
Interactive Textbooks; Embedding Image ProcessingOperator Demonstrations in TextRobert B. Fisher and Konstantinos KoryllosDept. of Arti�cial Intelligence, Univ. of EdinburghShort title: Interactive Image Processing Textbooks

1

AbstractTraditional image processing teaching has used materials where the theory and drill areseparated into textbooks and image processing packages. HTML and JAVA might alloweasier construction of an integrated teaching resource. Such a resource would have widespread,platform-independent accessibility. This paper reports our assessment of this potential, whichis explored through extensions of the HIPR teaching materials. Our conclusions are that theapproach is feasible and attractive to students, that a few standard programming protocolsreduce development time, and that use of compiled JAVA is essential.Keywords: teaching image processing, interactive teaching resources, JAVA-based imageprocessing

2

1 IntroductionPeople are usually far better at remembering interactive rather than static material. Interac-tion with knowledge develops deep learning rather than textbook memorization, thus studentscan bene�t greatly from the introduction of interactive technology. In the past few years manyuniversities and colleges have produced their own World Wide Web pages with links to teachingmaterial, papers, exercises etc., so that the rest of the world can bene�t from their work. Thisidea has had a great response, resulting in huge amounts of information becoming available toany user with Internet access and a browser. The typical educational WWW page is a hypertextdocument written in HTML (HyperText Mark-up Language), sometimes containing multimediaobjects such as embedded images, sounds, demonstrations, etc. However, what is needed is a realhands on application, for which java is ideal. What we ought to have are \interactive textbooks".The project described here explores the potential for java to implement and link a variety ofimage processing operators within a html hypertext document, for the purpose of creating \inter-active textbooks". (Image processing is here de�ned as the transformation of (at least) one imageto another.) The project explored functional (i.e. \Does java have enough programming facilit-ies?"), practical (i.e. \Is java fast enough and does it have enough computational resources?")and educational (i.e. \Is the combination usable, attention-getting and informative?") issues. The�nal product can be viewed using a JAVA-enabled web-browser and the operators communicateby passing on output data to each other.The idea of an interactive teaching package is well-accepted, and has even been applied to imageprocessing [19, 7, 12], however, projects are usually limited to use on the platforms for which theywere designed, which, as in the case of [19], may become obsolete very rapidly. The advantageof using java is that it is platform independent and seems likely to be publically available fora long time. The DIP course [7, 12] is an on-line HTML-based package. It also has an activeexploration element (in conjunction with the use of the Khoros [8] image processing package),but has limited explanatory text and requires the use of Khoros. Thus, it really supplementstext-book based teaching. The Pennsylvania State University approach is partly similar, in that3

it supplies executable on-line operators and image libraries, and is also in JAVA, which improvesusability, but also has only limited explanatory text. The project described here incorporates allof the desirable features:� online operators for active exploration,� portable platform, and� direct integration of the demonstration materials with the instructional text.To investigate the suitability of java for use in interactive image processing textbooks, repres-entatives of the main classes of computations typical to image processing were chosen for imple-mentation. They include:Point Operators are applied to individual pixels and are, therefore, position independent oper-ators. Two popular representatives of this category are thresholding and gamma correction.Image Arithmetic combines two or more images to produce a single one as an output. Imagesubtraction, and logical AND/OR are common examples.Geometric Operations e.g. rotation, translation and scaling - a�ecting the position but notthe content of the image data.Morphology take as input a binary image and a structuring element, and output a function ofthe two - typically linked by the relative spatial distribution of the pixels, rather than theirvalues.Digital Filters are often used for smoothing or enhancing features in images and are based ona two-dimensional convolution operation (which expresses a linear �ltering process appliedto an image). The convolution of two functions f and g is de�ned byg(x; y) � f(x; y) = Z Z f(�; �) g(x � �; y � �) d� d�where f(x; y) represents the image and g(x; y) the kernel (see [17]).4

These classes of operators were chosen because they exempli�ed many of the di�erent al-gorithmic paradigms found in image processing, and thus allowed us to explore both implement-ation and usability issues.Our main conclusions are that, in general, java is suitable, integration with html is straight-forward, the execution time of interpreted java is sub-optimal but compiled java performs satis-factorily. One has to take care not to misuse the internal thread resources of java as the browserimplementing the java Virtual Machine may become overloaded.2 Backgroundjava [18], is an object-oriented language developed by Sun Microsystems, modeled after C++[11], but designed to be small, simple and machine independent. java programs belong in twocategories: applets and applications. Applets are programs that are referenced through an htmldocument and are down-loaded over the WWW and executed by the Web browser on the user'smachine. Applications are simply conventional stand-alone programs written in the java language.Due to the educational focus of this project, we used applets rather than applications.When java code is compiled, the result is not directly executable, but must be interpreted byeach computer (using a web browser or other tools). This �rst `compilation' produces bytecodesfrom the java source code. (Bytecodes are a set of machine-independent instruction codes thatcan be executed using a special-purpose, machine-dependent interpreter.) So that every computerin the world can run the same bytecodes, java has assumed the existence of a virtual machinewhich the bytecode-interpreter (e.g. a WWW Browser) will implement. This scheme works �nefor most programs but if more speed is required then two solutions are available:� Use of native C/C++ code.� Just-in-Time Compilers.java has mechanisms that will allow compiled C/C++ to be used in order to improve performancewhere required. While this solution is �ne for applications executed locally, it runs into the5

portability constraints that all binary executables have. As we are interested in educationalmaterials usable on many platforms, the C/C++ option is impractical. The better solution isJust-in-Time compilers which incrementally translate java bytecodes into native machine code.This will enable java programs to run at almost the same speed as C. A Just-in-Time compileris scheduled to be available in the next release of SUN's Solaris operating system, but othercommercial compilers are also available.hipr or Hypermedia Image Processing Reference [2] is a project undertaken by the MachineVision Unit in the Department of Arti�cial Intelligence at the University of Edinburgh. Its pur-pose is to help students learn about image processing by aiming for a balance between too fewexamples and too much technical information. The majority of textbooks in image processing andmachine vision typically err on the side of not providing su�cient intuition-building examples,while image processing software packages supply the user with little theory. hipr is an htmlbased teaching package designed for local network use (and sold under site license by John Wileyand Sons). The Worksheets section of hipr includes a series of 42 topics starting from imagearithmetic to morphology and image transforms. These worksheets contain a brief summary ofthe theoretical background on each topic plus a number of examples of applications, includingnumerous before-and-after (processing) example images. This way the student can comprehendthe exact e�ects of the particular operator as well as review its theoretical basis. An example ofa worksheet on the image addition operator can seen at url:http://www.dai.ed.ac.uk/daidb/staff/personal pages/rbf/HIPR/hiprdemo/html/pixadd.htm.What this package is missing is an interactive element and that's where java �ts in.An initial investigation of java for image processing was undertaken in the MARBLE Project[4] (see Figure 1) to determine if java was basically suitable. Amongst other issues, the projectinvestigated a \thresholding" applet with a slider to set the threshold value acting on a givensource image. This demonstration, coupled with the relevant background theory (in html) madefor an entertaining and educational experience.The project described here made use of some of the java classes written for the Marble project.6

The most useful class was ImageCanvas() whose purpose is to \tie an image to a canvas, waituntil its size is known, resize the canvas and later update the on-screen image".Murdoch [15] experimented with the development of a greatly simpli�ed Khoros-like [8] envir-onment for image processing that would allow users with little experience in the �eld to experimentwith various operations and their e�ects. The project developed pull-down instances of operatorsthat could be connected to form longer image transformation processes.3 Java's Image Processing Supportjava o�ers a variety of functions dedicated to the manipulation of images, as well a Graphics classwhich implements the usual set of drawing primitives. The support for using images is spreadout between the java.applet, java.awt and java.awt.image packages. The latter package containsthe support for manipulating images that have been already loaded. The loading of an image isachieved through the getImage() method (i.e. a subroutine or function) of an Applet instance (i.e.the Applet might be attached to execute in more than one place independently) by supplying aurl (Uniform Resource Locator) parameter (i.e. the path name of the image to be loaded).To display an image one invokes the drawImage() method of the Graphics object which ispassed to the applet's update() or paint() method. One can keep track of the state of the image(s)using an instance of a MediaTracker class and use the methods provided. The ImageObserverinterface can be used for even closer monitoring of an image.3.1 The Java Color Modeljava has a class named Color. In order to create a Color object, the red, green and blue componentsmust be speci�ed as
oating point numbers between zero and one. Alternatively one can specifyhue, saturation and brightness and the equivalent color will be created. Internally java storescolor components as 8-bit values between 0 and 255. An RGB color is a 32-bit integer of theform: 7

0xAARRGGBBwhere AA represents the image transparency value (i.e. the extent to which any images displayedbehind the current image are visible, which is not relevant here), and RR, GG, BB the red, green andblue values. The java image class allows the programmer to access the image as a one-dimensionalarray. Pixel values are stored in each element of the array in the above form.3.2 Pixel Independent OperationsThe ImageProducer interface represents an image source and de�nes the methods which must beimplemented by classes wishing to communicate with ImageConsumer classes. The ImageCon-sumer interface de�nes a set of methods which must be implemented by any class that desires toconsume image data from another class that produces it. These methods should only be called bythe ImageProducer that wishes to pass image (and other) data to the ImageConsumer. Behindthe scenes image data is created according to Figure 2. java allows the user to modify an imageby inserting an image �lter between the producer and the consumer of the image. The producerthen sends the data which will be modi�ed by the �lter before reaching the consumer.3.3 Single Pixel vs. Neighborhood Operationsjava has optimized single-pixel operations by giving the user the option to directly �lter thecolormap (a fast and global operation) instead of working with image pixels. However, in neigh-borhood operations we can no longer simply modify the colormap as with pixel operations. Amore general solution is to produce new data for a standard colormap. The most straightfor-ward way to achieve this is to convert the image into an array of numbers which can then beprocessed as desired. For this purpose, the PixelGrabber class is used. This class implements theImageConsumer interface and is used to extract a requested rectangular array of pixels from anImage object. These pixels are stored in a one-dimensional array of integers in the RGB formatdescribed earlier. 8

4 AppletsAppendix A describes the generic JAVA framework used in all of the applets. This section presentssome of the individual applets developed during the project. The choice of operators implementedwas based on two criteria: (1) the set of operators could be linked into a sequence and (2)the operators would explore a variety of interactive facilities and image processing algorithmicparadigms. These facilities included: text string inputs to specify test images, scalar parameterinputs, convolution kernel entry, chaining of operators, pointwise, local neighborhood and globaloperators, in-place and translated results, and single and multiple image inputs.In the sections below, in some cases we go into the details of the operator algorithms morethan would ordinarily be expected (given they are textbook material now), because the details arehelpful for understanding the timing results presented in Section 6.4.1 Gamma CorrectionThe gamma transform [3] is an instance of a single pixel operator in which the input and outputpixels are related by a function out pixel = f(in pixel). Figure 3 shows the original image onthe left. The gamma value is entered in the text �eld and pressing the \return" key initiates theoperation.4.2 RotationRotation is a non-local operation that a�ects the pixel locations but not the values themselves.Simple rotation [17] (see Fig 4) �lls in the destination image in raster order by point-sampling thesource image. The optimization lies in the fact that the expensive matrix multiplication is doneonce outside the inner loop. The inner loop itself contains step additions for going from one pixelto the next (in the source image) as well as some conditional statements to check for pixels whichmap to positions outside the boundaries of the source image.
9

4.3 3x3 ConvolutionConvolution (see Figure 5) [6] is a local neighborhood operator that uses a user-de�ned mask.The kernel values are entered in each of the nine text areas of the applet, each one representingthe corresponding value of a 3x3 kernel. Floating point values are allowed. By pressing the \ApplyConvolution" button, the applet will commence its execution.4.4 Noise GenerationWe experimented with salt-pepper and gaussian noise [2].Salt-pepper noise is produced by corrupting the original image so that individual pixels arerandomly
ipped to black or white (0 or 255 for 8-bit gray-scale) with some low probability.Gaussian noise is described by a gaussian distribution with a given mean and standard deviation.Both types of noise can be created as separate images and then combined with the original image,using image arithmetic, to produce a corresponding noise image. The applet is displayed in Figure6 and it accepts three parameters:1. The percentage of Salt-Pepper noise to be produced.2. The standard deviation value of the gaussian noise.3. The mean value of the gaussian noise.After these parameters have been set, the user may select the type of noise desired by selectingthe desired button. After a noise image has been generated (like the middle one in Figure 6) itcan be added to the original image by pressing the \Add Images" button.In order to produce salt-pepper noise one requires the use of a random number generator. Weused the one supplied with java.This process is repeated for each element of the image array and with a 256x256 image the timetaken is several seconds as calls to random number generators are slow. This delay is multiplied10

by a factor of three when a call to a gaussian-distributed random number generator is made. Thisis not a serious problem when the applet is running on its own.4.5 Noise ReductionWe implemented four noise-reduction algorithms, which also evaluated standard local neighboroperations.� Mean smoothing [5] by a 3x3 or 5x5 convolution kernel.� A median [13] �lter replaces a pixel by the median value of its neighborhood.� Gaussian smoothing [16] implemented by using discrete 3x3 and 5x5 convolution kernels.� The \Mean & Median" [9, 10] button: Pixel values in a 3x3 neighborhood excluding salt-pepper noise are averaged together.The operation of this applet is straightforward. The user chooses the type of smoothing by pressingon the corresponding button. No example is shown for brevity.4.6 HistogramingAn intensity histogram is constructed by counting all the occurrences of each grey-scale value inan image. A graph is then plotted which on the horizontal axis contains the di�erent pixel values,and on the vertical the number of times they occur (see middle image of Figure 7).4.7 ThresholdingThresholding is a straightforward and quite fast operation [1] to implement. All one has to do isretrieve the pixel value of an image, compare it to a preselected threshold value and replace theoriginal pixel by either a one (or 255) or a zero depending on whether the threshold is greaterthan the pixel value or not. Figure 7 shows this operator.
11

4.8 ThinningThinning used a hit-and-miss transform [2] implemented as follows:1. Sweep the image with one of the structuring elements shown in Figure 8.2. If the 3x3 image pattern matches the structuring element (blanks denote don't-care points)then put a one on the corresponding location of the result image, otherwise put a zero.3. Invert the resulting image and perform a binary AND of it with the initial image. Thisremoves the points produced by the �rst structuring element.4. Repeat processes 1-3 until all structuring elements have passed over the image (each elementtakes as input the output of the previous one).5. Repeat processes 1-4 until the image doesn't change anymore.Thinning takes a long time. In interpreted java code a straightforward convolution of a 256x256image with a 3x3 kernel takes approximately �ve seconds. As thinning requires 8 passes (i.e. onepass with each of the 8 di�erent masks) for each iteration, and may require an unknown numberof iterations, then this operator is too slow for interactive use and tutorial use. For example, �vethinning passes would thus require about 200 seconds. Assuming a more e�cient implementationgave an improvement factor of 5-10, this reduces the computation time to 20-40 seconds which isstill too slow for tutorial use.While this paper discusses only sample applets that illustrate di�erent image processing schemas,we have already successfully implemented 11 operators (conservative smoothing, convolution, gaus-sian smoothing, histogramming, average smoothing, median smoothing, inverse, log transform,Roberts' cross, Sobel and thresholding) with work on about another 10 in progress.5 Communicating AppletsThe independent operators described in the previous section can be embedded and interact in anhtml document for display in a web page. This can be achieved by the following piece of html12

code: <APPLET CODE="AddNoise.class" WIDTH=800 HEIGHT=400><PARAM NAME=images VALUE="images/holesquare2.gif"></APPLET>which adds the applets to an html page.If the parameter named images is given a value (as in this case) then it is used, otherwise adefault image is loaded.The output image from each applet is linked to the next one down the page so that it can befurther processed. The way this is achieved is by giving each applet the ability to communicatewith the next one.The procedure which java employs to grant applets the ability to communicate with each-otheris simple and works as follows:� The recipient applet must be given a name using the NAME parameter in the relevant htmldocument e.g.<APPLET CODE="AddNoise.class" WIDTH=800 HEIGHT=400 NAME="addnoise">� Then, the sending applet must use the getApplet() method from the applet context with thename of the recipient applet as a parameter. This will return a reference to the recipientapplet. One can use the reference applet as if it were an object and manipulate it accordingly.For example, if one wished to obtain a reference to the applet named \addnoise" belongingto the AddNoise class, the sending applet would need to declare an AddNoise variable andcast the applet obtained by getApplet() to that class:AddNoise addnoise_applet;addnoise_applet = (AddNoise)getAppletContext().getApplet("addnoise");� All one needs to do now is de�ne the functions that will implement the communication pro-tocol.Each applet has been equipped with two extra functions. One of these functions is send image(),which activates when the \Forward Results" button has been pressed, thus sending the whole13

integer array of the �nal image produced by this applet to the next applet on the page. Forexample, consider Figure 9. The applets pictured are called \gamma" and \addnoise" re-spectively. After \Forward Results" has been pressed and the gamma operation repeated,the resulting image is passed on to the \addnoise" applet (Figure 9).This is achieved by a call to send image() which, in turn, calls the function set src image()of the \addnoise" applet in the usual object-oriented way:addnoise_applet.set_src_image(img_1d);This function's purpose is to set the source image of the receiving applet to be the imagesent by the sending applet.Now each applet can pass its image to the next applet. To make the communication proceduremore general, a parameter has been added which can be set from the relevant html document.This parameter is called receiver applet and is used to set the destination applet of the resultingimage. If this parameter is missing, the default is to send the image to the next applet in themanner described above.6 PerformanceImage processing is generally a computationally expensive operation, and the usability of javafor educational purposes requires that students do not face unreasonable delays in the operatordemonstrations. Further, performance in the demonstrations should be comparable to actualimplementations of the operators so as to give students an understanding of the rate of performanceas well as the capabilities of the operators.This section makes a brief comparison of the time it takes for the java applets to performa particular image processing operation compared to the equivalent Visilog operation. Visilog[20] is a standard C-based commercial image processing package intended for educational use.Visilog's operators are not strictly equivalent as the underlying algorithms can di�er (and Visilogtimings also include overheads associated with data-structure management and screen displays)14

but nevertheless should help provide a feel for the di�erence in performance. Our study showedthat interpreted java is about �ve to ten times slower than C, but compiled java is comparable.The machine on which the interpreted java (and Visilog) tests were run was a lightly loadedSparc 4 (110MHz). The timing was performed using one of java's built in functions for retrievingthe current time in milliseconds. We used Visilog's built-in timer (also in milliseconds). Theapplets were individually run through the appletviewer program and all the images used were256x256 greyscale images. The machine on which compiled java was tested on was an IntelPentium running at 133MHz. The web-browser was Netscape version 3, running under MS-Windows 95, which includes a JIT compiler for java.One should bear in mind that running compiled java on a di�erent machine than the oneVisilog was tested on is liable to create surprising results. A P133 processor is approximately1.8 times faster than the Sparc 4 processor, when comparing pure processing power in terms of
oating point and integer operations (see Table 2. These �gures are taken fromhttp://www.maths.lth.se/bengtl/horna/spectable.html). There are many other factors,however, which cannot be accounted for such as memory speed, caching strategy, etc.6.1 Performance ComparisonTable 1 summarizes the timings of the operators presented here. In several cases, comparableoperators did not exist, but we attempted to �nd operators that had a similar function. Theimplementation of the algorithm is the same between the two java comparisons, but we do nothave the Visilog source code so can only assume that the algorithm is similar.We make some special notes here about the comparison:� RotationThe java rotation operator can be compared to Visilog's `Nearby pixel' rotation althoughthe algorithms are slightly di�erent.� Gamma correction 15

Visilog does not have a gamma correction transform for comparison.� ThinningThe java program is approximately 50 times slower than Visilog. Some of this can beattributed to the ine�cient algorithm implemented (even compiled java is 4-5 times slowerthan Visilog).Based on the average results in the table, we can conclude compiled java is broadly comparablein speed with compiled C, but interpreted java is about 5-20 times slower for most operationsand thus is too slow for many tutorial applications.7 DiscussionThe purpose of this project was to investigate the suitability, or otherwise, of java teaching imageprocessing. The answer to this question became reasonably apparent during the early stages ofthe project, and we have concluded that java is su�ciently fast and
exible for image processingboth for creating proper applications (such as Visilog or xv) as well as for providing interactiveteaching material for students via the Internet.One of our experiences with teaching image processing is that a suitable set of example imagesis not easy to derive, and textbooks do not have the space to allow an exhaustive presentation.On the other hand, when the example images can be derived on the spot, the learner has a muchbroader range of experiences. The bene�ts of the learner actually creating the examples is clear, inthat the percentage of material retained in \active learning" (i.e. learning while doing something),is much higher than in \passive learning" (i.e. where the learner only reads or hears the material).The ability to embed JAVA more-or-less seamlessly into html documents also makes the teachingmaterials intellectually pleasing and easy use, whereas skipping between several di�erent mediaor presentation windows can cause one to lose one's place or interest (or increase the intellectual\energy barrier" to actually doing the exploration).The teaching resources described in this article were used as part of a more extensive course16

on machine vision. Only two of the lectures in that course discussed the sorts of image processingoperators used here. This is typical of the experience other lecturers have of the various formsof packaged teaching resources (e.g. videos and books) | the contents of the resource packageintersects with the topics that they wish to teach, but does not contain all the desired material.While it is possible to develop more-or-less complete on-line courses, our experience of studentopinion is that the students prefer to have some lectures. Thus, because of both their preferencesand the desire of teaching sta� to select portions of the teaching materials, we have been developingthese materials in the form of a \resource package", rather than as a stand-alone package.To help the materials to become part of the students' repertoire of actually used learningresources, we developed an exercise that was used in on-line small-group \tutorial" sessions. Thedrill sheets assigned a few simple exercises designed to familiarize the students with the use ofthe hypertext and JAVA style of the resources, and also the overall layout of the whole HIPRpackage.Overall, the materials were integrated into an existing traditional course (lectures, small groups,lab exercises) in a way that did not change much the way that the course was run, nor the way thatwe interacted with the students. (Whether this is the best approach is subject to much debate, ofcourse). None-the-less, the introduction of the package did increase the amount of active contactthat the students have with the material.We did no formal assessment of the bene�ts of the JAVA enhancements, although, in informalstudent feedback, the students said that they liked exploring the operators and found the singlefocussed interface less distracting than the many options of Visilog. They also commented thatseeing how the operator performance varied with di�erent parameter values was helpful. Theymade no speci�c comments about the supporting text, but made many comments about how theonline access was a great advantage as compared to having to locate/buy textbooks.Figure 9 shows the embedding of text and interactive demonstrations in rudimentary form(see http://vision.dai.ed.ac.uk/kotsDEMO/demo.html), whereas a proper application of theapproach would have more tutorial material and discussion of how to interpret the results (see17

http://www.dai.ed.ac.uk/daidb/staff/personal pages/rbf/HIPR/hiprdemo/html/newthr.htmandhttp://www.dai.ed.ac.uk/daidb/staff/personal pages/rbf/HIPR/hiprdemo/html/newgsm.htm).Further development of the online materials is continuing. Appendices B.1 - B.3 shows the htmland JAVA for the complete threshold applet given at the URL above.One of the major reasons for java's popularity arises from the fact that java comes with manybuilt-in methods speci�cally for image manipulation, such as for image loading and pixel retrieval.Implementing a function to load a gif or jpg image in C would be a tedious and di�cult task.java gives this and much more for free. Furthermore, it is easy to learn and use, debugging isusually straight-forward and is platform independent (but is subject to occasional bugs as newjava compilers and interpreters are being developed).The development time for the applets presented here was about 3 person-months. However,factored into this time was considerable learning about the facilities and use of JAVA, and thedevelopment of several di�erent operator templates (e.g. single point single input image operators,single point two input image operators, convolution), including display and �le interfaces. Theproject also went through several iterations of display and inter-applet communication protocols.With this advance work done, it is possible to develop and integrate new operators in somethinglike 2-4 hours provided that the display and algorithm structure is nearly identical to one of thepreviously developed operators. When new algorithms need to be substituted into an existingapplet framework, then development time is still reduced.The question of performance which is raised in the case of interpreted java is eliminated bycompiled java as we have seen in the previous section. java compilers and JIT compilers alreadyexist and new products are under rapid development.The only development di�culties encountered were due mainly to the heavy use of threadsduring the initial approach to the development of the applets. It turned out that the WWWbrowser that the applets were being tested on (Netscape version 2.02 for Unix) could easily becomeoverloaded which in turn caused it to halt for unreasonably long periods of time. These di�culties18

were eliminated by restricting the use of threads and by keeping the computation within themdown to a minimum.Based on the general ImageProducer and ImageConsumer paradigm, we showed that a widevariety of classes of image processing operators could be implemented in java, that their executiontime is reasonable when java is compiled, and the Applets can be embedded in html text for usein teaching materials.We are now using this methodology to add interactive exploration to the hipr package [2].(The non-JAVA version of HIPR is currently being sold by John Wiley and Sons.) As well as theindividual operators as discussed here and shown in the online examples, we are also investigatinga prototype Khoros-like [8] operator pull-down workbench (as an extension of [15]) that allowssequences of operators to be connected together and explored as a group. Further in the future,we are investigating how to give real-time commentary and feedback to students, based on thechoice of operators and parameters used when attempting to solve problems set on speci�ed testimages.Enhancing the current JAVA operators to give \critical" feedback on the parameters used tosolve a problem is a future possibility. We believe that doing this well would require substantialwork { in part to develop the repertoire of responses in relation to a �xed set of tutorial images,and in part to integrate a process capable of developing a model of the student's intellectualdevelopment, so that appropriate feedback can be given. These developments could perhaps bedone in two independent stages, but then some sort of \o�" switch would be necessary to disablethe repetition of elementary feedback. Adding both levels of capability are clearly desirable featuresand are probably feasible at least at an elementary level. However, the cost of this additional workis likely to be close to the rule of thumb for the development of computer-based teaching materials:one person-year of development for one hour of high-quality meaningful student interaction.
19

References[1] M. P. Ekstrom (Ed). Digital Image Processing Techniques. Academic Press, Inc., 1984.[2] R. B. Fisher, S. Perkins, A. Walker and E. Wolfart. HIPR: Hypermedia Image ProcessingReference, CDrom published by John Wiley and Sons, Chichester, 1996.[3] A. S. Glassner (Ed). Graphics Gems. Academic Press Professional, 1988.[4] Heriot Watt University, Napier University and the University of Edinburgh.Marble InteractiveVision. http://www.marble.ac.uk/marble/, 1996.[5] V. Hlavac, M. Sonka and R. Boyle. Image Processing, Analysis and Machine Vision. Chapman& Hall, Cambridge University Press, 1993.[6] B. J�ahne. Digital Image Processing. Second Edition, Springer-Verlag, 1993.[7] R. Jordan and R. Lotufo, Interactive Digital Image Processing Course on the World WideWeb. IEEE International Conference on Image Processing, ICIP-96 pp 433-436, Volume II,Sept. 16-19, 1996. See http://tularosa.eece.unm.edu/dipcourse/ for the materials.[8] Khoros is a sophisticated visual programming and scienti�c software development environ-ment, sold by Khoral Research (Khoral Research Inc, 6001 Indian School Rd, Ne, Suite 200,Albuquerque, NM 87110, USA; Tel:(505)837-6500; Fax:(505)881-3842).[9] K. Koryllos and R. Fisher. \Interactive textbooks: embedding image processing operatordemonstrations in text". Online proceedings of IEEE Computer Society Workshop on Under-grad Education & Image Computation (Ed. Kevin Bowyer), Puerto Rico, June 20, 1997. Seehttp://marathon.csee.usf.edu/education.html for the online proceedings.[10] K. Koryllos. \On-line image processing operator demonstrations in Java". Master's thesis,Department of Arti�cial Intelligence, Edinburgh University, 1996.[11] L. Lemay and C. L. Perkins. Teach Yourself Java in 21 Days. Sams.net Publishing, 1996.20

[12] R. Lotufo and R. Jordan, \Hands-on Digital Image Processing". IEEE Frontiers in Edu-cation - 26th Annual Conference, FIE-96 pp 1199-1202, Volume 3, Nov. 6-9, 1996. Seehttp://tularosa.eece.unm.edu/dipcourse/ for the materials.[13] A. Low. Introductory Computer Vision and Image Processing. McGraw-Hill, 1991.[14] S. Moscariello, R. Kasturi, O. Camps \Image processing and computer vision instruc-tion using Java". Online proceedings of IEEE Computer Society Workshop on UndergradEducation & Image Computation (Ed. Kevin Bowyer), Puerto Rico, June 20, 1997. Seehttp://marathon.csee.usf.edu/education.html for the online proceedings.[15] A. Murdoch. \An image processing workbench". Batchelor's degree dissertation, Departmentof Arti�cial Intelligence, Univerity of Edinburgh, 1996.[16] W. Niblack. An Introduction to Digital Image Processing. Prentice-Hall International, 1986.[17] J. C. Russ. The Image Processing Handbook. CRC Press Inc, 1995.[18] The Java Development Team. The Java Tutorial and The Java API Documentation. SunMicrosystems, java.sun.com, 1.0 edition, 1996.[19] D. Unwin and M. Langford. \The life and death of LIPS: some lessons from the design anduse of courseware for teaching digital image processing". Digest of IEE, (190):1.1{1.4, 1993.[20] Visilog is a GUI (Graphical User Interface) based image processing package produced byNoesis (Noesis, Immeuble Nungesser, 13 Avenue Morane Saulnier, 78140 Velizy, France; Tel:(33-1)34-65-08-95.

21

A The Generic Image Processing AppletIn each of the applets described in Section 4, certain important steps are common. While onedoes not usually include code in a paper, here it is useful to be precise.Step 1The �rst step is to obtain the image to be processed. This is achieved usingImage_src = getImage(getCodeBase(), image_name);where Image src is an Image object, getCodeBase() obtains the path where the compiled programresides and image name is a String object which contains the name of the image which can eitherbe obtained from an html document or by default (using getParameter)String image_name = getParameter("image");if (image_name == null) image_name="images/simon.gif";The method getParameter() obtains the value of the image parameter in the html document thatholds the applet. If no such parameter exists then a default value compiled with the applet isused. The combined code above results (if no html parameter is found) in the image simon.gifto be loaded. This image must reside in the sub-directory images of the directory holding theexecutable applet code.Step 2Next, the image must be tied to a canvas so that its size can be obtained. ImageCanvas is asubclass of Canvas (written by Andrew Fitzgibbon). An instance of the ImagesCanvas class is�rst created:ImageCanvas src_canvas = new ImageCanvas(src);and to retrieve the image width and height the following piece of code is used:int i_w = src_canvas.getImageWidth();int i_h = src_canvas.getImageHeight();
22

Step 3The following piece of code produces a one-dimensional array of pixels (stored in src 1d) fromthe image contained in src.PixelGrabber pg1 = new PixelGrabber(src,0,0,i_w,i_h,src_1d,0,i_w);try {pg1.grabPixels();} catch (InterruptedException e) {System.err.println("InterruptedException!");return;}if (pg1.status() & ImageObserver.ABORT) return;src 1d will contain the pixel values required provided that the operation executes smoothly.The method grabPixels() initiates the pixel acquisition process.Step 4The pixel values can now be extracted and operated upon from the array src 1d.Step 5The codedest = createImage(new MemoryImageSource(i_w,i_h,dest_1d,0,i_w));creates an Image object from a one-dimensional array of pixels of a particular size. This imagecan be, in turn, tied to an ImageCanvas and displayed by:grid.add(dest_canvas = new ImageCanvas(dest));B HTML and JAVA for Threshold AppletThis appendix shows the complete HTML and JAVA code used for the applet demonstrated onthe extended HIPR worksheet at:http://www.dai.ed.ac.uk/daidb/staff/personal pages/rbf/HIPR/hiprdemo/html/newthr.htm
23

B.1 HTML Added to HIPR Pages<!-- applet to load image --><p><APPLET CODE="GetImage.class" CODEBASE="javacode/"WIDTH=500 HEIGHT=100><PARAM NAME=id VALUE="threshload"></APPLET><!-- applet to threshold image --><p><APPLET CODE="Thresh.class" CODEBASE="javacode/"WIDTH=810 HEIGHT=300><PARAM NAME=id VALUE="thresh"></APPLET>B.2 JAVA Source to Load Image// File: GetImage.java// Author: Konstantinos Koryllos// Date: September 1996// Purpose: To load an image via a URL and send it to a specific// applet.// Bugs: Must have. Must use Nestcape 3 for error during URL parsing.//import java.applet.*;import java.awt.*;import java.awt.image.*;import java.io.*;import java.net.*;import java.util.*;import java.lang.*;import ImageCanvas;public class GetImage extends Applet {Panel pan1 = new Panel();Choice applet_menu = new Choice();GridBagLayout gridbag = new GridBagLayout();GridBagConstraints c = new GridBagConstraints();// define static panelButton load_image = new Button("Load Image");TextField input = new TextField(70);String image_url = "brg1.gif"; // default loadable imageLabel status = new Label("Status:");TextField error_mesgs = new TextField(70);URL theURL; // URL of image to loadpublic void destroy() {}public void stop() { destroy(); } 24

public void start() {}// set up display panelpublic void init() {input.setText(image_url);error_mesgs.setEditable(false);this.setLayout(new FlowLayout());pan1.setLayout(gridbag);pan1.setBackground(Color.white);pan1_layout_components(); // place componentsthis.add(pan1);this.setBackground(Color.white);}// specify panel component layoutprivate void pan1_layout_components() {c.fill = GridBagConstraints.BOTH; // load image buttongridbag.setConstraints(load_image,c);pan1.add(load_image);c.gridwidth = GridBagConstraints.REMAINDER; // input boxgridbag.setConstraints(input,c);pan1.add(input);c.anchor = GridBagConstraints.CENTER; // status message labelc.fill = GridBagConstraints.BOTH;c.gridwidth = 1;gridbag.setConstraints(status,c);pan1.add(status);c.anchor = GridBagConstraints.WEST; // status message boxc.fill = GridBagConstraints.BOTH;c.gridwidth = GridBagConstraints.REMAINDER;gridbag.setConstraints(error_mesgs,c);pan1.add(error_mesgs);}// panel event handlerpublic boolean action(Event evt, Object arg) {// load image button pushedif (evt.target == load_image) {image_url = input.getText(); // pull text out of window// name of image file or full URL// see if a URLtry {theURL = new URL(image_url); // parse supplied URLerror_mesgs.setText("Image "+image_url+" to be used");} catch (MalformedURLException e) {// if a file rather than a URL, then add document base and try again25

// If still not a URL and not a file then report errortry { theURL = new URL(getDocumentBase(),"../images/"+image_url);error_mesgs.setText("Image "+getDocumentBase()+", "+"../images/"+image_url+" extended to use");} catch (MalformedURLException e4) {error_mesgs.setText("Error: Not a valid URL");}}// spool off image viewer - ie pop up an XVgetAppletContext().showDocument(theURL);// search thru applet context to find destination process// assume only one other applet and assume it's not the one// whose name ends with the applet parameter id="...load"// (which is assumed to be this applet). Schema could be improved.Enumeration enum = getAppletContext().getApplets();Receiver receiver = (Receiver) null;while (enum.hasMoreElements()) {Applet applet = (Applet) (enum.nextElement());String name = applet.getParameter("id");if (name != null && !name.endsWith("load")) {receiver = (Receiver) applet;}}// load and send image to receivertry {// get file nameString filename = theURL.getFile();// make sure entered file has correct suffixif (!filename.endsWith("jpg") && !filename.endsWith("gif")){ throw (new NullPointerException());}Image image = this.getImage(theURL); // link to imageapply_send_image(receiver, image); // send image to receiver applet}catch (NullPointerException e){ error_mesgs.setText("Invalid image type or other access error");}}return true;}// load image & send to processor appletprivate void apply_send_image(Receiver applet, Image image){26

// set up memory for useImageCanvas image_canvas = new ImageCanvas(image);int i_w = image_canvas.getImageWidth();int i_h = image_canvas.getImageHeight();int[] src_1d = new int[i_w*i_h];// load in pixelsPixelGrabber pg1 = new PixelGrabber(image,0,0,i_w,i_h,src_1d,0,i_w);try {pg1.grabPixels();} catch (InterruptedException e) {error_mesgs.setText("InterruptedException at apply_send_image");return;}if ((pg1.status() & ImageObserver.ABORT) != 0) {error_mesgs.setText("Trouble at apply_send_image");return;}// send image to processor appletapplet.set_src_image(src_1d, i_w, i_h);}}B.3 JAVA Source to Threshold Image// File: Thresh.java// Author: Konstantinos Koryllos// Date: August-September 1996// Purpose: Thresholding & thinning// Bugs: Couldn't possibly say...import java.applet.*;import java.awt.*;import java.awt.image.*;import java.awt.Color;import java.net.*;import ImageCanvas;import TPrint;public class Thresh extends Applet implements Runnable, Receiver {// structures for input/output imagesImage src, dest;ImageCanvas src_canvas, dest_canvas;int i_w=0, i_h=0;int[] src_1d, dest_1d;// structures for histogramImage hist;ImageCanvas hist_canvas; 27

int[] hist_1d;private final int grey_scales = 256; //num of grey-scale valuesint hist_w = 0; //width of histogram. Either 256 or 3*256....// histogram label.Label hist_range = new Label("0 64"+" 128"+" 192"+" 256");Panel grid = new Panel(); //imagesPanel panl = new Panel(); //textfield and label// define static panel items//thresholdTextField threshold = new TextField(10);Label instructions = new Label("Enter threshold value: ");//for calculating execution timelong time_msec;TextField time_taken = new TextField(10);Label execution_time = new Label("Execution time: ");//Flip pixels 0->255, 255->0Button flip_pixels = new Button("Flip Pixels");//Component.reshape() parameters//to place src images, histogram and destination image.int src_x, src_y, src_w, src_h;int his_x, his_y, his_w, his_h;int dest_x, dest_y, dest_w, dest_h;// set up fixed display itemspublic void init() {this.setLayout(new BorderLayout());//dealing with source imagegrid.setLayout(null);this.add("Center", grid);//GUI stuffpanl.setLayout(new GridLayout(0,5));panl.add(instructions);panl.add(threshold);panl.add(flip_pixels);panl.add(execution_time);panl.add(time_taken);this.add("North",panl);time_taken.setEditable(false);panl.setBackground(Color.white);//Get image nameString image_name = getParameter("image");if (image_name == null) image_name="../../images/cln1.gif";src = this.getImage(this.getCodeBase(), image_name);28

//set src_canvassrc_canvas = new ImageCanvas(src);//Get size of image and make 1d_arraysset_image_dimensions();src_1d = new int[i_w*i_h];PixelGrabber pg1 = new PixelGrabber(src,0,0,i_w,i_h,src_1d,0,i_w);try {pg1.grabPixels();} catch (InterruptedException e) {System.err.println("InterruptedException at init() pg1.grabPixels()");return;}if ((pg1.status() & ImageObserver.ABORT) != 0) {System.err.println("Trouble at init() pg1.grabPixels()");return;}//determine the width of the histogramhist_w = grey_scales;//create blank destination & histogram.create_dest_hist();//add images in GUI(source and two blanks: histogram, destination)gui_add_images();//Component.reshape() Parametersset_reshape_params();//Absolut positioning... Someone fix this!reshape_canvases();//Make the histogram of the source imagemake_histogram();//add histogram label.grid.add(hist_range);hist_range.reshape(13+i_w,18+i_h,13+i_w,30);}// set image sizesprivate void set_reshape_params() {src_x = 10;src_y = 10;src_w = i_w + 10;src_h = i_h + 10;his_x = 18 + i_w;his_y = 10;his_w = i_w + 10;his_h = i_h + 10;dest_x = 26 + i_w + hist_w; 29

dest_y = 10;dest_w = i_w +10;dest_h = i_h +10;}private void reshape_canvases() {src_canvas.reshape(src_x,src_y,src_w,src_h);hist_canvas.reshape(his_x,his_x,his_w,his_h);dest_canvas.reshape(dest_x,dest_y,dest_w,dest_h);}// draw histogramprivate void make_histogram() {double[] hist_values = new double[grey_scales];double increment = 1.0/256.0; //histogram "normalisation"// process all pixels into histogramint blue;for(int i=0;i<src_1d.length;i++){blue = src_1d[i] & 0x000000ff;hist_values[blue] += increment;}// find maximum histogram peak heightdouble max_value = 0.0; //the grayscale value appearing more often.for(int i=0;i<grey_scales;i++)max_value = (hist_values[i]>max_value)?hist_values[i]:max_value;// scale display to spread over 256 vertical values of histogramint scale_factor = (int) Math.floor(grey_scales / max_value);for(int i=0;i<hist_values.length;i++) hist_values[i] *= scale_factor;// draw histogram displayint l = hist_1d.length;for(int i=0;i<hist_values.length;i++){int n = 1;while (hist_values[i] > 0){hist_1d[(l-grey_scales*n)+i] = 0xffff0000;hist_values[i] -= 1;n++;}}// display new histogramgrid.remove(hist_canvas);hist = createImage(new MemoryImageSource(grey_scales,i_h,hist_1d,0,grey_scales));grid.add(hist_canvas = new ImageCanvas(hist));hist_canvas.reshape(his_x,his_y,his_w,his_h);hist_1d = new int[grey_scales*i_h];}private void set_image_dimensions() { 30

i_w = src_canvas.getImageWidth();i_h = src_canvas.getImageHeight();}private void create_dest_hist() {hist_1d = new int[hist_w*i_h];dest_1d = new int[i_w*i_h];dest = createImage(new MemoryImageSource(i_w,i_h,dest_1d,0,i_w));hist = createImage(new MemoryImageSource(hist_w,i_h,hist_1d,0,hist_w));}private void gui_add_images() {grid.add(src_canvas = new ImageCanvas(src));grid.add(dest_canvas = new ImageCanvas(dest));grid.add(hist_canvas = new ImageCanvas(hist));}public void start() {}public void stop() {}public void run() {}// display event handlerpublic boolean action(Event evt, Object arg) {time_msec = System.currentTimeMillis();// threshold value enteredif (evt.target == threshold) {try {int thresh=0;thresh = Integer.parseInt(threshold.getText());if ((thresh < 0) || (thresh > 255)) {throw new NumberFormatException();}threshold(thresh); // do threshold} catch (NumberFormatException e) {threshold.setText(""); // reset bad threshold value fieldreturn true;}}//invert thresholded imageelse if (evt.target == flip_pixels) {flip_the_pixels();}// report processing timetime_msec = System.currentTimeMillis() - time_msec;time_taken.setText(new Long(time_msec).toString()+" msecs");// replace result image with new resultgrid.remove(dest_canvas);dest = createImage(new MemoryImageSource(i_w,i_h,dest_1d,0,i_w));grid.add(dest_canvas = new ImageCanvas(dest));31

dest_canvas.reshape(dest_x,dest_y,dest_w,dest_h);return true;}// do threshold. Assume greyscale image and threshold using only// the blue channel valueprivate void threshold(int thresh) {int blue;for(int i=0;i<src_1d.length;i++){blue = src_1d[i] & 0x000000ff;dest_1d[i] = (blue>=thresh)?0xffffffff:0xff000000;}}//swaps black and white valuespublic void flip_the_pixels(){for(int i=0;i<dest_1d.length;i++){dest_1d[i] = (dest_1d[i]==0xff000000)?0xffffffff:0xff000000;}}//called by image loading appletpublic void set_src_image(int[] input_img, int w, int h) {//reset image sizei_w = w;i_h = h;src_1d = new int[i_w*i_h];System.arraycopy(input_img,0,src_1d,0,input_img.length);grid.remove(src_canvas);grid.remove(hist_canvas);grid.remove(dest_canvas);src = createImage(new MemoryImageSource(i_w,i_h,src_1d,0,i_w));hist_w = grey_scales;create_dest_hist();gui_add_images();set_reshape_params();reshape_canvases();make_histogram();}}
32

Figure 1: Prototype threshold applet

33

Image

Data Image
Modified

Data

ImageFilterImageProducer ImageConsumer

Image Data
ImageProducer ImageConsumer

Figure 2: Behind the scenes

34

Figure 3: The gamma correction applet

35

Figure 4: The rotation applet

36

Figure 5: The convolution applet

37

Figure 6: The noise generating applet

38

Figure 7: The thresholding applet

39

1
1 1 1

0 0 0 0
0

0
11
1

0
0
0

11 0
00

1
1

1

0 0
1
1 11

1

1

0
0
0 0

1
1

1
0
0
0

1
1
1
1

0
0

0
1 1
1Figure 8: Thinning structuring elements

40

Figure 9: Communicating applets
41

Table 1: Comparison of execution times in secondsOperation Java Visilog(C) Java with JITNormal rotation 1.1-1.3 | 1.2-1.4Shear rotation 4.0-5.2 | 0.5-0.6Nearby pixel rotation | 0.8-1.0 |Four neighbor rotation | 3.0-3.2 |Gaussian smoothing (3x3) 5.0-6.0 0.8-1.0 0.3-0.4Mean smoothing (3x3) 4.0-5.0 0.3-0.4 0.3-0.4Mean smoothing (5x5) 11.0-12.0 0.8-0.9 0.7-0.8Median smoothing 6.0-7.0 0.4-0.5 0.3-0.4Median and mean 5.0-8.0 | 0.3-0.4Salt-Pepper noise generation 0.2-0.3 | instantGaussian noise generation 0.2-0.3 | instantGamma correction 1.0-2.0 | 0.7-0.8Thresholding 0.3-0.4 0.2-0.3 instantOne thinning iteration 21-23 0.3-0.5 1.7-1.9Convolution (3x3 Laplacian) 4.5-5.5 0.8-1.0 0.4-0.5Image addition 0.2-0.3 0.1-0.2 instant

42

Processor Clockspeed SPECint92 SPECfp92microSparc-II 110MHz 78.6 65.3Pentium 133 133MHz 147.5 109.6Table 2: Sparc vs. Pentium

43

