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Abstract K<0 K=0 K>0

This paper compares two different local surface shape
description methods. The general goal of surface shape H <0 | Saddle Valley Concave Concave
description methods is to classify different surface skape (Sv Hy) Cylinder (-Cy) | Ellipsoid (-EI)
from range data. One well-known method to classify H=0 Minimal Plane Impossible
patches of various shapes is the HK classification space (M Hy) (PD
[2,1, 10]. Anotherway to classify patchesisthe SC method H > 0 | Saddle Ridge Convex Convex
introduced by Koenderink [9]. This paper presents several (SrHy) Cylinder (+Cy) | Ellipsoid (+EI)

experiments designed to show the (1) qualitatively differ-
ent classification, (2) the impact of thresholds and (3) the
impact of different noise levels. We conclude that Koen-
derink’s approach has some advantages at low thresholds,
complex scenes and at dealing with noise.

Table 1: Classification for the HK segmentation based on
the sign of the Mean (H) and Gaussian (K) curvatures

1 Description of the algorithms Koenderink defined an alternative curvature representa-
Gaussian (K) and Mean (H) curvatures are the most tion [9]. His approach (SC classification) decouples the
widely used indicators for surface shape classification in shape and the magnitude of the curvedness. The surface in

range image analysis. The HK segmentation [2, 1, 10] terms of relative curvature remains invariant under change
was introduced by Besl in 1986. He used Gaussian andin scale. He defined a shape index S, which is a number in
Mean curvatures, which are calculated from the two prin- the range [-1,1]. The index covers all shapes except for
cipal curvatures:;; andx,. The Gaussian curvature equals the planar shape which has an indeterminate shape index
the product of the principal curvatures. (k1 = k2 = 0). The shape index provides a continuous
gradation between shapes, such as concave shapesy-1
< -1/2), hyperboloid shapes (-12 S < 1/2) and convex
shapes (1/Z S < 1). The image points can be classified as
The Mean curvature equals the arithmetic average of the SNOWn in Table 2. We use the positive principal curvatures
principal curvatures. (k1,2 > 0) for convex objects.

Kzlil*lig (1)

H = ft e 2 S = 2 * arctan <M> K1 > K 3)
2 m K1 — K2
Image points can be labelled as belonging to a view-

point independent surface shape class type based on the Beside the shape index, Koenderink introduced the pos-
combination of the signs from the Gaussian and Mean cur- itive value C for describing the magnitude of the curved-
vatures as shown in Table 1. We found that it is not neces- ness at a point. It is a measure of how highly or gently
sary to differentiate between the different kinds of saddle curved a point is. At a point that has no curvedness the
(ile. K < 0). Therefore, we classify all saddle points as value becomes zero. Therefore, this variable can be used
hyperboloid (Hy) points. to recognise a planar surface.
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The SC classification was used in several publications
as a replacement [5, 4] or an enrichment [8] of the HK
segmentation. Although both algorithms are used, the lit-

erature contains as far as we know no comparison of these

algorithms. Guid compared Koenderink’s approach in an
application-based view with several other surface interro
gation methods in terms of determining surface fairness,
run-time, sensitivity to changes and invariance to geomet-
ric transformations [7]. His conclusion is that this ap-

proach is appropriate for detecting waveness and searching

extreme curvatures. Inflection points and convex/concave
regions may be properly detected. In his comparison the
SC classification is one of the slowest algorithms. The al-
gorithm has a fair sensitivity to changes in surface and is
invariant to geometric transformations.

2 Thresholds

Both the HK and SC methods have the problem that
it is impossible to have an exact zero value, because of
image noise and small shape variations. Therefore, zero-
thresholds are used to decide if a value is zero or not. Ev-
erything below a certain threshold is recognised as zero.
Figure 1 shows the classification regions for the HK seg-
mentation (top) and the SC segmentation (bottom) for the
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Figure 1: Classification for the HK (top) and SC (bottom)
methods. Dashed lines are determined by the threshold val-

same threshold value. The graphs are drawn to the sameyes and separate the classification regions
scale. Regions are labelled using the shapes from Tables

1 & 2. Data-points are located in the /k2-graph like in
Figure 6. The classification schema are put over the graph
to classify the points.

The HK segmentation uses two thresholds. The Gaus-
sian i and the Meanry threshold are used to classify
plane surfaces. With the following formula the Gaussian
threshold can be calculated from the Mean threshold [3].

Tk = T * (Tg + 2 * max | H (z)|)

(5)

Koenderink’s approach uses the threshgldo classify
plane surfaces patches (if < 7). We choose« = ¢
for comparison of the algorithms.

x € Image

Shape

Concave Ellipsoid (-El)
Concave Cylinder (-Cy
Hyperboloid (Hy)
Convex Cylinder (+Cy)
Convex Ellipsoid (+El)

Index range
Se[-1,-5/8)
S € [-5/8,-3/8)
S € [-3/8,3/8)
S € [3/8,5/8)
Se[5/8,1]

Table 2: Classification for Koenderink’s approach based on
the shape index (S)

Some implementations use a low and a high threshold.
“Each curvature value is classified as Negative, Zero, Posi-
tive or Unknown based on the values of 'inner’ and 'outer’
thresholds” [6]. Everything below the low threshold is
recognised as zero. A value between the low and high
threshold is recognised as unknown (classification later ac
cording to local context) and everything above the high
threshold is recognised as a normal value. To make the
comparison easier to perform here the low and high thresh-
olds are the same.

3 Comparison

We separate the comparison into three sections. In each
of the sections below we answer a question:

Section 3.1: Do the algorithms make any qualitatively
different shape classifications?

Section 3.2: Do the two algorithms have any qualita-
tively or quantitatively different behaviour as the cldissi
cation threshold varies?

Section 3.3: How do the two algorithms compare as
noise levels increase?



3.1 Mathematical comparison

The classification of shapes is implemented quite dif-
ferently in the two algorithms. The HK segmentation re-
lies on the the right values of the two thresholds. Because
of the thresholds, the plane area in the HK scheme is not
symmetric (see Figure 1). Furthermore, the cylinder area
contains a part of the ellipsoid are& (= ). Beside this,
the cylinder area gets narrower for high curvatures. On
the other hand, with the SC classification the plane area is

symmetric and the cylinder area uses a constant range of

the shape index.

The following shows that the region for the cylinder is
narrower for highly curved objects in the HK algorithm.
For a cylinder just at the classification threshold (assume
K1 > Ko > 0) we have:

TK
K1

Ko = (6)

If we plot the cross-sectionz( = 0) of ellipsoids
1k32® + 1k3y® + 1k322 = 1) for 3 decreasing values
of k; we see a family of shapes as shown in Figure 2. We
use the thresholdy, = 0.008 to calculate the shapes. The
allowable “cylindrical shapes” must lie inside these limit
shapes for a given extent in the x direction.

On the other hand, the region for the cylinder is bigger
for Koenderink’s approach at the shape borcger (

2
5 = — x arctan <m> (7
8§ K1 — K2
1 — tan(5%
Ky = K1 ¥ ———=2= x5 k1 % 0.1989 (8)
1+ tan(3g)

If we plot a similar family of cross-sections as above
for the same 3 decreasing valueskgfwe see this family
of shapes as shown in Figure 2. As above, the allowable
“cylindrical shapes” lie inside these limit shapes for aagiv
extent in the x direction.

What these two figures show us is thatriasbecomes
smaller (ie the radius in the x direction becomes bigger)
the HK algorithm becomes more strict about what is cylin-
drical by requiring more elongated shapes to have thinner
radii, whereas the SC algorithm allows the maximal radius
to scale up as the shape elongates.

3.2 Empirical comparison
Both classification methods were implemented in our

range image segmentation program. The curvatures are es-

timated by using the 1st and 2nd fundamental forms of the
surface pixels [1]. The segmentation program was com-
pared with other approaches by Hoover in [6]. The clas-
sification methods label each point of a range image after

Figure 2: The shape family at the border between the posi-
tive cylinder and the positive ellipsoid for HK (top) and SC
(bottom). The shapes of each image are calculated with the
three decreasing; values 0.06, 0.04 and 0.02. Allowable
cylinders lie inside the limit shape for a given extent in the
x direction. The cylinder is rotationally symmetric about
the X axis.

plane, concave/convex ellipsoid, concave/convex cylinde

and hyperboloid. The results (the classified images) are
compared with the ground truth of the images to count the

number of mislabelled points. The ground truth is a hand

segmentation, which outlines the boundary of each surface
patch.

For testing two kinds of test images were used. First,
some real test images which contain only one type of
shape were used. Then, two more complex test images,
which contain several shapes, were used. Each test image
was segmented 25 times with different thresholds for each
method.

Figures 3 till 5 show graphs of the scores of the two
algorithms applied to real, but simple, shapes. The graphs
describe the percentage of mislabelled points (vertida)ax
for different thresholds. Some points are worth noticing.
First, Koenderink’s approach is slightly shifted to thehtig

smoothing it once as one of six shapes. The shapes areside on all test graphs, because the same threshold creates



a larger central/planar classification region for the HK-seg 3.3 Behaviour for different noise levels
mentation in the:; / ko-coordinate-system. This difference

is not relevant as one could adjust thresholds accordingly. To
Second, for the images that contain only planar or hyper-
bolic surfaces (Figures 3 & 4) and also for elliptical sur-
faces the best result occurs at low or high thresholds, be-
cause the threshold can be used to make the plane regio
cover all data-points, or shrink the plane & cylinder re-

Image noise is an important issue in vision computing.
measure the impact of noise on both algorithms we
performed another series of experiments with noisy data.
Firstly, we created several synthetic images with all prim-
itive surfaces (plane, cylinder, ellipsoid and hyperbd)oi
Yhe images have the sizes 128x128 points for a single sur-
face images and 192x192 for images with multiple surface

ﬁ'on tr% ZI? ro. I?f|gure isﬁﬁwfhilass 'f;ga}::or results O?r]? re?l types. The test data were formed by adding uncorrelated
YPErbolic surface. As the hresho Creases, points aré = \ssian distributed noise with zero mean and variable

mislabelled as planar. As the threshold decreases, correct L , . .
A . ' - ~“standard deviation (for the different noise levels) to the i
classification increases, but again levels off as noisddimi The i hed. Fi 11 until 16

classification. In this case the HK algorithm does slightly ages. The images are not smoothed. Figures 11 unt
better becau.se its cylindrical classification region disa show the minimum percentage of mislabelled points for

) yin . reg P the best possible threshold for a certain noise level. Motic
pears, allowing more noisy points to be classified correctly

. . hat w nn his experiment with a single planer sur-
Thus,thedn‘ferencebetweenthetwoalgorlthmsappearfort at ©ca ot do this experiment with a s ge planer su
. : o face, since the best threshold for a planer surface &nd
points having locally cylindrical shape.

therefore the number of mislabelled points is always O.

The results for the convex cylinder (see Figure 5) are Mislabelled points are increasing along with the noise
interesting. At high threshold levels, all points are masel level. The noise has an impact on the data after a noise
sified as being planar. What is more interesting is at lower |evel of 10—3. One could think that the noise would im-
threshold levels. With the HK classification, as the thresh- pact the data already at a levelkdf * (resolution of some
old decreases, more points are labelled as cylindrical unti laser scanners). Because of the synthetic nature of the im-
a critical level when points start being misclassified as el- ages, the image data is concentrated at a single point in the
liptical, because the cylindrical region has been shruok to  k, /k,-graph. Therefore, the noise does not have as strong
much. This trade off does not occur with the SC classifi- of an impact on the results. The best threshold for the sur-
cation. Of note in both cases is the high level of misclassi- faces is zero, except for the cylindrical surface in conjunc
fication arising from surface shape noise. Figure 6 shows tion with the HK algorithm, because the classification re-
a scatter plot of the estimated curvatures on the cylintirica gion of the cylinder vanishes when using the zero value.
surface, which are clearly very noisy even though the data The HK algorithm has an advantage with the hyperboloid
itself is reasonably good. This sensitivity arises from the and the ellipsoid surfaces (see Figure 11 & 12), because the
need to estimate locald derivatives. One can easily see algorithm can shrink the cylindrical region. This creates
why many points are misclassified. A few points belong to a bigger classification region where noisy points are still
a negative cylinder. These points are located at the borderrecognised as the correct shape. We performed two exper-
of the positive cylinder. iments with two different cylindrical data sets. One data

. set contains a circular cylinder with uniform curvedness.
. Figure 7 shows the results from a more complex ob- g oiher data set contains four different curved cylinders
ject (see Figure 8) containing multiple shape classes (pla-pe Lk classification has an advantage with the uniform
nar, elliptical/spherical and cylindrical surfaces). W@s- ., edness (see Figure 13). This result certainly depends
sification results here are from a combination of surface | ha fixed shape border of the SC classification. With the

fshapets). Wgat Seems ]Ehre] cars]elgerel IS thehSC aLgor'lthm_?fbther data set (see Figure 14), the performance differences
ers a broader range of threshold values where the classifi-, e glightly smaller at lower noise levels,

cation performance is best. If optimal threshold values can . . . .
be found, the HK algorithm can get slightly better classi- We did one more test ywth_an image that co_ntalns equal
fication results. However, as seen in Figure 5 & 7, this Iarge plane,_cyllnde_r, ellipsoid and hyperboloid surfaces
optimal value may be hard to find when no ground truth is In images with m“'t'p'e surfaces the borc_iers betwee_n the
Known. surfaces cause irregular shapes. To avoid the labelling of
the irregular shapes the shape borders are eliminated in the
A second complex scene were used to compare the ap-ground truth file and have therefore no impact on the cal-
proaches. The scene is a factory scene and contains planesulation of the mislabelled points. This reduced the total
and cylinders with different radii (see Figure 10). Figure 9 number of mislabelled points in comparison to the previ-
shows that the SC algorithm performs slightly better. The ous test images. We performed the experiment with one
small dips in the graph mark the thresholds that discrimi- test image that contains the four shapes and another test
nate between the different cylinders. images which contains the four shape regions but the three



curved surfaces are each replaced by four different cylin- [7]
der, ellipsoid and hyperboloid surfaces. The SC segmen-
tation performs slightly better in the first test image (see
Figure 15). The methods perform differently in the sec-

ond test image (see Figure 16), where the HK algorithm is (8]
affected by the noise at much lower levels than in the sin-

gle surface images. The performance of the SC method is
significantly better over all noise levels.

4 Conclusion

The performance of both methods on images contain-
ing single surfaces is basically the same. One difference
is that the HK segmentation is using the zero-threshold to
recognise cylindrical surfaces. What leads to the effect [10]
that cylinder points vanish from the image at low thresh-
olds. Therefore, the SC classification is more stable at
low thresholds on scenes containing cylinders. For the
SC algorithm a slightly higher threshold should be used
for the same error rate as the HK algorithm (but this ef-
fect is largely unimportant in terms of classification per-
formance). In our noise tests, the SC algorithm can deal
better with image noise in images which contain different
surfaces, because the HK segmentation cannot focus with
an optimal threshold on a single surface. Thus we con-
clude Koenderink's SC classification scheme has a slight
advantage (5-10% lower error rate) when dealing with real
scenes containing multiple surfaces and moderate noise.

9]
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Figure 3: Mislabelled points versus zero threshold for the
plane surface.

Percent of mislabelled points
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Figure 4: Mislabelled points versus zero threshold for the
hyperboloid surface.
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Figure 8: The bomb.
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Figure 5: Mislabelled points versus zero threshold for the
convex cylinder surface.
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Figure 9: Mislabelled points versus zero threshold for the
factory scene.

Figure 6: Scatter plot for the convex cylinder.
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Figure 7: Mislabelled points versus zero threshold for the Figure 10: The factory scene.
bomb.
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Figure 11: Mislabelled points versus noise level for the
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convex ellipsoid surface.

Percent of mislabeled points

— HK
— - Koenderink

Figure 12: Mislabelled points versus noise level for the

hyperboloid surface.
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Figure 13: Mislabelled points versus noise level for one

cylinder surface.
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Figure 14: Mislabelled points versus noise level for four
different cylinder surfaces.
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Figure 15: Mislabelled points versus noise level for an im-
age which contains a single large equal-area large plane,
cylinder, ellipsoid and hyperboloid surface.
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Figure 16: Mislabelled points versus noise level for an im-
age with the single curved surfaces from figure 15 substi-
tuted with four differently curved surfaces for the cylimde

ellipsoid and hyperboloid regions.



