimization problems arféneée on a search spac®,
as follows' : D C RY, whereD = [[{_, < Iy, > and eachry is in the interval
< g, >. The setR? is thus a crucial characteristic of the problem. Significamti-
mization theory only exists where this set is convex. In GENIP, this convexity is as-
sumed, i.e we seek to optimizg (z1,...,z4) € R?, where(zy,...,24) € D C R%

1This brief account follows the one given by Michalewicz [Shish the reader is encouraged to read for
further details.



D is convex and is defined by the range of variables =, < r, fork =1,...,q.
BecauseD is convex, for each point in the search space, there existsgerwhere
other variables remain fixed. We also assume that this raagée efficiently com-
puted. This property is useful for performimgutation. If the variablexy is to be
mutated, it can be moved inside its range so any offsprindyred are feasible.
Also, for any two pointsx; andxs, in the spacé), the linear combinationx; +
(1 — a)x2, (wherea € [0, 1]) is also inD. This is used focrossover.

2.3.2 Genocop Il and 111

Calculus based methods assume that the objective fungtiar), and all constraints
are twice continuously differentiable functionsxaf The general approach is to trans-
form the non-linear problemNLP) into a sequence of sub-problems and then solve
those, requiring an explicit computation of the objectiradtion. Some of these meth-
ods become ill-conditioned and fail.

Genocop Il uses a sequential quadratic penalty functioniafmmulated as the
optimisation of the function:

F(x,r) = f(x) + 2—1TUTU , Wwherer > 0 andC is the vector of active constraints,
Cly...,C]
Attia has provided solutions to the instability of this apach [12]. The set of all
constraints(, is divided into the linear constrainis,the non-linear equation¥, and
the non-linear equalitied;. A set of active constraints{ is then built fromN, and
the violated constraints fronV; (a constraint is said to be violated if it is more than
some tolerancé from its correct value), which are calléd. The structure of Genocop
Il'is outlined in [8]. Inside its main loop, Genocop | optireithe functiorf'(x, r) =

f(x)+ %ZTZ. Several mutation operators take an initially identicagbplation and
introduce diversity to it. At convergence, the best indatix*, is saved and the the
value of the penalty parameter is decreased.

Most of the essential elements of Genocop Il are the samkaase tof Genocop
Il. However, in this algorithm two populations are kept, gerence seR and a search
setS. The reference population is a set of fully feasible indits which satisfy all
the constraints whereas the search population may not. &t ieration, the search
population are allowed to move around the solution spaceasmdepaired back onto
the constraint manifold. If the search pointdsand the reference point 8, then a
random pointZ is created from the segment betwegmnd R by generating a value,
a € [0,1] then:

Z=aS+(1-a)R 2)

Once a feasible is found, if it is better tharR, then that reference point is replaced
with some probability. As the iterations progress, the $eeference points converge
to the maximum or minimum on the search space.

2.3.3 Evaluation Function and Point Assignment for the Fitting.

In our application of Genocop Il the evaluation functiomimost certainly more com-
plex than was initially intended for the algorithm. For egdint,z;, the true geometric



distance to the theoretical surface is computed and thisad as the least-squares error
for that point relative to that surface.

e; = miny{dist(x;, Sp)} 3)

wheree; is the error for the poink;, p is the index ofM theoretical surfaces, is
the index of NV points, S, is the parameterised surface adidt is the distance to that
surface.

The evaluation function to be minimised is then the sum afé¢trainima :

=N
E=) e (4)
=0

Itis possible to use this as a simple segmentation schempediedly if the chromo-
some population variations are small and the start conditéze close to the solution).
The point assignment is thus straightforward. In some testsh as the real object
discussed in section 3.3 the data is pre-segmented. If #ignmsent information is
available it should be used in order that the computatioe tiam be reduced.

2.3.4 Starting Conditionsand Relational Constraints

In virtually all cases, domain constraints on individuahge are used to narrow the
search space for that gene. These are represented as orenpatmart of the se-
quential quadratic penalty function matrix [8] used in talaation function. A good
example of where domain constraints can reduce the seasate $p in the case of
the three parameters describing a unit normal. Each of thassmeters can never be
outside the rangp-1, +1] so these make good domain constraints.

In-chromosome relational constraints are straightfodtaformulate when a para-
metric form is used. For example, consider two plaRes+< 1, z2, 23,24 > and
Py, =< x5,x6, 27,28 > Which are knowra priori to be orientated orthogonally. In
this case, the chromosome would have the fa¥m= {x1, 2, x3, x4, x5, 6, T7, Ts }
and the orthogonality constraint would then appear as alinear inequality of the
form: (1 — 25)% + (22 — w6)? + (w3 — 27)? < € Wheree is the constraint tolerance
value.

In order to perform the optimisation, Genocop requires diat@a position on the
constrained manifold. This is the seed for the search pevhish are then mutated
around it. Itis also used to produce the set of referencepasidescribed earlier in this
section. In our case this means designing a chromosome \vghicith close to being a
concatenation of the individual least-squares resultsifepart-chromosomes as well
as fulfilling the domain and relational constraints. Stagtconditions for increasingly
complex solutions with increasingly complex constrairasénpreviously been found
to be difficult [7] for the general quadric. However, when agraetric representation is
used, start conditions become very simple to generate \glilen many constraints are
used. For example, when a parametric representation fghg @Gircular cone is used
the chromosome consists of seven floating-point genes witconstraint, that of nor-
mality for the axis vector. When a general quadric is usetégwer, the chromosome
consists of ten floating-point genes with six constraintstsure its form. When further



constraints are added, a start condition for the referenpeilation becomes difficult
to find for the general representation but relatively easyttie parametric one (since
the only constraint is normality for 3 genes in the whole ssme). The complexity
increases as further quadrics are added. Consider a chooneowith three general
quadrics representing three right, circular cones. In &gamepresentation this would
be 30 floating-point genes together with 15 shape constraintl three relationship
constraints. In a parametric form it would be 21 genes anda@mstraints in total. This
reduction is quite marked but clearly relies on knowéngriori the classification of the
surfaces in the data.

3 Reaults

In total 70 single-object experiments were carried outpiilvhich reached successful
convergence, i.e the summed error over all points in the sittatablized. The final

values for chromosome parameters are used as the test effaslaach of the exper-

iments. Where there were significant convergence effeetsetihhave been noted. All
of the data used for the synthetic surfaces has Gaussiam addied with standard de-
viation 0.1mm. This is comparable with the laser range firzahet therefore represents
typical data noise.

3.1 Caps, Ringsand Wedges

Spherical Caps

Ten spherical cap datasets were generated for decreadues\aft from 170° to
30° to test feasibility of fitting and speed of convergence. $phadii were kept at
10 mm with centre position0, 0, 15). The number of data points per data set was
1000 so the data at70° is much more descriptive of the shape than the dagdat
illustrated in the convergence rate, fig.2(a).

One important aspect of these tests is that Witk 30° data the variation in po-
sition genes is much higher than with= 170° (figures 2(b) and 2(c)). Intermediate
positions show that the rate of these variations and ratewfergence change gradu-
ally with angle. Note that our previous fitting tool whichligés Taubin accumulation
[4] fairs similarly in the tests, having almost exactly treare average error per point.
After 25,000 evaluations all radii converged to the correct value givepegimental
noise.

Cylinder Wedges

Ten cylindrical wedge datasets were generated for decrgaaiues of) from 170°
to 30° to test feasibility of fitting and speed of convergence. @ydr radii were kept
at 10mm, data was generated around the nofifdl, 1) and the starting point was
(15,10, 10). The length of the cylinder in each case was 20mm. Error gréphthe
cylinder wedges tell us little about convergence excepit itha dependent upon the
initial reference population, which the algorithm geneginternally. All of the test
examples converged withiro0, 000 evaluations with the axis correct to within around
0.5° and radius correct to arourido5mm, as shown in table 1.

Conical Wedges
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0 Normal Errorf  Radius Error/mm
170 0.5733 0.0287
155 0.4196 0.0012
140 0.0000 0.0027
125 0.5754 0.0040
110 2.5648 0.1464
90 0.5500 0.0032
70 0.5751 0.0191
50 0.5747 0.0033
45 0.0000 0.1213
30 0.0000 0.1851

Table 1: Absolute Errors on Cylinder Wedge Parameters

Ten conical wedge datasets were generated for decreadires\ad from 170 to
30° to test feasibility of fitting and speed of convergence. Csliope half-angle was
kept at30°, axis was(0, 1, 0), apex position wag), 25, 0) and cone depth wax)mm.
1000 data points were used per set, with noise as before.ilPefahe results are
shown in table 2. The error on the cone normal increases agdtlge decreases. At
30° it is actually outside acceptable error bounds. This cavestbe explained by the
error in the estimate of the apex position, which can be sedrift as the wedge angle
decreases.

0 Normal Errorf  Slope Angle Error! Apex position estimate

170 0.5815 0.0375 -0.002763 25.008604 0.0161751
155 0.5314 0.4210 0.001005 25.012029 0.0150246
140 0.5747 0.0460 0.005348 25.018583 -0.0153982
125 0.5808 0.0204 0.021809 25.007158 -0.0135571
110 0.5727 0.0007 0.002103 25.007488 -0.0285622
90 0.5757 0.0059 -0.014792 24.991615 -0.0065875
70 0.7000 0.3159 -0.009692 25.162830 -0.1308158
50 1.5526 1.2332 0.006790 25.636304 -0.4279015
45 1.1866 0.8757 0.006669 25.655696 -0.4368368
30 3.0208 2.7954 0.000730 26.736854 -1.0613992

Conical Rings
Ten conical ring datasets were generated for decreasinggyaf length, from

100mm to 10mm from the base, from a cone of total lendttbmm measured base to

apex. Cone slope angle was kep3@t, axis wag0, 1, 0), apex position waf), 25, 0).

A full 180° spread was also used and 1000 data points were used per set.

Table 2: Absolute Errors on Cone Wedge Parameters and Apgarde

Convergence over all of the conical ring datasets was umifdrrors are detailed
in table 3. Average error for the normal axis was aroQri¢ and the error on the cone
slope angle was less tharo1°. It can also be seen that the apex position estimates are



much better that those in the cone wedge case.

Length  Normal Erroff  « Error/mm Apex Position
100 0.5730 0.0020 -0.010790 24.981763 0.027289
920 0.2149 0.0023 -0.014435 25.012355 0.012871
80 0.5630 0.0104 -0.000247 25.026578 -0.005360
70 0.4681 0.0042 0.037935 24.979377 0.002949
60 0.5464 0.0012 0.001648 24.981952 -0.002780
50 0.5723 0.0017 0.005134 24.981803 0.000237
40 0.4681 0.0046 -0.031845 25.003873 0.090405
30 0.3621 0.0021 0.006406 24.984144 -0.004444
20 0.5630 0.0430 0.043338 24.811958 -0.014173
10 0.5835 0.0037 -0.025032 24.973985 -0.342472

Table 3: Absolute Errors on Cone Ring Parameters and ApeamEBtst

3.2 Constrained Degenerate Quadric Pairs

Distance Constraints

Spheres were fitted with the distance constraint applielddiv tentres. The sphere
parameters used were as follows:
Sphere 1Positior(0, 0, 10), Radius5, complete/half sphere, 1000 data points.
Sphere 2Positior(0, 0, 0), Radius3, complete/half sphere, 1000 data points.

Summed errors for the fitting are shown in fig. 3(a) and the eagence of the radii
genes is shown in fig, 3(b). Position for both spheres wasdaaturately to within
0.001mm and the radii were found to withihO1mm. Since the results were similar
for both half-spheres and spheres, only whole spheres arash

Convergence for spheres and half-spheres that were opéraproduced similar
results although using slightly more chromosome evaluatidt was also noted that
the quality of results obtained was as good as without caim$rin both cases, i.e radii
to within 0.001mm and position parameters to withir005mm.
Mixed Constraints

In mixed constraint experiments whole cones and cylindenrewsed. In the first
set of experiments cones were used with four constraints utt normal constraints
on the axes, a distance constraint between apexes and agamtl constraint on the
axes. Data for the cones was as follows:

Cone 1: Apex position(0, 0, 0), Axis (0,0,1), Length20, half-anglea: = 30° or
0.5235988 radians.

Cone 2:Apex position(0, 0, 20), Axis (0,0, 1), Length20, half-anglea = 30° or
0.5235988 radians.

Cone 3:Apex position(20, 0, 0), Axis (1, 0,0), Length20, half-anglea. = 30° or
0.5235988 radians.

Once again, Gaussian noise is applied with a standard d@viat0.1mm.
Two Coneswith Apex Distance and Same Axis Constraints

10
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In this experiment, cones 1 and 2 were used. The startingwvémtthe reference
population was simple to find since the constraints on thaditiave been much sim-
plified since earlier efforts to perform this test [7]. Prewsly, for two right circular
cones with a distance constraint and an axis constrainothériumber of inter-gene
constraints would have been 16, now it is only 3. The conegarerated on the
same axis but with apexes 20mm away from each other. Thenfectthe reference
populations was as follows:

P; =(0,0,1),77 = (0,0.141,0.9899), o; = 0.5 radians

Py, =(0,0,21),79 = (0,0.141,0.9899), as = 0.5 radians
which is in the same order as the generation data above.idtofit each of the two
part-chromosomes is 1mm away from the correct position hedlope angle i8.024
radians (.35°) from the true value. The normal axis is also at an angle afrad®.5°
to the correct value. These values were chosen becauserthgyial of values found
after registration using ICP [1]. The result vector was dioves :

P; = (0.000216, —0.004444, —0.013367), 3 = (—0.000111,0.000021, 0.999969),
a1 = 0.523469 rad.

P, = (0.002930, —0.007804, 19.986713), e = (—0.000325, —0.000021, 0.999951),
oo = 0.523393 rad.

This shows that the convergence to the correct cone modélsanrstraint satisfaction
is remarkably good, to the noise level on the data set.
Two Coneswith Apex Distance and Orthogonal Axis Constraint

In this experiment, cones 1 and 3 were used. The cones wegrrajed on the
same axis but with apexes 20mm away from each other. Thenfectthe reference
populations was as follows:

P; =(0,0,1),77 = (0,0.141,0.9899), o; = 0.5 radians

Py, =(0,0,21),79 = (0,0.141,0.9899), as = 0.5 radians

The result vector was as follows :

P; = (—0.006925,—0.001579, —0.024732), 1 = (0.000279, —0.000089, 0.999950),
a1 = 0.523178 rad.

Py = (19.993097, —0.012630, —0.000523), 2o = (0.999949, 0.000792, —0.000378),
ag = 0.523704 rad.

This shows that the convergence to the correct cone modeélsarstraint satisfaction.

3.3 A Real Object

In order to test the overall application of these techniqueasonably complex real
part was examined. This machined part (called the UFO) iskgecb consisting of
six surfaces, four planes and two quadrics as shown in figurl & made to high
tolerances but is formed from eight data sets which are thgistered together.

The object was first segmented into individual surfacesgusimegion growing
method and Taubin accumulation for the fitting [13]. Eachtaf tifferent surfaces
was saved as a 3d data set. There were 7274 data points inregetsenting the
polygon centres. This is a valid subsampling since the moiygesh is statistically
representative of the original data set (many tens of thudssaf points). The chromo-
some representing the constrained shape consisted of B@dinal genes as follows:
G = Ay, ..., Ag, whereA, is the 7 parameter cylinded is the 7 parameter cone and

12



UFO Part as Polygons UFO Part after Segmentation

Figure 4: Real Object Rendered as Polygons and Vertices

As to Ag are the 4 parameter planes. A total of 11 constraints werd, uke first 6
were unit normal constraints and the final 5 were geometrfolisvs:

1. Cylinder axis is the same as that of the back plate normal.
2. Cone axis is the same as the bottom plate normal

3. The back plate normal is orthogonal to the bottom plate

4. The back plate normal is orthogonal to the sloping sid#e(4)
5. The sloping sides are &20° to each other

These five constraints fully constrain the object’'s shapee Start conditions for this
object were simply the least-squares fit for each of the sagavhich were then ad-
justed to fit the constraints (obviously sub-optimally). €Ttontrolling ground-truth
used for this test was that the cylinder radius was known té@am and the cone
half-angle was known to b&)° from the normal at its apex.
The graphsin figure 5 show the convergence of the paramei6r8@0 evaluations.
The full set of estimations for the parameters is given below

e Cylinder:P; = 154.086, —2.184, —57.711,71; = 0.995561, 0.005837, 0.088583,
radius = 60.366mm.

e Cone Py, = 45.307, —5.697, —137.595, no = —0.044865, 0.039102, 0.998023,
a = 32.3°

e Planes

1. 7y = 0.995425,0.003886,0.091327, d = 46.62732)
2. ng = 0.046830, —0.885180, —0.461808,d = 47.79109
3. n3 = 0.041421,0.845461, —0.531490, d = 47.06203
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4. ny = —0.092407,0.041308,0.995308, d = 14.12157

The numbers of points used was as follows: cylinder 1896e d886, back-plate
616, sidel 767, side2 839, bottom plate 1770. Time to readhtdessolution was
218.75 minutes when running on a 269MHz Ultrasparc 10 atagpfi% CPU usage.
These results have several important aspects. Firsthgdhe half angle is within the
same margin of error as the synthetic data when oridpcawedge is used. This is
explained by the fact that not only is this@° wedge of a cone but it is truncated at
only 30mm out of its 140mm height. The cylinder parameteesvary good since the
cylinder data describes onlyG#° wedge of the original data. It should also be noted
that all of the constraints are satisfied to within the talemprescribede = 0.001)
which represent8.0573° error on axis constraints. The summed least-squares error
(Euclidean rather than algebraic) was 19.8367 over the avbbilhe six surfaces. This
should also be seen in light of the fact that there were ardyadf outliers in the
whole dataset and the registration process is almost ngriaiperfect.

4 Conclusions

4.1 Improvements

In previous work [7] we showed that optimal surface fittinglangeometric constraints
was feasible with an evolutionary algorithm. In this paperfkave demonstrated that
the method is more accurate when parametric models are osdddenerate surfaces.
We have also demonstrated that the geometric constraintadee models are much
simpler to formulate. This leads to the quicker formulatifrstarting reference popu-
lations.

We have shown that even a naive point-assignment algorittmperform simple
segmentation when used in conjunction with geometric caimgs and we have thus
tentatively proposed a full processing system for rang@-dehe pptimization of least-
squares surface fitting is comparable to methods currenifyl@yed for second-order
surfaces. In some instances (for example where data isegptis actually superior.
This is due partially to the fact that data presentation isaordered as it is in, say,
the Taubin accumulation process [3],[4]. No claims are mfade¢he segmentation
algorithm other than in circumstances where two spheresd&gaverlap if a distance
constraint is applied the algorithm still convergenes imeetcomparable to no-overlap.
Therefore segmentation is a plausible addition to the fanetity of the algorithm. The
application of geometic and domain constraints has enshed¢dhe convergence to the
optimal solution (subject to tolerance) has been achiewten geometric constraints
have been applied they also have been fulfilled (subjectéoance). These constraints
have been : distance, axis normality and relative axis jposit These are the only
constraints applicable to the degenerate surfaces we kavaied.

4.2 Caveats- New and Old

Of the problems mentioned in the first paper [7], none are naplieable. The formu-
lation of the initial vector for the reference set is easygarameterized chromosomes.
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Generating two right cirular cones with orthogonal vectormals, for example, using
a parameterized model is straightforward whereas usingtaeious representation
was difficult. When these initialisations were compoundegthsk was infeasible.

The problem of traversing the space different amounts ifediht dimensions is
somewhat mitigated by this parameterizarion since thesamé at least within the same
order. The problem of what the slack constraint variablésadly meanis still different
for each constraint. This problem is not so pronounced heiie ather methods, for
example [5].

One new caveat is that the parametric versions of the obgeftinctions are not so
easy to speed up by using off-line calculations. This canmtieat for objects involving
many (possibly hundreds of) thousands of points the lefsti®s error calculations
will be time-consuming. A simple sub-sampling scheme hanteplemented where
at each iteration a sample from such a huge dataset is takieramrs computed from
this. Although initial tests have been positive, the ratesanvergence are not as
predictable as those found in this paper - even if the timectovergence is much
lower. It is widely held that evolutionary schemes, in fa&sGs a whole, are quick to
implement but slow to run. In the main this is true but with angautationally complex
evaluation function it is doubly so.

4.3 Further Work

This work is aproof of concept, i.e that an evolutionary algorithm could solve the
problem of constrained surface fitting, and as such is complEhere are many side
issues that should be addressed: speeding-up the chrora@@iuation; including
data registration, although how is not clear; outlier realdvom the data at run time
would provide modest improvements; and weighting the sarfrrors to skew the fit
towards more important surfaces.
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