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Abstract

We present a process to improve the structural quality of automatically acquired ar-
chitectural 3D models. Common architectural features like orientations of walls are
exploited. The location of these features is extracted by using a probabilistic technique
(RANSAC). The relationships among the features are automatically obtained by la-
belling them using a semantic net of an architectural scene. An evolutionary algorithm
is used to optimise the orientations of the planes. Small irregularities in the planes are
removed by projecting the triangulation vertices onto the planes. Planes in the result-
ing model are aligned to each other. The technique produces models with improved
appearance. It is validated on synthetic and real data.
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1 Introduction

Theprocessof 3D reconstructionis oftenaffectedby noisein themeasurements.Fur-
thermore, inaccuraciesarecreatedby view merging, segmentationandsurfacefitting.
Oneway to improve thereconstructionis to usemore sophisticatedmethodslike pho-
togrammetry techniques.Another way is to exploit propertiesof the scene.Architec-
tural scenesareparticularly suitablefor theapplicationof constraints sincethegeome-
try is typically very structured. Architectural constraintscanbeusedfor 3D reconstruc-
tion from single[15,7] or multiple [4,1] intensityimages.Featuresusedfor architec-
tural constraintsaretypically straightlines, large coplanarregions andtheparallelism
andorthogonality of linesor planes.Thesekindsof features canbeeasilyfound in ar-
chitecturescenes.In [3] researchis describedthat improvesarchitectural 3D models
by automaticallystraightening edges.The work presented in this paperconcentrates
on extracting planarregions andapplying coplanar, parallelismandorthogonalitycon-
straintsmore comprehensive thenin previouswork to thefull 3D model. We applythe
constraints to thedatafollowing meshing.Zabrodsky concludedin [16] thatcorrections



following meshinggenerally give a greaterimprovement. Our methodis independent
of the calculationof the 3D structure unlike the work presentedin [15,7,4,1] where
constraints areusedin combinationwith reconstruction from intensityimages.

This work consistsof threesteps.First, architectural features areextracted from
alreadytriangulated3D models (Section2). We usea RANSAC technique [5] to find
planesin the model (similar to [2]). The next stepis the automatic extraction of the
constraintsoutof thescene.Few papershavedealtwith theautomaticextractionleaving
it to theuserto specifythem[11,14]. The interpretationof thesceneis formalisedas
a constraint satisfactionproblem [13]. Liedtkeuseda semanticnetfor interpretation of
architectural scenes[8]. His interpretationis hypothesisdriven. Hypothesesareverified
or falsifiedby matching the 3D objectsagainstthe image.In our work we matchthe
planesagainstasemanticnetof ahouseby usingabacktrackingtreesearch(Section3).
Thesemanticnetconcentrateson thedefinitionof the3D objectsandits relations.We
checkthe interpretationsonly by verifying the relationshipsbetweenthe 3D objects.
Constraintsareassignedto almost-regularities like parallelor orthogonalwalls. The
last andfinal stepconsistsof applying the constraintsto the model (Section4). The
original model is fitted to the new constrained model.Optimising the model canbe
donein a number of ways(e.g. numerically [2,14] or evolutionary [11]). We usean
evolutionary approach.The model and the constraintsare passedto the GenoCop5
algorithm, proposedby Michalewicz [9]. The vertices are projectedonto the planes
afterfindingtheoptimalparameters.Theresultis amodelwith fewer irregularities(e.g.
edgesonwalls)andalignedwalls.

2 Feature detection

At all stagesof theprocess,themodel is ameshconsistingof vertices���
	�����������������
andtriangles ����	���� � ��� � ��� ���!� . The first stepis to extract planesfrom the raw tri-
angulatedmodel. Beforestartingtheextraction themodelis normalised.It is mapped
into anunit sphereat theorigin. A robustRANSAC algorithm [5] is thenusedto obtain
a setof planes.The algorithm generatesa number of random planehypothesisfrom
thepoints in � . Thedistanceof a triangle centroidto thehypotheticalplaneis calcu-
latedby computing the differencebetweenthe distanceof the planeto the origin D
andthedot productbetweenthe triangle centroid "#�$�&%(')��%+*��,%+-�� � andtheunit plane
normal .��/��0 ' ��0 * ��0 - ��� . Triangles thatsatisfythefollowing inequality belong to the
hypotheticalplane.
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The sizeof a hypotheticalplaneis calculatedby addingup its trianglesizes.The
hypothesisthat createsthe largestplaneis selected.The exact number of planesin a
modelis notknown.So,werepeattheRANSAC algorithm until thesizeof theresulting
planefalls undera certainthreshold. (An EM algorithm could insteadhave beenused
to selectthenumber of planesandfit them,but we chosea simplertechnique to focus
on thereconstructionissues.)

This technique gives reasonableresults.However, it sometimesproducesa plane
thatconsistsof smalldisconnectedpatches distributedover thescene.An architectural



plane(e.g. awall) is notusuallyseparatedbyalargegap.Howeversmallgapsfrequently
occurfor example dueto thepresenceof pipesor decorations.Therefore,theplanesare
analysedby single linkage clustering[6] to ensure that the trianglesof a planeare
closelyconnected.Theclustertechniquestartswith theindividual trianglesandgroups
themtogether to form larger andlarger clusters(hierarchicalclustering). Thedistance
betweentwo clustersis definedastheminimal Euclideandistanceof any two triangles
belonging to different clusters(nearest neighbor method). The clusteringterminates
afterreaching acertaindistance.Thisdistancespecifieshow farapartpartsof theplane
canbe.

3 Scene interpretation

We interpret the sceneusing the features (planes)found previously. A model of an
architectural sceneis describedin a semanticnet (seefigure 1). The model entities
are represented as nodes in the net. The nodes are connected via different typesof
relationships. A semanticallymeaningful descriptionis assignedto thescenefeatures
bymatchingthemto thesemanticnet.A backtrackingtreesearchis usedto find thebest
match.Thealgorithmtakesasinputasetof featuresF, a setof possiblemodellabelsL
anda setof binary model relationships R which limits thepossiblelabelling.Thetree
searchstartswith thefirst featurefromF andassignsall labelsfromL. A secondfeature
is fetchedfrom F andall labelsareassigned.At this level someof thelabelsmight be
ruledout becausethey violate thegivenrelationships. This processcontinuesuntil all
featureshavebeenlabelled.A consistentlabellingthenexistsif eachfeatureis assigned
a valid labelthat is alsoarcconsistentwith adjacentnodes.Therelationshipsbetween
featuresareusedto selectappropriategeometrical constraints for enforcingparallelism
or orthogonalitylaterin theoptimisationstep.

The model-entities(labels)andthe relationshipsamong the entitiesrepresentthe
knowledgeof atypicalarchitectural scene.PossiblelabelsareL = 	 Side Wall, End Wall,
Base Plane, Ceiling/Floor, Roof, No Feature � . Thebinaryrelationshipfunctionscheck
if thearchitectural relationshipbetweentwo featuresandtheir labelsis valid (e.g. hor-
izontalandvertical walls arealmostperpendicular). Angle relationshipsbetweentwo
featuresarecheckedwith a certaintolerance(3 degrees). The”Above” relationshipis
satisfiedif 99%of theverticesof oneplaneareabove a secondplanedefinedby sur-
facenormal anddistance.No Feature doesnot have any relationwith a normal feature
andcanthereforebeassignedeverywhere.Thefinal labellingis obtainedby findingthe
solutionthatmaximisesthenumberof architectural labels.

Thesemanticnetmodelsa reasonable subsetof all houses.It includesthe interior
andexterior structureof houses.Themodelcanincludeanarbitrarynumberof walls.
They canbeonthesamelevel or ondifferent ones(thenseperatedby a Floor/Ceiling).
Thebaseplaneis below all otherpartsof thebuilding. It representsthegroundonwhich
thehousestands.Theroof is modelledasa typical sharproof. Errors in thescenede-
scriptionareresolvedby labellingthemasNo Feature. Thesemanticnetcanbeeasily
extendedwith featureslikewindowsanddoors.Thesefeaturescanbemodelledaspar-
allel andcloseto theactualwalls. However, thepreviousplanedetection concentrates
onfindingbig planes.So,modelling windows anddoors is notnecessaryat this step.
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Fig. 1. Themodelof thearchitecturalsceneis representedby asemanticnet.Nodesrepresentthe
modelentitiesandarelinkedby architecturallymeaningful relationships.

4 Model optimisation

Optimisingthe model by enforcing the constraintsfound previously is formulatedas
a nonlinearprogrammingproblem. Therearemany algorithms which aredesignedto
searchspacesfor anoptimum solution.Someof thembecome ill-conditionedandfail
with nonlinear problems.We usetheGenoCop5 algorithm developedby Michalewicz
[9]. It is ageneticalgorithm (GA) whichusesreal-valuegenesandincludesmethods to
dealwith linear, non-linear, inequality anddomainconstraints.

TheGA usestheparametervector F which concatenatesall theparametersfor the
individual planesasthechromosome.Theevaluationfunction consistsof thesquared
residualsof theverticesandtheconstraintfunctions.Thesquaredresidualis thesquared
geometric distancefrom themeshvertices	GIH�J K � to their planes	�LIHM� . Theresidualof
every planeis normalisedwith its number of vertices .NH . Thus, model sizedoes not
affectresults.Every constraint is represented by aconstraintfunction c().Thevaluesof
thesefunctionscorrespondto thedegreethattheconstraintsaresatisfied.Theconstraint
functions can be seenas a penaltyfunctions. O is a weight factor which scalesthe
constraints to theresiduals.
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Additionally, constraintsareusedto narrow the searchspaceof the evolutionary
algorithm. Domain constraints areappliedto individualcomponentsof thesurfacenor-
malsandthedistances.Eachof theparameterscannever beoutsidetherange[-1,+1]



sincethe 3D modelis mappedinto a normal sphereat the origin. Furthermore,unity
constraints areappliedto thesurfacenormalsN.

Sofar we have obtained theoptimisedmodel parameters. We now project thever-
ticesof theplanesontotheirplanes.Wecalculatethenew coordinates�^]_�
�&`])���?]��,�+] �=�
of thevertex with theoriginalvertex ������a���������C� , theunit surfacenormalof theplane.�����0E')��0E*���0E-��=� andthedistanceD of theplaneto theorigin as:

��]_�b�c5 : . (3)

where

: � �c2C.d5e7.d24. (4)

5 Experimental results

The proposedtechnique described above is general.It is independentof the way the
3D modelwascreated(i.e. from range or intensitydata)andof model propertieslike
varianceof thetriangle size.It hasbeenappliedto several triangulatedmodels.Wewill
herepresent resultsfor a syntheticmodelandfor two reconstructedrealmodels.

First, we appliedthe described technique to the syntheticmodel. The model con-
sistsof a perfectmeshof threewalls at 90 degrees (1323 vertices& 2400triangles).
Two walls areparallel.A varying amount of Gaussiandistributed3D noiseis addedto
the vertices.The first graphshows the angleerror from planeextraction (top curve),
improving the planefit (middle curve) andapplicationof constraints (bottom curve,
nearnoiselevel axis).Improving theplanefit is done without usingany constraints in
theevaluationfunction.Theangleerrorfrom planeextractionis a resultof therandom
natureof RANSAC. Improving thefit usingall datapointsfrom theplanesgivesmuch
betterresults.Finally, usingtheconstraints givesanangleerrorvery closeto zero.The
secondgraph shows themeansquaredresidualafterplaneextraction (top curve), im-
proving thefit (dashed curve) andconstrainingthemodel(solidcurve). Theparameters
obtained from RANSAC show the biggesterror. The meanresidualsfrom improving
thefit andfrom applying theconstraints arefairly similarandarebothsignificantlybe-
low thetheRANSAC curve. Thetwo graphs show thatapplying constraintsimproves
theorientation of thewalls withoutworseningthefit.

We show an experimentwith the reconstructedmodelof Arenberg castle(in Bel-
gium) reconstructedby theCatholicUniversity of Leuven[10]. Themodel wasrecon-
structedfrom animagesequenceof 20 images(6292 vertices& 12263 triangles).The
walls andtheground on theoriginal solid modelshow clearlya lot of small irregular-
ities (seefigure4). 5 planesareextracted(3 walls, 1 floor and1 roof). Theplanesare
constrained by 7 constraints. The angles betweenthe planesvary from the optimum
by 1.5degreeson average before optimisation. After optimisationthey differ lessthan
0.01degrees.Theresultshows themodelwith removedirregularitiesandconstrained
planes.Theaveragedisparityof themovedverticesasa fractionof themodeldiameter
is 0.33%. Theoptimisationsteptook54seconds onanIntel Celeronwith 400MHz.
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Fig. 2. Resultsfor thesyntheticmodel.Theleft graphshows theangleerrorin degreesversusthe
noiselevel. Thegraphon theright shows themeansquaredresidualversusthenoise.

Next, we briefly describeresultsfor a Bavarian farmhousereconstructedby the
EuropeanCommissionJoint ResearchCentre(JRC) [12]. It was reconstructed from
multiple range datascans(12504vertices& 16589 triangles).This is a full 3D model.
Theplaneextraction finds4 walls andtwo planesfor theroof. Theorientations of the
walls arealreadyfairly good. Theanglesbetweentheplanesdiffer on average by 0.5
degreesin the original model.After optimisation they differ lessthan0.01 degrees.
The original solid model shows small edgeson the walls. The resulthastheseedges
projected ontothewall (seefigure 3 for acloseview of awall).

Fig. 3. A closeview of a wall of thefarmhouse.On the left is theunconstrainedmodel.Surface
ripplesaremosteasilyseenin thecircledareas.On theright is theoptimisedmodel.



6 Conclusion and future work

Previous work usedarchitectural constraints mainly for scenereconstructionfrom in-
tensityimages.This work showshow architectural constraintscanbeusedfor improv-
ing the reconstructionof full 3D modelsindependentof thesensordata.Only 3D in-
formationis used.Theconstraints make architecturalfeatures moreregularin termsof
their architectural properties.We exploit common architectural featureslike walls and
their relationships to eachother.

Initially, a RANSAC techniqueobtainsa setof planesfrom the3D data.We auto-
matically discover the graph of constraintsbetweenthe planes by usinga treesearch
strategy. Evenconservatively loosethresholds on anglesandpositionleadto a correct
labellingof theplanesin thescene.Themodel parametersareoptimisedwith a robust
evolutionary algorithm. A numerical normalisation of the model beforehandleadsto
domainconstraintson the parameterswhich speedsup the searchalgorithm. The ex-
perimental resultsshow how imperfectionslike small irregularitieson planes andthe
orientationsof walls arecorrected.Thevisualappearanceof themodel is enhanced.

Future work aims at incorporatingedgesinto the processof model optimisation.
This includesextraction of edgesin the model,straightening of edgesandthe useof
parallelismor orthogonality constraints whereapplicable.
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Fig. 4. The textured model (top/left), the original solid model (top/right), the extractedplanes
(bottom/left)andthe resultingmodelafter optimisation(bottom/right)from the castle.The ex-
tractedplanesaredisplayedabit darker thanin thesolid model.


