
Segmentation and 3D reconstruction of rose plants from stereoscopic
images

Hanz Cuevas-Velasqueza,∗, Antonio-Javier Gallegob,, Robert B. Fishera,

aSchool of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
bDepartment of Software and Computing Systems, University of Alicante,

03690 Alicante, Spain

Abstract

The method proposed in this paper is part of the vision module of a garden robot capable of
navigating towards rose bushes and clip them according to a set of pruning rules. The method is
responsible for performing the segmentation of the branches and recovering their morphology in 3D.
The obtained reconstruction allows the manipulator of the robot to select the candidate branches
to be pruned. This method first obtains a stereo pair of images and calculates the disparity image
using block matching and the segmentation of the branches using a Fully Convolutional Neuronal
Network modified to return a map with the probability at the pixel level of the presence of a branch.
A post-processing step combines the segmentation and the disparity in order to improve the results.
Then, the skeleton of the plant and the branching structure are calculated, and finally, the 3D
reconstruction is obtained. The proposed approach is evaluated with five different datasets, three
of them compiled by the authors and two from the state of the art, including indoor and outdoor
scenes with uncontrolled environments. The different steps of the proposed pipeline are evaluated
and compared with other state-of-the-art methods, showing that the accuracy of the segmentation
improves other methods for this task, even with variable lighting, and also that the skeletonization
and the reconstruction processes obtain robust results.

Keywords: Computer Vision, Stereo Vision, Semantic Segmentation, 3D modelling, Automated
agriculture

1. Introduction

Computer vision and robotics have made significant advances in detection and automation of
indoor and outdoor tasks. The vision part is generally used to segment, localize or track objects so
the robot can navigate to an area of interest and manipulate the object [16]. Outdoor tasks usually
deal with a more uncontrolled environment than indoor tasks, mainly due to the variations of light,5

wind, shadows, as well as variations in the type of terrain. An example of a challenging outdoor task
is that of a robot that can move through a garden, detect key elements and recover their structure
in order to work with them.

The method proposed in this paper belongs to the vision module of a garden robot capable
of navigating towards rose bushes and clip them according to a set of pruning rules1. This robot10

(see Figure 1) consists of a mobile platform with a camera rig for navigation and a 6-DOF robotic
arm with a cutting tool and a stereo camera mounted on the end-effector using an eye-in-hand
configuration [29]. A detailed description of the robot can be found in [56]. A demonstration of the
rose pruning process can be also seen in the video: https://youtu.be/r9IHy5lH8YM.

∗Corresponding author: Email: hanz.c.v@ed.ac.uk
Email addresses: hanz.c.v@ed.ac.uk (Hanz Cuevas-Velasquez), jgallego@dlsi.ua.es (Antonio-Javier Gallego),

rbf@inf.ed.ac.uk (Robert B. Fisher)
1Project TrimBot2020: http://trimbot2020.webhosting.rug.nl

Preprint submitted to Journal of Computers and Electronics in Agriculture February 18, 2020

Figure 1: General overview of the robot (left image) including the 6-DOF robotic arm and the cutting tool. A stereo
camera using an eye-in-hand configuration (right image) is mounted on the same cutting tool.

The vision module is divided in two main parts, one for robot navigation and other for visual15

servoing. The robot navigation uses a depth fusion system which combines multiple disparity images
obtained from a 10 camera rig [43] and SLAM for robot localization [48]. This part allows the robot
to navigate in the garden towards a rose bush. The second part of the vision module implements
visual servoing for the manipulator. This is in charge of processing the images captured by a stereo
camera mounted on the robot arm to detect cutting locations on a rose branch and move the cutter20

towards those cutting locations.
The first module allows the robot to navigate towards a rose bush and, once a rose bush is located

and the robot is facing towards it, the system switches to the second module. This second module
assumes it will receive images where only one rose bush appears and all the segmented branches
belong to the same plant.25

The pruning process is: First, the branches are localized by segmenting them from the rest of
the scene. Then, the 3D morphology of the plant is recovered. Finally, based on the morphology of
the plant, the robot finds the branches that should be cut and sends the manipulator to clip them.
This paper focuses on the vision module, which segments the stems of a rose bush and obtains its
morphology. To the best of our knowledge, there are no previous methods devoted to segment roses30

and obtain their branching structure for pruning. The closest approaches are the segmentation of
trees and plants, which are described in detail in the following section.

Our approach tries to solve this problem without making assumptions about the type of environ-
ment or lighting conditions, working with aligned stereo input images and recovering the morphology
of the plant to determine the branches to prune. First, a Selectional Autoencoder architecture [12]35

is trained to select the pixels that belong to the branches of a rose bush. It then calculates the
disparity map and combines it with segmentation to improve the accuracy of the result. Finally,
the skeleton of the bush, the branches and the 3D morphology of the plant are obtained.

This approach is validated using five different datasets: (1) A synthetic dataset of rose bushes
in 4 different environments, (2) a dataset of realistic plastic rose bushes with real backgrounds, (3)40

a dataset of real roses captured in two different botanic gardens, (4) a dataset from the state of the
art of Arabidopsis genus plants captured indoors, and (5) another dataset from the state of the art
of real roses captured in a real garden.

In summary, the paper makes the following contributions: (1) Rose stem segmentation
through Selectional Autoencoders adjusted to work on real environments with variable light condi-45

tions, (2) novel combination of binary segmentation with disparity to obtain the 3D morphology of
the plant through skeletonization, (3) a complete pipeline to recover the morphology of rose stems
from stereo images that allows to determine the 3D structure of branches and choose the ones that
should be pruned, and (4) a collection of datasets for rose bush segmentation.

2

The rest of the paper is organized as follows: the next section makes a brief review of the state50

of the art, Section 3 presents the proposed approach, Section 4 describes the datasets used in the
evaluation, Section 5 reports the evaluation results, and finally, conclusions and future work are
addressed in Section 6.

2. Related work

As stated before, there is no literature on the specific task of rose bush segmentation and mor-55

phology extraction using 2D stereo images. Therefore, we will focus on works that are closely related,
mainly in the areas of tree and plant modeling, either using 2D images, multiple 2D images or point
clouds. There is an extensive literature on these topics, so we will review it by grouping them
according to the type of data used.

Among the methods that use point clouds we can find works that only reconstruct the branches60

(without leaves, called off-leaf) and others that do include them (on-leaf). For example, Raumonen
et al. [45] model off-leaves trees by fitting cylinders to the point cloud. Then, they find the tree
components by considering small regions of the tree and searching for neighbors and bifurcations.
Hackenberg et al. [26] propose a similar approach but using spheres to look for sections of the branch
instead of splitting the tree in regions. These two approaches obtain the plant information using65

point clouds of off-leaf trees. However, they need a clean point cloud as input while our approach
uses a raw stereo image as a starting point. There are also works on getting the morphology of
trees with leaves. Livny et al. [38] propose an on-leaf model to reconstruct the skeletal structures
of trees from a point cloud. They perform global optimization and clustering on a directed acyclic
graph that represents the points of a tree. Belton et al. [7] obtain geometric features and use70

Gaussian Mixture Models (GMM) to split the tree into its principal parts (trunk, branches and
leaves). Huang et al. [30] get the skeleton of a plant by applying L1 - medial skeleton on a point
clouds. While this method works well to obtain the 3D skeleton of any 3D shape. It does not capture
any morphological information of the plant like our method. Tabb & Medeiros [57] go a step further
and not only compute the 3D skeleton of a tree, but also obtain its graph structure and radius of the75

branches. However (and unlike us), they segment the tree using a clean point cloud with a constant
background. In general, all these methods work only with the point clouds of isolated trees which
were previously pre-processed or cleaned.

One can also find some works that use 2D images to recover the morphology of plants and trees.
For example, Zheng et al. [62] segment plants using mean-shift, color features and a shallow neural80

network to judge whether a cluster belongs to the plant or not. In Zheng et al. [61], they also use
mean-shift to segment plants in a field but they employ a Fisher linear discriminant (FLD) instead
of a neural network to perform the segmentation. However, none of these methods is evaluated
with plants in a real garden. They only focus on green vegetation planted in soil. So they would
not be applicable in our case, where it is necessary to deal with a variety of rose bushes, with85

different branch colors, with or without leaves, and in multiple scenarios. Barth et al. [6] segment
the stems of sweet pepper plants along with other 6 classes (buds, leaf stems, cuts, etc.) using
a Fully Convolutional Network (FCN) with a Conditional Random Field (CRF) layer. They also
generate synthetic images [5] to train the FCN and fine-tune it with a small dataset of real images.
The stem segmentation had a low true positive rate because of the similarity among the different90

classes considered. In addition, the synthetic dataset only includes one environment and focuses
on recreating a specific garden. In our case, five different datasets are evaluated, also including
a synthetic datasets but with multiple rose bushes viewed from different perspectives, scenarios,
and lighting conditions. Gürel et al. [25] and Gürel et al. [24] segment rose stems to find their
center lines and trace them with a manipulator using a stereo camera. This process is done using a95

single rose stem under a controlled environment where the background is different from the stems.
Botterill et al. [10] obtain the 3D model of grape vines using 3 monocular cameras. It takes the
color information of the cameras, segments them and finds their correspondences to reconstruct the
3D plant. Finally, they move the cameras parallel to the vines to add more information to the 3D
reconstruction. The method is robust in constrained environments with constant light conditions.100

3

Another common approach to recover the morphology of a plant is to reconstruct it in 3D using
multiple 2D images captured from different perspectives. For example, Isokane et al. [32] segment
the plant from 2D views and get the probability of the existence of a branch by using a variation of a
Pix2Pix GAN [33], then they reconstruct the plant in 3D combining multiple views. The algorithm
works well with synthetic data, however, the method does not generalize well for real data. Another105

work that combines 2D and 3D images is [42], which captures 64 views of a plant in 2D and obtain
the mesh for each view. Unlike the previous methods, they segment the meshes of the plant rather
than segmenting the 2D image. For this, they apply a region growing algorithm and fit geometric
primitives to the segmented meshes. Simek et al. [51] proposed an approach based on temporal
information and Gaussian processes to model the branches from multiple 2D images. Similarly,110

Gélard et al. [21] build the 3D model of a plant using structure from motion. Then, they segment
the plant by fitting a cylinder from the base of the stem until it reaches the top. After segmenting
the stem, they remove it from the point cloud and process the leaves by clustering the remaining
points. Santos et al. [47] also uses structure from motion to obtain the point cloud from multiple 2D
images. They segment each part of the plant by using spectral clustering on the 3D points. Alenya115

et al. [2] combines color and depth images to segment the leaves of a plant. They perform a rough
segmentation of the leaves using a graph-based method [19], then they choose the best leaf segments
by fitting quadratic surface models to the segmented depth images and evaluating which segments
best fit the depth data. These segments are then post-processed using a nearest-neighbor graph to
reduce over segmentation. All these methods extract the point cloud by capturing multiple images120

of the plant from different perspectives. Also, they operate in the 3D space to separate the branches
from the rest of the plant. In our case, we use 2D information combined with a calibrated stereo
camera to segment and obtain the 3D morphology of the plant.

In summary, while all these methods segment the plants and obtain their morphology, they
usually make strong assumptions. The methods using point clouds usually require the data to be125

accurate, complete and without noise. This requires much pre-processing work which most of the
times is done manually. In the case of works with 2D data, a controlled environment with a fixed
background is mainly considered for each perspective of the plant. Among these methods, some of
them reconstruct the plant in 3D, however, they have to use multiple views to recover it properly.
Moreover, the evaluation of these model based methods usually assumes an error margin which130

increases their overall performance compared to a result using a pixel error metric.
Another important disadvantage of these methods is the assumption of having a controlled en-

vironment to perform the extraction of the plant and do not evaluate using real datasets, with
different types of plants and environments. In addition, most of them use images of indoor plants
with homogeneous background and/or constant light conditions [10, 24, 25]. On the other hand, the135

datasets that do contain a real garden usually cover the background of the plant with a constant
color [5, 6]. We highlight the importance of using these methods in a real garden because their main
applications will require the robot visual system to work in an uncontrolled environment. After
exploring the different datasets that previous garden robotics methods use, we found that most of
them, apart from the disadvantages mentioned above, are small and lack variability, meaning that140

they only have a small quantity of images of a single type of plant or tree, making it difficult to
evaluate how well those methods generalize compared to other datasets.

Our approach tries to overcome all these disadvantages by using a method without making
assumptions about the type of environment or lighting conditions. Moreover, it is validated using
five different datasets, with more than 6500 images of indoor and outdoor scenes, including real145

garden images in different environments, with variable lighting conditions, and without homogeneous
backgrounds.

3. Method

The proposed approach to reconstructing a rose bush from stereo images is divided into several
steps (see Figure 2): First, the left stereo image is segmented using a Fully Convolutional Segmenta-150

tion Network (FCSN). In parallel, the stereo pair is supplied to a disparity method to calculate the
depth of the plant. These results are post-processed to combine the segmentation and the disparity,

4

and to calculate the branches that make up the plant. Finally, the 3D reconstruction is obtained
using the previous results. These steps will be explained in detail in the following sections.

Disparity

FCSN
Left

image

Right
image

Improve

segmen-

tation

Improve

disparity

Skele-

tonization

3D

Recon-

struction

Camera
paramsBranch

search

width

depth

branches

color

Figure 2: Scheme of the pipeline followed by the proposed method. First, the segmentation and disparity images
are calculated. Post-processing is then carried out to combine these results and recover the morphology of the plant.
Finally, the 3D reconstruction is calculated using the previous results.

3.1. Fully Convolutional Segmentation Network (FCSN)155

The segmentation process is the most important step in the entire proposed algorithm, since the
accuracy of the final result will depend on it. Basically, this process performs a classification of the
image pixels into two possible categories, indicating if the pixel belongs to the class branch or to
the class not-branch, which we denominate as background. In this case, the background not only
includes the garden background, but also other parts of the bush itself, such as leaves or flowers,160

and even other elements that can surround it and that could be similar to a branch, such as sticks
of a fence, support stakes, etc. Therefore, this step eliminates everything that is not a branch and
thus avoids sending incorrect coordinates to the robot.

It should be considered that branches are very thin objects with colors that can be very similar
to the background. In addition, they can also be confused with other surrounding elements (such165

as a stick or a support stake), especially in this context, in which the images are not captured in a
controlled environment with constant background and lighting. All this makes this task considerably
more complex than a general segmentation task, in which larger and more prominent objects in the
image are usually considered.

To perform the branch segmentation, we use a Fully Convolutional Segmentation Network170

(FCSN), based on the work of Long et al. [39], but instead of having a categorical vector to in-
dicate the class of each pixel (as other networks of this type also make, such as SegNet [4]), we
modify the last layer to return a matrix representing a probability map of the presence of a branch
in each pixel of the input image. In other words, the proposed FCSN is trained to perform a function
such that s : R(w×h) → [0, 1](w×h), learning a map over a w×h input image that preserves the input175

shape and indicates the probability that each pixel belonging to the branch class.
As in the architecture proposed by Long et al. [39], the layer hierarchy of our FCSN follows

the idea of auto-encoders, where first a series of convolutional layers combined with pooling layers
are added to reduce the size, until an intermediate layer in which a meaningful representation of
the input is attained. As these layers are applied, filters are able to relate parts of the image that180

were initially far apart. This first part of the network would be equivalent to the encoding stage of
the auto-encoder (see Figure 3). Then, it follows a series of convolutional plus upsampling layers
that reconstruct the image up to the same input size (this second part would be the equivalent of
decoding stage). The last layer consists of a set of neurons with sigmoid activation that predict
a value in the range of [0, 1], depending on the selectional threshold δ for the corresponding input185

feature. The δ parameter is a hyperparameter that is also learned during the training phase.
In addition, a series of modifications were made to the network architecture and the layers used.

The downsampling in the network encoder part is performed by convolutions using stride, instead
of resorting to pooling layers. Up-sampling is achieved through transposed convolution layers [59],
which perform the inverse operation to a convolution, to increase rather than decrease the resolution190

5

of the output. Residual connections were also added to improve the accuracy of the reconstruction.
For this, the encoder layers are connected with the corresponding decoder layers, similar to how it
is done in U-Net [46]. But unlike the latter, instead of concatenating the feature maps we add them
as is done in other architectures, such as in ResNet [27]. In this way, we can both help the training
process and improve the accuracy of the reconstruction.195

Feature maps are zero padded so that the dimension before and after the convolution remains
the same. Batch normalization [31] is performed after convolution to compensate for the covariance
shifts and prevent overfitting during the training procedure. Dropout [53] layers with a probability
of 0.5 were also added after each normalization layer to improve the generalization capabilities of
the network. Finally, ReLU [22] was used as activation function for all layers except for the output200

layer, for which the sigmoid activation function is used as explained above.

In
p
u
t
(4

8
0
×

3
2
0
×

3
)

O
u
tp

u
t
(4

8
0
×

3
2
0
×

1
)

4
8
0
×

3
2
0
,

fil
te

rs
=

1
2
8

ke
rn

el
=

5
×

5
,
st

ri
d
e=

2
×

2

2
4
0
×

1
6
0
,
f=

1
2
8

k=
5
×

5
,
st

=
2
×

2

1
2
0
×

8
0

f=
1
2
8

k=
5
×

5
,
st

=
2
×

2

6
0
×

4
0

f=
1
2
8

k=
5
×

5
st

=
2
×

2

3
0
×

2
0

f=
1
2
8

k=
5
×

5
st

=
2
×

2

4
8
0
×

3
2
0
,

fil
te

rs
=

1
k=

5
×

5
,
st

=
1
×

1

6
0
×

4
0

f=
1
2
8

k=
5
×

5
st

=
2
×

2

1
2
0
×

8
0

f=
1
2
8

k=
5
×

5
,
st

=
2
×

2

2
4
0
×

1
6
0
,
f=

1
2
8

k=
5
×

5
,
st

=
2
×

2

2D Convolution Batch Normalization ReLU activation

DropoutTransposed 2D Convolution Sigmoid activation

Residual connection

Element-wise sum

Encoder Decoder

Figure 3: Scheme of the Fully Convolutional Segmentation Network. In this figure, the layer type is labeled with
colors according to the legend. The size of each layer for convolutions and transposed convolutions is h×w, where h

is the height and w the width. The number of filters (f), the kernel size (k) and the stride value (st) applied for each
layer are also shown.

To find the best network configuration for this particular problem, we applied a grid-search
technique [8], analyzing different values of hyperparameters, including the number of layers of the
network, the input size, the number of filters of each convolution, the kernel size, the normalization
and the equalization types, the data augmentation factor, the dropout value, and the threshold205

δ value. The results of the hyperparameters exploration are included in Section 5.1, although we
summarize the best topology found for this network in Table 1. Figure 3 also shows an outline of
this architecture with the content of each layer.

Table 1: Best hyperparameters found after the grid-search process for the segmentation network FCSN.

Input image size: 480×320 px
Number of encoder/decoder layers: 4+4
Filters per layer: 128
Kernel size: 5×5
Normalization type: Standard
Equalization type: HSV
Data augmentation: 10 %
Selectional threshold δ: 0.3

Once the FCSN has been trained, detecting branches from an input image consists of feeding the

6

image through the FCSN, which outputs the branch probability assigned to each input pixel. Those210

pixels whose selection value exceeds a certain threshold δ are considered to belong to a branch,
whereas the others are discarded.

The training stage consisted of providing the FCSN with examples of images and their corre-
sponding segmentation ground-truth, that is, binary maps over the pixels that belong to branches
(see Figure 7c). The binary cross-entropy loss function between each output activation and its215

expected activation was used to calculate the error. The tuning of the network parameters was
performed by means of back-propagation using stochastic gradient descent [11] and considering the
adaptive learning rate proposed by Zeiler [58]. The training stage lasted a maximum of 300 epochs
with a mini-batch size of 8 samples, and early stopping when the loss did not decrease during 15
epochs.220

In addition, we applied a fine tuning process during the training stage, initializing the network
with the weights learned using a synthetic dataset. Data augmentation [36, 13] was also used to
artificially increase the size of the training set by randomly applying different types of transforma-
tions to the original training samples. This technique usually improves the performance and helps
reduce overfitting. In our case, for each image of the training set, 10 augmented images were225

generated. The transformations applied were randomly selected from the following set of possible
transformations: horizontal flips, horizontal and vertical shifts ([-10, 10]% of the image size), zoom
([-10, 10]% of the original image size), and rotations (in the range [-5◦, 5◦]).

3.2. Disparity calculation
The classic Block Matching (BM) algorithm [35] is proposed to calculate the disparity of the230

branches. It applies a LOG transform and uses L1 norm correlation to calculate the sum of absolute
differences (SAD) using variable disparity search. It also applies a post-filtering with an interest
operator and a left/right check.

Although this method is not as accurate as others, like Semi-Global Block Matching (SGBM) [28]
or DispNet [40], it gets quite competitive results with a much faster runtime. BM obtains the235

disparity maps in real-time, whereas SGBM runs at ∼ 4 FPS and DispNet at ∼ 2 FPS. The fast
runtime is necessary to update and keep track of the cutting points and the shape of the bush after
each clipping because the branches can be slightly moved by the wind or the manipulator.

The BM method from ROS Kinetic (Robot Operating System) [44] was used to do the stereo
matching. Considering that the final prototype of the robot has a stereo camera with a small baseline240

(0.03m) and that the manipulator’s tool-tip is around 0.15m away from the camera [56] (as seen in
Figure 1), we are only interested in objects that are equal or farther than that distance. Therefore,
the parameters of correlation window size and disparity search windows were set to 15 pixels and 64
pixels respectively.

Once the disparity map is obtained, Equation 1 is used to convert the disparities d (in pixels)245

into real depth values z (in metres).

z = f
B

d
(1)

where f is the focal length of the camera (in pixels) and B the baseline or distance between the two
lenses (in metres). In our case, the disparities were obtained using rectified images and the camera
parameters. These parameters were found using the calibration software Kalibr [20].

In addition, thanks to the post-processing step that combines the segmentation and the disparity250

(which will be presented in the next section), we can improve the accuracy of the disparity calculated
by this algorithm and obtain a dense disparity for the segmented branches.

3.3. Combine disparity and segmentation
Although the result obtained by the segmentation network is good, sometimes it cannot segment

a whole branch completely but it splits it in small regions, as observed in Figure 4(b) inside the red255

box. These small regions are mostly caused by thin branches or complex areas where it is difficult
to separate the background from the foreground. We propose that the segments that belong to the
same branch can be joined using the disparity information. This is based on observing the output

7

of the BM algorithm, which is able to find the disparities of a whole branch, as Figure 4(c) shows.
In addition, the BM algorithm creates “blobs” with similar disparities (usually with a size slightly260

larger than the branch), which allows us to use the disparity image to complete regions where the
segmentation is not continuous.

To join the segmented regions, first, each “blob” of the disparity map is evaluated to find if it
contains any segmented branch within its boundaries. In the case that a “blob” has two or more
segmented branches, these segments are considered part of the same branch and joined if there is265

at least one linear connection between the pixels of the segments, as seen in Figure 4(d). Using this
criteria, only the segmented regions that have similar disparities and are close to one another are
joined.

(a) (b) (c) (d)

Figure 4: Process of the segmentation completion using the disparity map, where (a) shows the input image, (b) the
segmentation obtained by FCSN, (c) the disparity output of the BM algorithm, and (d) how the regions of the branch
that were not segmented completely (red rectangles) were joined. To facilitate the visualization of this process, the δ

threshold was modified to generate visible errors produced by the segmentation.

On the other hand, classical stereo correspondence methods, like BM, cannot match certain parts
of the image and leaves them without any disparity value. This causes some regions, like parts of270

the branches, to not have depth information. We propose to alleviate this problem by using the
segmented image obtained in the previous step as prior information for disparity completion.

The proposed method is the following. First, the coordinates of all pixels that were classified as
branches and do not have a disparity value are obtained. The value of these pixels is calculated by
interpolating the disparities of their neighbors with an inverse weighted distance. This means that275

the pixels that are closer to the one that is being evaluated will contribute more than the pixels that
are farther away. In the case that the missing pixel does not have a neighbor with disparity, it is
discarded. An example of the result obtained by this process can be seen in Figure 13.

3.4. Skeletonization
As next step, the improved segmented image is processed further to get the morphology of the280

plant. For this, a 2D skeleton is extracted from the binary image.
To find the skeletonization method that suits better to our task, we evaluated five methods:

Zhang & Suen [60], Parallel thinning [23], 3D skeletonization [37], Medial axis [9], and RUSTICO
[55] (see Section 5.3 for algorithms details and evaluation results). These methods succeed in finding
the skeleton of the plant. However, most of them generated small branches that do not represent a285

real branch but noise or a “small bump” on the edges of the segmented plant. Finally, the method
that obtained the best results was Zhang & Suen [60], as seen in Figure 14, both in the accuracy of
the calculated skeleton, in the number of small branches generated, and in the runtime. Therefore,
we selected this method for the final implementation of the algorithm.

3.5. Branching search algorithm290

Once the 2D skeleton is obtained, the branches of the plant are found by exploiting the basic
principle of thinning: A thinning algorithm reduces the components of a binary image to single
pixel thickness lines. This means that, if a pixel belongs to a branch, it should have at most two

8

neighbors, in case it has more than two neighbors, it should be considered as a branching node, as
seen in Figure 5.295

1 neighbor for each colour 3 nbr. for the central pixel2 neighbors for each colour

Figure 5: Neighborhood evaluation criteria. In the first and second images, the pixels marked in red, blue, and green
are considered as branch pixels because they only have 2 neighbors at most. In the third image, the red pixel is
considered as a branching node because it has 3 neighbors.

The proposed algorithm solves the branching as follows. First, it picks a random pixel from the
skeleton of the plant. If the pixel has more than 2 neighbors in an 8 neighborhood criteria, it is
classified as a node. If the pixel has 2 or less neighbors, it is classified as a branch. To find the rest of
the pixels in that branch, it explores the neighbors of the pixel in a recursive way. This means that,
if we classify a pixel as a branch, we will evaluate its neighbors until the new neighbors are either300

classified as a node or they no longer have more neighbors. In addition, to correct possible errors of
the skeletonization process, branches with lengths less than or equal to 3 pixels are eliminated.

Algorithm 1 shows the formalization of this process using pseudocode, where the function “neigh-
bors” returns the set of neighbors of a pixel, the function “U” returns the set of unvisited pixels,
“find_branch” is a recursive function that calculates the pixels that make up a branch from an initial305

pixel, and the sets N and B contain the lists of branching nodes and branches found, respectively.
In the case of set B, the algorithm creates a sub-list of pixels for each branch.

Algorithm 1: Branching search
S ← Rose bush skeleton image
N ← {∅} ▷ List of branching nodes
B ← {∅} ▷ List of branch pixels
while |U(S)| > 0 do

p← U(S) ▷ Extract a random unvisited pixel
N ,B ← find_branch(p,N ,B)

end
function find_branch(p, N ,B) is

if |neighbors(p)| > 2 then
N ← N ∪ {p}

else
B′ ← {p}
foreach p′ ∈ U(neighbors(p)) do
N ,B′ ← find_branch(p′,N ,B′) ▷ Find rest of the branch

end
B ← B ∪ {B′}

end
return N ,B

end

9

3.6. 3D reconstruction
Finally, we reconstruct the plant in 3D using the information obtained in the previous steps.

Algorithm 2 shows the functional definition of the complete algorithm. As seen, the reconstruction310

(R3D) is performed using the left input image (IL), the improved segmentation (S’) and dispar-
ity (D′) images, the branches (B) found by the Algorithm 1, and the intrinsic parameters of the
calibrated stereo camera (Cparams).

Algorithm 2: Functional definition of the full algorithm
IL, IR ← Stereo input images
S ← FCSN(IL) ▷ Section 3.1
D ← Disparity(IL, IR) ▷ Section 3.2
S ′ ← Improve_segmentation(S,D) ▷ Section 3.3
D′ ← Improve_disparity(D,S ′) ▷ Section 3.3
K ← Skeletonization(S ′) ▷ Section 3.4
B ← Branching_search(K) ▷ Section 3.5
R3D ← 3D_reconstruction(IL,S ′,D′,B, Cparams) ▷ Section 3.6

To calculate the 3D reconstruction of the plant, each branch pixel found by the branching search
algorithm is represented by a set of features (see Figure 6), these are: its coordinates (x, y, z),315

diameter or width of the branch (w), and average color of that area of the branch (c).

c

X

Y

Z

w

β

β

(x, y, z)

sk
e
le

to
n

Figure 6: Features extracted for each point of a branch: position (x, y, z), width (w), and principal color (c) in a
region of size 2β around the point.

To calculate the color of a branch area, we extract a region of size 2β around a point (x, y) from
the original input image, and, within this region, we calculate the dominant color using the color
quantization method proposed by Orchard & Bouman [41].

To calculate the width w of the branches, firstly we transform the skeleton into a set of lines.320

We do this by using the probabilistic implementation of the Hough transform [50], allowing a small
gap (3 pixels in our implementation) between pixels to create the lines. We also set the threshold
parameter to 10 (minimum number of intersecting points to detect a line) and the minimum segment
length to 3 pixels in order to better adjust the lines according to the curvature of the branch. Once
the line is obtained, we calculate a perpendicular line to each Hough line. These perpendicular lines325

start and finish at the boundaries of the segmentation image (see Figure 6).
The conversion from disparity values into a real depth values can be performed directly on the

basis of data obtained during the calibration process. Thus, the 3D coordinates (X, Y , Z) of the
plant projected in the 3D space are calculated using the row x and column y of pixels in the 2D
image, and their corresponding depth values z (obtained from the disparity map using Equation 1).330

10

Equation 2 shows how to calculate this equivalence.






X

Y

Z






=







z(x−cx)
f

z(y−cy)
f

z






(2)

where cx and cy are the principal point (image center) and f is the focal length of the camera (in
pixels).

The obtained reconstruction is processed to determine the branches to be cut according to a
series of pruning rules. In particular, the information obtained allows us to analyze the rose bush to335

select the cut points according to different criteria, such as those that exceed a certain height, grow
towards the center of the plant, or have a given branch thickness or color (dry branches usually have
dark colors).

4. Datasets

For the evaluation of the proposed method we used a total of five datasets, two downloaded from340

the state of the art (called TB-Roses v2 [54] and Arabidopsis [51]), and three datasets created by the
authors, which jointly are called ROSeS (Roses for Object Segmentation and Skeletonization)2. These
three datasets are divided into: S-ROSeS, a synthetic dataset of rose bushes, H-ROSeS, a hybrid
dataset with 200 real indoor images but with realistic plastic plants, and R-ROSeS, a completely
real dataset with 100 photos of rose bushes taken in different botanic gardens.345

H-ROSeS and R-ROSeS were captured using the same stereo camera, with a resolution of
720×480 px, an interocular distance (base line) of 0.03m. The segmented ground truth was ob-
tained by labelling manually each image at the pixel level.

S-ROSeS consists of 5760 stereo images with a resolution of 720×480 px obtained from 160
different views of 36 synthetic rose bushes generated with Blender3. The images were generated350

at different distances and perspectives by rotating the camera around each plant and moving the
camera closer and farther from it. Each of these bushes is unique. They were created following
the morphology of real rose bushes with a mean height of 0.6m ± 0.20m. The 36 synthetic bushes
are distributed in 4 different outdoor environments (9 bushes per environment). The environments
differ in background, light conditions and position of the sun. Each stereo pair has its corresponding355

ground truth with the segmented image, the disparity map, and the skeleton for both left and
right views (see Figure 7). These images were also generated using Blender’s properties. To obtain
the depth map of the synthetic dataset, we simulated a stereo camera with a parallel stereoscopic
configuration, a sensor size of 32 mm, a focal length of 0.035m, and a baseline of 0.03m.

TB-Roses v2 dataset [54] is composed of 319 images of rose bushes recorded in a real garden360

with a resolution of 960×540 pixels4. It was designed for testing algorithms for segmentation and
delineation of rose branches in applications of gardening robotics. The images are provided together
with the ground truth marking the segmented branches.

The Arabidopsis dataset [51] consists of 160 images with a resolution of 2208×1656 px of twelve
Arabidopsis genus plants taken indoor5. The images were taken by rotating a turntable by 10 degrees365

of yaw. This dataset includes the ground truth with the segmentation and the branching structure.
Figure 8 shows some example images of the datasets. For S-ROSeS, four examples with four

different backgrounds are included (see Figures 8a, 8b, 8c, and 8d). For the rest, several examples
per dataset are also included (Figures 8e to 8l). As can be seen, we collected a variety of datasets,
not only in the type and morphology of the plants but also in the type of environment (including370

2The three datasets of ROSeS are available for the scientific community at http://trimbot2020.webhosting.rug.
nl/resources/public-datasets/

3Blender (https://www.blender.org/) is a free and open source 3D creation suite.
4TB-Roses v2 is publicly available at: https://gitlab.com/nicstrisc/RUSTICO/tree/master/data
5Arabidopsis dataset is publicly available at: http://kobus.ca/research/data/eccv_16_plants/index.html

11

(a) Input image (b) Segmentation

(c) Depth map (d) Skeleton

Figure 7: Ground truth of the S-ROSeS dataset, where (a) is the synthetic input image, (b) is the pixelwise segmen-
tation, (c) is the depth map, and (d) is the skeleton of the plant. These example images are from the view of the left
camera. The dataset also includes the images obtained from the right camera view.

indoor and outdoor), backgrounds (without always using a homogeneous color), and different lighting
conditions (Figures 8d and 8h are darker, and the camera in Figure 8i faces the sun).

Table 2 shows a summary of characteristics of the different datasets used, including their type,
number of samples, resolution, brightness, and types of ground truth included. As can be seen,
some types of ground truth are not available for all datasets. Segmentation ground truth is the only375

one that is available for all, but the disparity and the skeleton are only included in S-ROSeS. So
the validation in each case can only be done for the available data. This table also includes the
maximum and minimum average image brightness values per dataset (in the range [0, 255]). These
values clearly show how the outdoor datasets have much more variable lighting.

In all the experiments we used an n-fold cross validation, which yields a better Monte-Carlo380

estimate than when solely performing the tests with a single random partition [34]. Therefore, the
datasets were divided into n subsets, using, for each fold, one of the partitions for test (with 1/n of
the samples) and the rest for training (1− 1/n).

Partitions were created by separating the datasets according to the sequences or backgrounds
used, with the intention of creating mutually exclusive subsets. For example, for S-ROSeS, n = 4385

partitions were created (1 for each type of background), for H-ROSeS n = 2 partitions (corresponding
to the two different sequences), for R-ROSeS n = 4 (since the images were taken in two different
gardens and for each one 2 sequences were recorded), for TB-Roses n = 3 (corresponding to three
sequences of images), and for Arabidopsis n = 4 (with 3 plants per partition, since it has 12 plants
in total).390

For tuning the hyperparameters (see Section 5.1), the training partition was divided into two,
assigning 10% of these samples for validation and the rest for training. The classifier was trained
and evaluated n times using these sets, after which the average results plus the standard deviation

12

(a) S-ROSeS (example 1) (b) S-ROSeS (example 2) (c) S-ROSeS (example 3) (d) S-ROSeS (example 4)

(e) H-ROSeS (example 1) (f) H-ROSeS (example 2) (g) R-ROSeS (example 1) (h) R-ROSeS (example 2)

(i) R-ROSeS (example 3) (j) TB-Roses v2 (example 1) (k) TB-Roses v2 (example 2) (l) Arabidopsis

Figure 8: Example images of the different datasets used for the evaluation.

σ were reported.

5. Experiments395

In this section we evaluate the different parts of the proposed method using the datasets described
in Section 4. First, the proposed FCSN segmentation network is evaluated, analyzing its different
hyperparameters and comparing it with other state-of-the-art methods (see Section 5.1). Next, the
calculation of the disparity and the post-processing step used to combine the segmentation and
disparity images are assessed in Section 5.2. Section 5.3 compares five different skeletonization400

methods used for the detection of branches. Finally, the accuracy of the 3D reconstruction obtained
is evaluated in Section 5.4.

All these experiments were performed using a Razer Blade 14 with Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz (4th Gen) with 16 GB DDR4 RAM, a Nvidia GeForce GTX 1070 GPU, and ROS
Kinetic with Ubuntu 16.04 as operating system.405

5.1. FCSN evaluation
In this section we evaluate the FCSN proposed to perform the segmentation of the branches.

First, different network hyperparameters are analyzed. For these initial experiments we used the 4

13

Table 2: Summary of characteristics of the datasets evaluated, including the number of images, their resolution, their
type (real, hybrid or synthetic), the minimum/maximum average image brightness values (in the range [0, 255]), the
ground truths (segmentation, disparity and/or skeleton), whether they are indoor or outdoor, and if they have variable
lighting.

Name # Images Resolution
(pixels)

Type
Min/Max

average
brightness

Se
gm

en
t.

D
is

pa
ri

ty

Sk
el

et
on

In
do

or

V
ar

ia
bl

e
lig

ht
ni

ng

S-ROSeS 5760 720×480 Synthetic 87 / 193 ✓ ✓ ✓ – ✓

H-ROSeS 200 720×480 Hybrid 115 / 136 ✓ – – ✓ –
R-ROSeS 100 720×480 Real 70 / 201 ✓ – – – ✓

TB-Roses v2 319 960×540 Real 85 / 169 ✓ – – – ✓

Arabidopsis 160 2208×1656 Real 111 / 143 ✓ – – ✓ –

sets of plants from the S-ROSeS dataset. Subsequently, using the best model found, we evaluate the
rest of the datasets and compare the proposed method with other approaches from the state of the410

art.
In order to assess the performance of the proposed method, three evaluation metrics widely used

for this kind of tasks were chosen, they are: Precision, Recall, and F1, which can be defined as:

Precision =
TP

TP + FP (3)

Recall = TP
TP + FN (4)

F1 =
2 · TP

2 · TP + FN + FP (5)

where TP (True Positives) denotes the number of correctly segmented branch pixels, FN (False
Negatives) the number of non-segmented branch pixels, and FP (False Positives) the number of415

background pixels incorrectly given as branch pixels.

5.1.1. Hyperparameters evaluation
To select the best hyperparameters and configuration for the FCSN, we performed a grid-search

process [8] using the S-ROSeS dataset. The configurations evaluated include variations in the net-
work input size (from 120px to 480px of width and maintaining the original aspect ratio to calculate420

the height), in the number of layers (from 2 to 10), in the number of filters per layer (between 8
and 128), and in the kernel size (between 3 and 7). In each experiment, only one parameter was
changed, setting the rest to a standard network configuration with an input size of 360×240px, 6
layers of depth (3 encoding + 3 decoding layers), 32 filters per layer with a kernel size of 3×3, with
a selectional threshold δ of 0.5, without equalizing the input image, and only normalizing the input425

values dividing by 255.
Figure 9 shows the average results plus the standard deviation of these experiments. The reported

results are the average of the 4-fold cross validation, where, for each fold, we used one of the S-ROSeS
dataset partitions for test (25% of the samples) and the rest for training (75%), without mixing
neither the types of plants nor the backgrounds, consequently dividing it into 4 mutually exclusive430

sub-sets. As stop criterion for tuning the hyperparameters, the training partition was divided into
two, assigning 10% of the samples for validation and the rest for training.

The average F1 when varying the input size is shown in Figure 9a. As seen, the best results
(with the lowest standard deviation) were obtained using the larger input size (480×320px). Even
larger sizes were also evaluated, but they increased the requirements of the machine, which did not435

allow their use due to the hardware specifications of the robotic platform. In the case of the number
of layers (Figure 9b), an increasing trend is also observed, obtaining the best result with 4+4 layers
and then getting worse slightly. The standard deviation also decreases up to 4+4 layers and it then

14

60

65

70

75

80

85

90

120x80 240x160 360x240 480x320

F
1

(a) Input size

60

65

70

75

80

85

90

1+1 2+2 3+3 4+4 5+5

F
1

(b) # layers

60

65

70

75

80

85

90

8 16 32 64 128

F
1

(c) # filters

60

65

70

75

80

85

90

3 5 7

F
1

(d) Kernel size

Figure 9: Average F1 (%) plus standard deviation (in light red) of the grid-search process when varying (a) the input
image size, (b) the number of encoding + decoding layers, (c) the number of filters per layer, and (d) the kernel size
of the convolutional filters.

stabilizes. In this case, it was not possible to add more layers due to the base input size (360×240px),
since in each layer the size is divided by 2. Figure 9c shows the result obtained when varying the440

number of filters per layer. In this case, using more filters also increases the F1 and reduces the
standard deviation. This improvement is more noticeable from 16 to 64 filters, increasing more
slightly later when adding more filters. Figure 9d shows the average F1 for the three kernel sizes
evaluated, obtaining the best results with a kernel size of 5×5. In this case, the standard deviation
hardly varies.445

We now proceed to analyze the influence of the normalization type as well as the equalization
applied to the input data, setting for this the best configuration found in the previous experiments.

Literature cites different ways to normalize the data used to feed a network [49, 36], but the
most appropriate technique depends on the particular problem. The most common normalization
methods are:450

Zstandard =
M −mean(M)

std(M)

Zmin−max =
M −min(M)

max(M)−min(M)

Zmean = M −mean(M)

Znorm = M/255

where M is the input matrix containing the raw image pixels from the training set. For the nor-
malization of the test set we used the same mean, deviation, max, and min values calculated for the
training set.

Moreover, since it was observed that the image contrast and brightness affected the result ob-

15

tained significantly, different types of equalization were also analyzed. The equalization of the455

histogram applies a transformation on the image in order to obtain a histogram with a uniform dis-
tribution of colors (or levels of gray) that improves the contrast of the image. For this, the histogram
equalization was evaluated using gray values and both RGB and HSV color spaces. In addition, the
CLAHE (Contrast Limited Adaptive Histogram Equalization) method [1] was evaluated in gray and
both CIELAB and HSV color spaces. This method performs an adaptive equalization by regions460

controlling the limit of the equalization made to not overamplify noise in homogeneous regions.
We evaluated these types of normalization and equalization on the proposed network, including

the option of not normalizing or equalizing the data. Figure 10 shows the average results plus the
standard deviation of these experiments. As before, each result is the average of the 4 folds using
the best configuration found in the previous experiments and only varying the type of normalization465

or equalization. The type of data normalization (see Figure 10a) considerably affects the result
obtained, since the difference between the best and the worst result exceeds 12%. The best F1 is
obtained using the standard normalization, followed by the mean norm. In addition, in these two
cases, the standard deviation is quite similar. For the equalization type (see Figure 10b), a significant
difference in the results obtained is also shown. Both gray scale and RGB equalizations seem to470

worsen the result, however, HSV and CLAHE (both in RGB and HSV color spaces) equalizations
does improve it. The best result is obtained with the HSV equalization, which also reports the
lowest standard deviation and is better than the option of not equalizing by 6.15 %.

60

65

70

75

80

85

90

95

100

N
o
n
e

2
5
5

M
e
a
n

S
ta

n
d
a
rd

M
in
-m

a
x

F
1

(a) Normalization type

60

65

70

75

80

85

90

95

100

N
on

e
R
G
B

H
SV

G
ra

y

G
ra

y C
LA

H
E

LA
B C

LA
H
E

H
SV C

LA
H
E

F
1

(b) Equalization type

Figure 10: Average F1 (%) plus standard deviation obtained for the different types of (a) normalization and (b)
equalization considered.

Subsequently, we also evaluated the selectional threshold δ that is applied to the output of
the network to determine (select) the pixels belonging to a branch. Figure 11a shows the result of475

varying this threshold between 0 and 1. The network obtains results higher than 80% with thresholds
between 0.2 and 0.6, obtaining the best F1 and the lowest standard deviation with a threshold of
0.3.

Finally, the influence of the data augmentation process was evaluated. For this, the number of
samples of the training set was artificially increased by applying different types of random trans-480

formations to these images (This process is described in Section 3.1). In order to evaluate the
improvement obtained with this augmentation process, we carried out an experiment in which we
gradually increased the number of random transformations applied to each image from our training
set, and evaluated it using the test set. Figure 11b shows the average results plus the standard
deviation of such experiment, where the horizontal axis represents the augmentation factor and the485

vertical axis the F1 obtained. As seen, the highest improvement is obtained at the beginning, after
which the results begin to stabilize and stop improving after 10 augmentations. In this case, the
standard deviation is quite stable, it is only slightly reduced by adding the first augmented images.

The finally selected configuration for the FCSN network was an input size of 480×320px, 4+4
layers, 128 filters per layer with a kernel size of 5×5, standard normalization, HSV equalization, a490

16

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
1

(a) Selectional threshold δ

60

65

70

75

80

85

90

95

100

0 1 2 3 4 6 8 10 12 14 16 18 20

F
1

(b) Data augmentation factor

Figure 11: (a) Influence of the selectional threshold δ (horizontal axis) on the final F1 result obtained (vertical axis).
(b) Average results of the data augmentation process. The horizontal axis represents the number of augmentations
and the vertical axis the average F1 (in percentage). Standard deviation is also shown in light red.

selectional threshold δ of 0.3, and augmenting the data by a factor of 10 (i.e. generating 10 random
transformations for each training image). Table 1 shows a summary with these settings.

5.1.2. FCSN results
Once the best architecture for the FCSN network was obtained, it was evaluated with all the

datasets described in Section 4. In addition, we compared it with the results obtained by other495

state-of-the-art methods, these are: U-Net [46], SegNet [4], and DeepLabv3 [14] (see Appendix A
for a description of these methods).

In addition to Precision, Recall and F1 metrics, the Intersection over Union (IoU) [15] metric
was used for evaluation. The metrics previously used are suitable for unbalanced datasets but in
some cases they are not the most fair because they measure the precision at the pixel level, but500

not whether the algorithm has detected a branch or not. So it is possible that thick branches are
detected very well but thin branches not, and still obtain good results. It is also possible that the
algorithm makes mistakes in the branches’ edges and gets a low result with these metrics when, in
fact, all the branches are being detected correctly.

The IoU metric helps to measure whether the algorithm correctly detects all the branches and505

also how well it detects their size and location. To calculate this metric, we map each branch6 of the
ground truth (gt) onto the segmentation proposals (bp) with which it has a maximum IoU overlap
according to the following equation:

IoU =
area(Bbp ∩Bgt)

area(Bbp ∪Bgt)
(6)

where area(Bbp∩Bgt) depicts the intersection between a branch proposal and the ground truth, and
area(Bbp ∪Bgt) depicts its union.510

We also calculate the metric F1 at the branch level considering as TP when the IoU value exceeds
a certain threshold λ (by convention λ = 0.5). We consider as FP the wrong detections (i.e., when
a Bbp does not overlap with any Bgt), and as FN when a ground truth branch is not detected. Note
that if multiple detections of the same branch are predicted, only the first one is counted as positive
and the rest as negatives.515

Table 3 shows the results obtained by each of the methods compared. The results have been
grouped by dataset, also showing the average at the end of the table. The best result obtained by
dataset and on average is marked in bold for each metric.

6To perform this process, we manually separated each branch from the ground truth.

17

As can be seen, the proposed method obtains better results than the rest of approaches, except
for the precision with S-ROSeS. However, this result is only 0.6 worse than that obtained by U-Net,520

and, given the standard deviation values (3.2 and 4.5, respectively), this difference can be neglected.
Moreover, if we analyze the F1 metric at pixel level, it shows that FSCN obtains a better overall
segmentation. Therefore, it correctly recovers a greater number of branches, as shown by the metric
F1 at branch level. On average, the proposed method obtains a F1 8.18 % better than the next best
result at pixel level, and 7.33 % if we analyze it at branch level. The datasets for which a greater525

improvement is obtained with respect to the other methods are Arabidopsis (10.75 % better than
the next best result at pixel level), H-ROSeS (8.55 % better), and R-ROSeS (5.98 % better), which
are the datasets that present a greater difficulty since they have thinner branches, more complex
backgrounds, and a greater number of branches to segment.

Table 3: Results obtained by the different algorithms evaluated for each of the datasets. The best result obtained by
dataset and on average is marked in bold for each metric.

Pixel level Branch level
Dataset Method Precision Recall F1 Avg. IoU F1

S-ROSeS

U-Net 91.08 ± 3.2 88.50 ± 4.5 89.77 ± 3.9 90.21 ± 9.5 93.63 ± 7.6
SegNet 88.84 ± 2.9 77.07 ± 11.1 81.81 ± 8.3 83.60 ± 7.9 87.79 ± 5.0
DeepLabv3 76.94 ± 6.2 84.63 ± 5.5 80.59 ± 5.8 79.64 ± 6.8 81.21 ± 6.5
FCSN 90.47 ± 4.5 93.18 ± 3.0 91.70 ± 3.9 94.16 ± 7.3 97.09 ± 4.2

H-ROSeS

U-Net 48.27 ± 0.7 66.15 ± 4.3 55.80 ± 2.0 66.11 ± 9.5 76.61 ± 7.1
SegNet 56.92 ± 1.7 58.95 ± 1.5 57.48 ± 1.6 55.11 ± 11.5 64.98 ± 11.2
DeepLabv3 50.79 ± 0.3 55.67 ± 0.7 53.12 ± 0.5 61.75 ± 10.7 67.34 ± 11.8
FCSN 61.20 ± 1.2 71.79 ± 3.5 66.03 ± 2.6 69.40 ± 8.3 80.35 ± 7.3

R-ROSeS

U-Net 69.45 ± 8.0 71.00 ± 8.9 70.19 ± 8.4 68.15 ± 13.0 73.88 ± 13.5
SegNet 70.58 ± 9.5 73.69 ± 8.2 72.08 ± 8.8 70.08 ± 12.5 75.69 ± 12.2
DeepLabv3 61.09 ± 2.5 61.49 ± 2.9 61.21 ± 2.7 71.85 ± 8.4 74.19 ± 8.9
FCSN 77.48 ± 7.8 78.72 ± 5.6 78.06 ± 6.6 76.71 ± 8.7 82.18 ± 8.2

TB-Roses

U-Net 65.53 ± 4.8 73.74 ± 3.0 69.38 ± 4.1 77.04 ± 6.5 80.09 ± 6.0
SegNet 69.73 ± 0.4 79.48 ± 2.9 74.27 ± 1.0 82.71 ± 11.9 86.28 ± 12.2
DeepLabv3 47.45 ± 0.9 59.23 ± 1.0 52.69 ± 0.9 80.89 ± 8.9 82.50 ± 9.0
FCSN 75.11 ± 0.7 80.17 ± 2.4 77.55 ± 1.5 84.12 ± 7.0 87.44 ± 7.7

Arabidop.

U-Net 47.45 ± 0.7 59.23 ± 0.8 52.69 ± 0.8 73.81 ± 10.8 78.06 ± 11.9
SegNet 54.45 ± 2.9 65.46 ± 7.3 58.52 ± 8.1 77.49 ± 15.8 82.50 ± 16.4
DeepLabv3 60.91 ± 3.4 61.02 ± 3.4 60.96 ± 3.4 79.14 ± 7.7 85.56 ± 8.2
FCSN 71.52 ± 3.1 72.44 ± 4.2 71.71 ± 3.5 87.67 ± 7.1 91.88 ± 7.3

Average

U-Net 64.35 ± 5.2 71.72 ± 5.1 67.56 ± 5.0 75.06 ± 10.1 80.46 ± 9.7
SegNet 68.10 ± 5.5 70.93 ± 10.5 68.83 ± 6.5 73.80 ± 12.2 79.45 ± 12.0
DeepLabv3 59.44 ± 3.4 64.41 ± 3.2 61.71 ± 3.1 74.65 ± 8.6 78.16 ± 9.1
FCSN 75.16 ± 5.4 79.26 ± 5.6 77.01 ± 4.6 82.41 ± 7.7 87.79 ± 7.1

To rigorously analyze the results obtained, we performed a statistical significance comparison530

by considering the paired sample non-parametric Wilcoxon signed-rank test [17]. More precisely,
the idea is to assess whether the improvement observed in the segmentation performance (F1 score
at the pixel level) with the use of the FCSN is statistically significant in comparison with the
result obtained by the other methods. For this, the results obtained for each dataset and fold
were pairwise compared. By making this comparison, the proposed method obtains a p-value of535

0.005, if we compare it with SegNet, and 0.002 with respect to U-Net and DeepLabv3. Therefore,
this test reflects that our proposal significantly outperforms (considering a statistical significance
threshold of p < 0.01, the most restrictive threshold normally used) the results obtained by the
other state-of-the-art methods.

Figure 12 shows an example of the segmentation result obtained by each method for a sample540

image of each of the evaluated datasets. To make this figure more informative, we selected samples in
which all methods made visible mistakes. The input image is shown in the first column. The rest of

18

the columns correspond to the results obtained by each method, where black and white areas depict
correct detections of branches and background, respectively, and and red and blue pixels depict FP
and FN of branches, respectively. These figures help to visualize the accuracy of the methods and545

to understand where the errors occur. As can be seen, U-Net and SegNet generate more noise due
to non-branch elements (general background, leaves, etc.), while DeepLabv3 tends to make a thicker
segmentation. The proposed method also makes mistakes, but they are mainly produced in the
contours of the branches.

DeepLabv3U-Net SegNet FCSNInput

S
-R

O
S
eS

H
-R

O
S
eS

R
-R

O
S
eS

T
B

-R
o
se

s
A

ra
b
id

o
p
si

s

Figure 12: Examples of the segmentation result obtained by each method for a sample image of each of the evaluated
datasets. The first column shows the input image. The rest of the columns correspond to the results obtained by each
method, where black and white areas depict correct detections of branches and background, respectively, and red and
blue pixels depict FP and FN of branches, respectively.

5.2. Assess segmentation and disparity combination process550

The post-processing step used to combine the segmentation and disparity images is evaluated in
this section. Several depth metrics from prior works [18] are used for the evaluation of the disparity

19

results, which are:

• Root Mean Squared Error (RMSE):
√

1
T

∑T

i ||di − dgti ||
2

• Squared Relative difference (Sq-Rel): 1
T

∑T

i

||di−d
gt

i
||2

d
gt

i

555

where T is the total pixels in the image, di is the estimated depth for the pixel i, and dgti is the
ground-truth depth.

Table 4 shows the results of this experiment, where the disparity evaluation is shown in the
first four columns and the results obtained for segmentation in the last three. The disparity was
evaluated for the complete image (first two columns) and also at the branch level (i.e. taking into560

account only the pixels within the segmentation ground truth, see third and fourth columns). In
our case, the results at the branch level are the most interesting, since on the one hand the disparity
improvement process only affects branches, and on the other hand, the rest of the process only uses
these depth values. As seen, these processes help to improve the original result obtained for both
segmentation and disparity (with the BM method). The improvement obtained for the disparity is565

the most significant, reducing the RMSE from 0.2527 to 0.0869 at branch level.

Table 4: Results obtained for the calculation of the disparity and segmentation with the S-ROSeS dataset before
and after applying the segmentation and disparity combination process. For the disparity, the error calculated for the
complete image and at the branch level is shown.

Disparity
Full image Branch level Segmentation

RMSE Sq-Rel RMSE Sq-Rel Precision Recall F1

Original 0.5648±0.2 0.0917±0.1 0.2527±0.2 0.0310±0.1 90.47±4.5 93.18±3.0 91.70±3.9
Improved 0.5082±0.2 0.0630±0.0 0.0869±0.1 0.0039±0.0 92.86±4.4 92.59±3.1 92.96±3.8

Figure 13 shows an example of the result obtained after applying the segmentation and disparity
combination process. As can be seen in the figure on the right, the final result substantially improves
the original disparity (central image, obtained with the BM method), since this method fills the
empty areas, obtaining a dense disparity for the bush branches. On this result, the intersection570

with the segmentation image is then calculated to eliminate all the background noise and leave only
disparity values for branches.

GT Original disparity Improved disparity

Figure 13: Example of the result obtained through the post-process to improve the disparity. The first image shows
the disparity ground truth, the central image shows the original result obtained by the BM method, and the right
image shows the the improved disparity obtained after the segmentation and disparity combination process.

5.3. Skeleton evaluation
In this section we evaluate the skeletonization process individually, without considering the errors

made in the previous steps. For this, we analyze the result using the segmentation ground truth575

20

as input of this algorithm, leaving the evaluation of the whole workflow for the 3D reconstruction
section.

To evaluate the skeletonization, the F1 score is used by comparing the obtained 3D skeleton So

and the ground truth skeleton Sgt at the pixel level. Because the skeleton is only one pixel wide,
a certain tolerance distance d is considered to determine if a pixel is a TP (similar to Zou et al.580

[63]). Therefore, a pixel is considered to be TP if it is located no more than d pixels away from the
ground truth. These experiments were performed using the hardware specifications described at the
beginning of this section.

The following five methods were evaluated using this criteria to find the skeletonization method
that suits better to our problem: Zhang & Suen [60], Parallel thinning [23], 3D skeletonization [37],585

Medial axis [9], and RUSTICO [55] (see Appendix B for a description of these methods).
Given that RUSTICO is not defined as a skeletonization method per se and uses as input a

gray scale image instead of a binary one, it delineates curved objects from the background as well,
as seen in Figure 14h. Because of this, two experiments using this method were performed. One
by comparing the raw output of RUSTICO with the ground truth skeleton and other by only590

considering the skeleton obtained by RUSTICO inside the ground truth segmented image (denoted
by RUSTICO+seg), to make a more fair comparison with the other methods (which directly use the
segmented image).

Table 5 shows the quantitative results of this experiment using the S-ROSeS dataset and different
d values (d = [0, 1, 2]). As seen, all the skeletonization methods achieved scores above 0.3, 0.7 and595

0.9 for d = [0, 1, 2] respectively, with the exception of RUSTICO and RUSTICO+seg, which got
the lowest results. However, these results are similar to those obtained in the original paper for the
branch segmentation task (F1 = 42.65 for the TB-Roses v2 dataset with a tolerance of 2 pixels [55]).
RUSTICO’s low performance is caused by their nature of finding curvilinear structures rather than
finding a skeleton of a blob.600

On average, the best F1 results are obtained by the 3D skeleton method and medial axis. However,
Zhang & Suen [60] and parallel thinning are only ∼ 1% worse. The main problem with the 3D
skeleton is that it is computationally more expensive than the other methods (4.6121 sec. vs. 0.0390
sec. for Zhang & Suen [60]7) because it has to evaluate regions of [3 × 3 × 3] per disparity layer.
The problem with the medial axis method is that it gets affected by the noise and bumps at the605

edges of the segmentation, which creates small branches that connects the main axis with those
small protuberances. The parallel thinning method has a similar problem. The method that creates
less small branches in the skeleton and runs faster is by Zhang & Suen [60]. Given that we want
to implement a method that runs fast and also that creates as few FP branches as possible, we
eventually selected this method.610

Table 5: Comparison of the results obtained by the different skeletonization methods considered using the segmentation
ground truth from the S-ROSeS dataset. The best result obtained for each metric and threshold d is marked in bold.

Method Precision Recall F1

d=0 d=1 d=2 d=0 d=1 d=2 d=0 d=1 d=2
Zhang & Suen 90.25 98.61 99.47 18.47 61.88 83.96 30.66 76.04 91.06
Parallel thin. 90.22 98.60 99.46 18.26 62.06 84.33 30.37 76.17 91.27
3D skel. 87.97 97.66 98.82 19.05 64.99 87.40 31.32 78.04 92.76
Medial axis 89.68 98.49 99.39 18.92 64.63 86.12 31.25 78.05 92.28
RUSTICO 21.74 45.47 54.99 15.08 42.82 60.96 17.81 44.11 57.83
RUSTICO+seg 73.25 93.63 96.81 14.92 42.46 60.35 24.79 58.43 74.35

Figure 14 shows an example of the skeleton obtained by each method for a sample image from the
S-ROSeS dataset. Red rectangles mark the errors made by each method. As can be seen, visually
(if we compare it with the ground truth shown in Figure 14c) all methods, except RUSTICO, get a
good result. RUSTICO correctly detects the main branches but introduces a lot of noise and fails
for the small branches (even after intersecting it with the segmentation, RUSTICO+seg). The other615

7 These experiments were performed using the hardware specifications described at the beginning of this section.

21

four methods work better, obtaining similar results, however, Zhang & Suen [60] generates fewer
incorrect small branches.

(a) Input image (b) Segmentation (c) GT skeleton

(d) Zhang & Suen [60] (e) Parallel thinning (f) 3D skeletonization

(g) Medial axis (h) RUSTICO (i) RUSTICO+seg

Figure 14: Examples of the skeleton obtained by each method for a sample image from the S-ROSeS dataset. First
row shows: (a) the input image, (b) the segmentation GT, and (c) the skeletonization GT. The other two rows show
the skeletonization results. Red rectangles indicate the mistakes made by each method.

5.4. 3D reconstruction
To evaluate the performance of the 3D reconstruction, we compared it with the 3D skeleton

ground truth of the synthetic images. This ground truth has 2880 pointclouds, each one containing620

the 3D skeleton of a synthetic rose. The evaluation consisted of finding the mean of the minimum
distance between each point of the ground truth and the reconstructed skeleton. Therefore, this
metric measures how far the reconstructed skeleton is, in average, with respect to the ground truth.
To make a fair evaluation, the depths of the reconstructed points were normalized by the furthest
point in the ground truth per each plant.625

Table 6 shows the result of this evaluation. It also shows the distance in each axis x, y and z,
where z represents the depth, and y the axis that points to the ground. As can be seen, the average
distance is less than 1 cm, being the error in the x-y plane less than the one made in the z-axis (due
to the calculation of depth). However, this error is still less than 1 cm. This accuracy is enough
for the pruning process because the end effector has an opening size of 1.4 cm and is curved at the630

tool-tip (as seen in Figure 1), which allows the branch to slide into the center of the cutter even if
the branch is not completely aligned with the center of the tool.

Figure 15 shows some examples of the 3D reconstruction obtained with different input images.
This figure allows you to visually compare the result obtained by the proposed method and the

22

ground truth. In addition, the branch separation obtained by Algorithm 1 is included in the 4th635

column.

Table 6: Average distance between the 3D reconstruction and the ground truth pointclouds.
Min. distance Mean (m) std (m)
x axis 0.00293 0.00477
y axis 0.00336 0.00497
z axis 0.00619 0.00827
Overall 0.00859 0.01001

2D input image GT 3D reconstruction Branches from skeleton

Figure 15: Output examples of the 3D skeletons obtained by our method (blue) and the ground truth skeleton (red),
both superimposed over the pointcloud of the plant. The branches found using Algorithm 1 are also shown in the
third column (each branch is marked using different colors).

23

6. Conclusions and Future Work

A new method for the segmentation and 3D reconstruction of rose bushes from stereo images
was presented. This method is part of a robotic system that is capable of moving through a garden
towards a rose bush and pruning it according to a series of rules. The proposed vision method tries640

to solve this task without making assumptions about the characteristics of the plant, the type of
environment, or the lighting conditions. The method is divided into several steps that try to improve
the robustness of the result and to gather all the necessary information that allows the robot to select
the branches to be pruned.

The branch segmentation step is the most important of the whole process, since it allows to select645

only those parts of the image that are branches (differentiating them from the general background,
as well as other surrounding elements that can be very similar to branches, such as sticks, support
stakes, fences, etc.) so that the rest of the processing pipeline can work with correct data. For this
reason, the proposed method was specifically adjusted to work well in this type of task.

Five different rose bushes datasets were used to evaluate the pipeline, three of them compiled by650

the authors and two from the state of the art, including interior and exterior environments, as well
as different types of rose bushes, backgrounds, and lighting conditions. The segmentation method
obtained an average F1 score of 77 % at the pixel level. It is 8.18 % better than the next best result
from the state of art. When evaluating at the branch level, the method correctly detected 88 % of
the branches, 7.33 % better than the next best result. In addition, the significance of these results655

was validated by statistical tests.
The process proposed for the combination of segmentation and disparity improved the accuracy

of both results, increasing the segmentation F1 score by 1.26 %, and reducing the RMSE of the
disparity calculated at the branch level from 0.2527, for the original algorithm, to 0.0869.

Five different algorithms were evaluated for the 2D skeletonization, from which Zhang & Suen660

[60] was chosen to create the skeleton of the segmented binary map of the plant. This method was
chosen because it obtains a good F1 score of 91.06 % and also generates fewer small branches than
the other methods, which is convenient when dealing with thin objects with many bifurcations.

The 3D reconstruction of the plant is obtained by using the camera parameters, the branching
search algorithm, the disparity map and the segmentation obtained by the previous steps. The665

overall reconstruction is on average 0.859 cm far from the ground truth, making it an accurate
reconstruction both quantitatively and qualitatively. At the same time, the branches found in 2D
helps the method to find the branching structure in 3D, without using any geometrical primitives
or having different views of the plant.

As future work, the segmentation and disparity methods could be improved by including addi-670

tional input information, such as the curvilinear structures obtained by RUSTICO. It could also
be improved the calculation of the branches to be pruned, so that, in addition to the pruning rules
currently considered, take into account the shape and appearance of the rose bush, so that, for
example, it does not grow in an unbalanced way (more on one side than on the other).

Acknowledgments675

This work was funded by the European Horizon 2020 program, under the project TrimBot2020
(grant No. 688007).

Appendix A. State-of-the-art segmentation methods

The proposed FCSN segmentation network was compared with the following three state-of-the-
art segmentation methods:680

• U-Net [46]: It is a CNN that was developed for biomedical image segmentation. This network
uses a FCN divided into two phases: a contracting path and a expansive path. The feature
activations of the contracting path are concatenated with the corresponding layers from the
expansive path. The last layer uses a 1x1 convolution with a Softmax activation function to
output class labels.685

24

• SegNet [4]: It uses a FCN architecture for semantic pixel-wise segmentation, containing an
encoder network, a corresponding decoder network, and a pixel-wise multiclass classification
layer. The architecture of the encoder network is topologically identical to the 13 convolutional
layers in the VGG16 network [52].

• DeepLabv3 [14]: It uses atrous spatial pyramid pooling to robustly segment objects at multiple690

scales with filters at multiple sampling rates to explicitly control the resolution at which feature
responses are computed within the CNN. It also includes an image-level feature to capture
longer range information and uses batch normalization to facilitate the training.

Appendix B. Skeletonization methods

The following five algorithms were evaluated to find the skeletonization method that obtained695

the best branch detection in the shortest runtime:

• Zhang & Suen [60]: This method makes successive passes through a blob of foreground pixels
while removing pixels that do not satisfy a given condition in a 8-pixel neighborhood. The
main process consists of two sub-iteration: One removes the south-east boundary points and
the north-west corner points, and the other deletes the north-west boundary points and the700

south-east corner points.

• Parallel thinning [23]: It has a similar procedure to the previous method but using different
thinning constrains. It also introduces an endpoint detection which generates thinner results
than Zhang & Suen [60].

• 3D skeletonization [37]: This approach is also similar to the previous methods with the dif-705

ference that it evaluates a 3D neighborhood. Here, 3D refers to 3D voxels rather than 3D
point clouds. In our case, we use the disparity for the third dimension. Therefore, we build
a [n × m × d] input voxel array, where n × m is the size of the image and d the number of
disparity layers, and evaluate a [3× 3× 3] region to find the skeleton.

• Medial axis [9]: It is the locus of centers of circles which are maximal within the borders of a710

binary image. One property of the medial axis is that each point on the skeleton has a value
which represents its distance to a boundary in the original object.

• RUSTICO [55]: It presents a brain-inspired inhibition mechanism built using trainable filters
called B-COSFIRE [3] to delineate curvilinear structures. The inhibition mechanism introduces
robustness to noise given that a gray scale image passes through two processes, an excitatory715

part and an inhibition component. The excitatory component is selective for bright lines on
dark backgrounds, while the inhibitory counterpart is selective for wider dark lines on bright
backgrounds. Although the paper focuses on a more general task, Strisciuglio et al. [55] uses
it to segment branches as one of their experiments.

References720

[1] Acharya, T., & Ray, A. K. (2005). Image Processing - Principles and Applications. New York,
NY, USA: Wiley-Interscience.

[2] Alenya, G., Dellen, B., Foix, S., & Torras, C. (2013). Robotized plant probing: Leaf segmenta-
tion utilizing time-of-flight data. IEEE Robotics & Automation Magazine, 20, 50–59.

[3] Azzopardi, G., Strisciuglio, N., Vento, M., & Petkov, N. (2015). Trainable cosfire filters for725

vessel delineation with application to retinal images. Medical image analysis, 19, 46–57.

[4] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39, 2481–2495. doi:10.1109/TPAMI.2016.2644615.

25

[5] Barth, R., IJsselmuiden, J., Hemming, J., & Van Henten, E. (2017). Synthetic bootstrapping of730

convolutional neural networks for semantic plant part segmentation. Computers and Electronics
in Agriculture, .

[6] Barth, R., IJsselmuiden, J., Hemming, J., & Van Henten, E. (2018). Data synthesis methods for
semantic segmentation in agriculture: A capsicum annuum dataset. Computers and Electronics
in Agriculture, 144, 284–296.735

[7] Belton, D., Moncrieff, S., & Chapman, J. (2013). Processing tree point clouds using gaussian
mixture models. Proceedings of the ISPRS annals of the photogrammetry, remote sensing and
spatial information sciences, Antalya, Turkey, (pp. 11–13).

[8] Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal
of Machine Learning Research, 13, 281–305.740

[9] Blum, H. (1967). A transformation for extracting new descriptors of shape. In W. Wathen-
Dunn (Ed.), Models for the Perception of Speech and Visual Form (pp. 362–380). Cambridge:
MIT Press.

[10] Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X., &
Corbett-Davies, S. (2017). A robot system for pruning grape vines. Journal of Field Robotics,745

34, 1100–1122.

[11] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010 (pp. 177–186). Springer.

[12] Calvo-Zaragoza, J., & Gallego, A.-J. (2019). A selectional auto-encoder approach for document
image binarization. Pattern Recognition, 86, 37 – 47. URL: http://www.sciencedirect.750

com/science/article/pii/S0031320318303091. doi:https://doi.org/10.1016/j.patcog.
2018.08.011.

[13] Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the Devil in the
Details: Delving Deep into Convolutional Nets. In British Machine Vision Conference (pp.
1–11). doi:10.5244/C.28.6.755

[14] Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution
for semantic image segmentation. CoRR, abs/1706.05587 .

[15] Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images.
{ISPRS} Journal of Photogrammetry and Remote Sensing, 117 , 11 – 28. doi:http://dx.doi.
org/10.1016/j.isprsjprs.2016.03.014.760

[16] Cuevas-Velasquez, H., Li, N., Tylecek, R., Saval-Calvo, M., & Fisher, R. B. (2018). Hybrid
multi-camera visual servoing to moving target. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 1132–1137). IEEE.

[17] Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7 , 1–30.765

[18] Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using
a multi-scale deep network. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 NIPS’14 (pp. 2366–2374). Cambridge, MA, USA:
MIT Press.

[19] Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation.770

International journal of computer vision, 59, 167–181.

[20] Furgale, P., Rehder, J., & Siegwart, R. (2013). Unified temporal and spatial calibration for
multi-sensor systems. In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (pp. 1280–1286). IEEE.

26

[21] Gélard, W., Devy, M., Herbulot, A., & Burger, P. (2017). Model-based segmentation of 3d point775

clouds for phenotyping sunflower plants. In 12th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2017) (pp. 459–
467). volume 4.

[22] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. Journal
of Machine Learning Research (JMLR) W&CP, 15, 315–323.780

[23] Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communi-
cations of the ACM , 32, 359–373.

[24] Gürel, C., ZADEH, M. H. G., & ERDEN, A. (2016). Development and implementation of rose
stem tracing using a stereo vision camera system for rose harvesting robot. In 8th International
Conference on Image Processing, Wavelet and Applications (IWW 2016).785

[25] Gürel, C., Zadeh, M. H. G., & Erden, A. (2016). Rose stem branch point detection and cutting
point location for rose harvesting robot. In The 17th International Conference on Machine
Design and Production, UMTIK 2016.

[26] Hackenberg, J., Morhart, C., Sheppard, J., Spiecker, H., & Disney, M. (2014). Highly accurate
tree models derived from terrestrial laser scan data: A method description. Forests, 5, 1069–790

1105.

[27] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
770–778).

[28] Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information.795

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 328–341. doi:10.1109/
TPAMI.2007.1166.

[29] Honegger, D., Sattler, T., & Pollefeys, M. (2017). Embedded real-time multi-baseline stereo.
In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5245–5250).
IEEE.800

[30] Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., & Chen, B. (2013). L1-medial
skeleton of point cloud. ACM Trans. Graph., 32, 65–1.

[31] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. JMLR W&CP, 37 .

[32] Isokane, T., Okura, F., Ide, A., Matsushita, Y., & Yagi, Y. (2018). Probabilistic plant modeling805

via multi-view image-to-image translation. arXiv preprint arXiv:1804.09404, .

[33] Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (). Image-to-image translation with conditional
adversarial networks, .

[34] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proceedings IJCAI (pp. 1137–1143). San Francisco, CA, USA: Morgan Kaufmann810

Publishers Inc. volume 2 of IJCAI’95. URL: http://dl.acm.org/citation.cfm?id=1643031.
1643047.

[35] Konolige, K. (1998). Small vision systems: Hardware and implementation. In Y. Shirai, &
S. Hirose (Eds.), Robotics Research (pp. 203–212). London: Springer London.

[36] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep con-815

volutional neural networks. Advances In Neural Information Processing Systems, (pp. 1–9).
doi:http://dx.doi.org/10.1016/j.protcy.2014.09.007.

27

[37] Lee, T.-C., Kashyap, R. L., & Chu, C.-N. (1994). Building skeleton models via 3-d medial
surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing, 56, 462–
478.820

[38] Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., & El-Sana, J. (2010). Automatic recon-
struction of tree skeletal structures from point clouds. ACM Transactions on Graphics (TOG),
29, 151.

[39] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)825

(pp. 3431–3440). doi:10.1109/CVPR.2015.7298965.

[40] Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox, T. (2016). A
large dataset to train convolutional networks for disparity, optical flow, and scene flow estima-
tion. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).
ArXiv:1512.02134.830

[41] Orchard, M. T., & Bouman, C. A. (1991). Color quantization of images. IEEE Transactions
on Signal Processing, 39, 2677–2690. doi:10.1109/78.107417.

[42] Paproki, A., Sirault, X., Berry, S., Furbank, R., & Fripp, J. (2012). A novel mesh processing
based technique for 3d plant analysis. BMC plant biology, 12, 63.

[43] Pu, C., Li, N., Tylecek, R., & Fisher, B. (2018). Dugma: Dynamic uncertainty-based gaus-835

sian mixture alignment. In 3DV 2018. URL: http://homepages.inf.ed.ac.uk/rbf/PAPERS/
DUGMA18.pdf.

[44] Quigley, M., Conley, K., P Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Y Ng, A.
(2009). Ros: an open-source robot operating system. volume 3.

[45] Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta,840

M., Holopainen, M., Disney, M., & Lewis, P. (2013). Fast automatic precision tree models
from terrestrial laser scanner data. Remote Sensing, 5, 491–520. URL: http://www.mdpi.com/
2072-4292/5/2/491. doi:10.3390/rs5020491.

[46] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention845

(MICCAI).

[47] Santos, T. T., Koenigkan, L. V., Barbedo, J. G. A., & Rodrigues, G. C. (2014). 3d plant
modeling: localization, mapping and segmentation for plant phenotyping using a single hand-
held camera. In European Conference on Computer Vision (pp. 247–263). Springer.

[48] Schönberger, J. L., Pollefeys, M., Geiger, A., & Sattler, T. (2018). Semantic visual localization.850

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
6896–6906).

[49] Shalabi, L. A., Shaaban, Z., & Kasasbeh, B. (2006). Data Mining: A Preprocessing Engine.
Journal of Computer Science, 2, 735–739.

[50] Shapiro, L., & Stockman, G. (2001). Computer Vision. Prentice Hall. URL: https://books.855

google.co.uk/books?id=FftDAQAAIAAJ.

[51] Simek, K., Palanivelu, R., & Barnard, K. (2016). Branching gaussian processes with applications
to spatiotemporal reconstruction of 3d trees. In B. Leibe, J. Matas, N. Sebe, & M. Welling
(Eds.), European Conference on Computer Vision – ECCV 2016 (pp. 177–193). Cham: Springer
International Publishing.860

28

[52] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556. URL: http://arxiv.org/abs/1409.1556.
arXiv:1409.1556.

[53] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Re-865

search, 15, 1929–1958.

[54] Strisciuglio, N., Azzopardi, G., & Petkov, N. (2019). Brain-inspired robust delineation operator.
In L. Leal-Taixé, & S. Roth (Eds.), Computer Vision – ECCV 2018 Workshops (pp. 555–565).
Cham: Springer International Publishing.

[55] Strisciuglio, N., Azzopardi, G., & Petkov, N. (2019). Robust inhibition-augmented operator for870

delineation of curvilinear structures. Ieee transactions on image processing, .

[56] Strisciuglio, N., Tylecek, R., Petkov, N., Bieber, P., Hemming, J., van Henten, E., Sattler, T.,
Pollefeys, M., Gevers, T., Brox, T., & Fisher, R. B. (2018). Trimbot2020: an outdoor robot
for automatic gardening. In 50th International Symposium on Robotics. VDE Verlag GmbH -
Berlin - Offenbach. URL: http://trimbot2020.webhosting.rug.nl/wp-content/uploads/875

2018/04/tb_isr.pdf.

[57] Tabb, A., & Medeiros, H. (2017). A robotic vision system to measure tree traits. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6005–
6012). IEEE.

[58] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.880

URL: http://arxiv.org/abs/1212.5701. arXiv:1212.5701.

[59] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In
D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014 (pp.
818–833). Cham: Springer International Publishing.

[60] Zhang, T., & Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns.885

Communications of the ACM , 27 , 236–239.

[61] Zheng, L., Shi, D., & Zhang, J. (2010). Segmentation of green vegetation of crop canopy images
based on mean shift and fisher linear discriminant. Pattern Recognition Letters, 31, 920–925.

[62] Zheng, L., Zhang, J., & Wang, Q. (2009). Mean-shift-based color segmentation of images
containing green vegetation. Computers and Electronics in Agriculture, 65, 93–98.890

[63] Zou, Q., Cao, Y., Li, Q., Mao, Q., & Wang, S. (2012). Cracktree: Automatic crack detection
from pavement images. Pattern Recognition Letters, 33, 227–238.

29

	Introduction
	Related work
	Method
	Fully Convolutional Segmentation Network (FCSN)
	Disparity calculation
	Combine disparity and segmentation
	Skeletonization
	Branching search algorithm
	3D reconstruction

	Datasets
	Experiments
	FCSN evaluation
	Hyperparameters evaluation
	FCSN results

	Assess segmentation and disparity combination process
	Skeleton evaluation
	3D reconstruction

	Conclusions and Future Work
	State-of-the-art segmentation methods
	Skeletonization methods

