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Abstract

One approach to change detection that is insensitive

to illumination brightness and spectral changes uses

properties of color imagery. This approach does not

appear to have been previously investigated, and this

paper asks: “What is the most appropriate metric for

detecting changes in color imagery?”. We define and

compare six image difference functions, mainly based

on RGB and HSV image representations. When the

global illumination does not change radically, the nor-

mal Euclidean distance in the RGB or a modified HSV

space works about equally well, when there is signifi-

cant changes in image spectrum, then HSV works a

bit better and if there is a large local change in the

illumination, none of the investigated methods work

well.

1 Introduction

Because illumination can vary over time in real
world scenes, we would like change detection algo-
rithms that are insensitive to the illumination change.
In monochrome images, there is not much hope for
pixel-based change detection algorithms that are in-
variant or insensitive to illumination changes, as the
only signature of a scene change is an intensity change
(which also occur as the illumination changes). Image
content analysis is possible, as is the use of illumina-
tion invariant properties, such as monochrome image
edge positions [1, 7]. On the other hand, real world
scenes are generally colorful, and detection of scene
changes based on changes in color imagery does not
yet appear to have been investigated.

Jain and Chau [5] report results on using multisen-
sor and multitime statistical data fusion for change
detection, but did not exploit any special relationship
between the difference sensors, which can be found
when treating the different spectral bands in a color
image as different sensors.

Because the color (albedo) of objects is largely sep-
arable from illumination and relative surface orienta-
tion (reflectance) effects (e.g. [4], pp 271), there is
hope that we might be able to distinguish, in practice,

image changes arising from scene changes (where the
albedo would change) from those arising from illumi-
nation changes (where the albedo would not change).
Research on color constancy obviously has a bearing
on this problem, as elimination of all illumination ef-
fects would clearly leave only reflectance changes to
consider. Unfortunately, this stream of research is not
yet sufficiently numerically precise for change detec-
tion in complicated real-world scenes.

Here, we assume that we have a set of registered
images, such as might arise from a single camera ob-
serving a potentially changing scene over time, per-
haps for a security application. We will work at the
pixel level, detecting pixels that have changed suffi-
ciently. Recently, Rosin [6] has presented good re-
sults on the threshold selection process, concluding
that one should model the spatial distribution of ei-
ther the noise or signal. This leaves open the question
of what should one threshold if one has color imagery,
which is what is investigated here: “What is the

most appropriate metric for detecting changes

in color imagery?”.
We would like to have a change detection method

that is insensitive to:

1. uniform illumination brightness changes - e.g.

due to changes in light source brightness, cam-
era aperture or sensitivity

2. uniform illumination spectral changes - e.g. due
to changes in light source spectral composition or
camera spectral sensitivity

3. local illumination brightness changes - e.g. due
to shadows or nearby light sources.

The first two criteria motivate the spectral and inten-
sity correction process given in the next section, and
the local illumination change criteria motivate investi-
gation of some distance functions that do not depend
on the absolute pixel brightness, as discussed in Sec-
tion 3. Comparing the results from different distance
functions is never easy, but using Receiver-Operating-
Characteristic curves, as shown in Section 4, makes it



possible to avoid having to choose exactly comparable
thresholds.

2 Pre-processing

Two global processes are applied before the image
difference is calculated.

The first process identifies pixels where the distance
function is probably invalid, and which are therefore
not used in the distance calculation. The two cases
are when the pixel is very bright or dark. In the
bright case, the camera saturates, and so the proper
relationship between the RGB components at a pixel
cannot be determined. This often occurs at specular-
ities (which can be detected [2]), but also in generally
bright areas. In either case, the pixel values are un-
usable. So, we create a boolean mask: U(i, j) having
value ‘true’ when one or more of the RGB spectral val-
ues is greater than 250. In the dark case, the camera
sensitivity is not good due to noise and quantization,
and small changes in pixel RGB values can have ex-
aggerated importance in the pixel distance result. So,
we create second binary mask: L(i, j) having value
‘true’ when the length of the RGB vector is smaller
than a given threshold (50, chosen by trial and error).
Together, these two masks are used to control when
the pixel distances are calculated:

U(i,j) or U’(i,j) or [ L(i,j) and L’(i,j) ]

then distance = 0

else use distance function

In other words, don’t calculate distance if one pixel
has saturated or both pixels are dark.

The second process removes the global spectral and
intensity change in illumination, which should correct
for changes in the brightness or spectrum of the illu-
mination (e.g. colored lighting). The technique works
because surface brightness is proportional to the prod-
uct of reflectance and illumination. Suppose that the
initial image’s pixels had RGB value (ri, gi, bi). After
a global change in illumination their values become
(λrri, λggi, λbbi) = (r′

i, g
′
i, b

′
i). Then, we can estimate

λr =

∑
i ri∑
i r′

i

and similarly for λg and λb. The mean function
was used because it is assumed that the number of
pixels changing is a small percentage of the total.
(If an application did not have this property, an-
other global illumination adjustment process could

be found.) A transformed second image is calcu-
lated: (r′

i/λr, g
′
i/λg , b

′
i/λb). This aims to produce cor-

responding pixels with similar intensity.

3 Distance Functions

We looked at two RGB space and three HSV space
distance measures, which are described now. In all
cases, we only look at pixel-wise differences.

3.1 Euclidean Distance of Raw RGB

We treat each pixel as a 3-vector ~r of the (red,
green, blue) components on a [0..255] scale. The dis-
tance between pixels is || ~r − ~r′ ||.

3.2 Dot Product of Unit RGB Vectors

Each pixel is normalized ~ru = ~r
||~r|| with the (red,

green, blue) components on a [0..1] scale. The distance
between pixels is: 1−~ru ·~r

′
u. Pixels with a similar color

distribution will have a similar vector and thus a small
distance.

Normalizing the raw RGB should remove resid-
ual uniform illumination intensity differences. We as-
sume that any illumination-based color changes will
be small.

3.3 Euclidean Distance of HSV

To make the change detection invariant to changes
in illumination strength, we could use a representa-
tion in which the intensity of the light is explicit and
separated from the color. One representation is HSV
or hue, saturation, value ([3], pp 590).

Each raw RGB pixel is transformed into its corre-
sponding HSV representation
(h, s, v) = rgb2hsv(r, g, b), with 0 ≤ h ≤ 1, 0 ≤ s ≤ 1,
0 ≤ v ≤ 1 ([3], pp 590). Note that h wraps around
at 1 back to 0. Also, when s = 0, the h value is
undefined, and, in practice, when s is small, then h
becomes unstable.

Taking account of this instability and wrap-
around problem, we transform the HSV encoding
into a vector in the HSV color hexcone. A HSV
vector (h, s, v) becomes (vscos(2πh), vssin(2πh), v),
so the distance between two HSV values (h, s, v)
and (h′, s′, v′) is: || (vscos(2πh), vssin(2πh), v) −
(v′s′cos(2πh′), v′s′sin(2πh′), v′) ||.

3.4 Euclidean Distance of HS

A second HSV distance function uses just the H
and S components, to make the distance indepen-
dent of the brightness: || (scos(2πh), ssin(2πh)) −
(s′cos(2πh′), s′sin(2πh′)) ||.

3.5 Euclidean Distance of H

Another HSV distance function use s just the Hue
component: | h − h′ |.



3.6 Combined HS versus V

The final metric tries to select the best of ei-
ther the V component when there is a big change
in the pixel brightness or HS when there is a big
change in value: max(|| (scos(2πh), ssin(2πh)) −
(s′cos(2πh′), s′sin(2πh′)) ||, | v − v′ |).

4 Experiments

a) b)

c) d)

Figure 1: Some experiment 1 test images: a) original
image (F), b) some objects removed (A), c) some ob-
jects removed plus some moved local light source and
halogen light turned off (G), d) ground truth mask
used in ROC calculation.

To detect a change, most approaches threshold the
difference measures, and the choice of threshold value
is critical, because this affects how many changed pix-
els are missed and how many unchanged pixels are
falsely detected. Comparing the image difference mea-
sures is difficult because each measure rates changes
differently with changes in threshold. How this thresh-
old should be chosen is a complex issue, although a re-
cent paper [6] presents some good suggestions. Com-
paring results at a single threshold choice, even if a
method of selecting comparable thresholds were pos-
sible, may also not give a good comparison (e.g. due
to an unlucky threshold choice).

To avoid the issue of comparing thresholds, we
compare the distance measures using a “Receiver-
Operating-Characteristic” (ROC) methodology: for
each threshold value in a range, calculate the percent-
age Pfn of changed pixels that were not detected and
Pfp of unchanged pixel classified as changed. Then
plot the curve of (Pfp,Pfn) values as the threshold

changes. This will show the range of performances
possible, without having to directly select comparable
thresholds. As we shall see below, this will give us a
satisfactory tool for comparison.

We need ground truth to calculate Pfn and Pfp.
The test images were generated under a variety of
different illumination conditions, but with a known
change to the scene - the removal of one or two ob-
jects. By hand, we generated a mask covering the
changed region(s), with mask(i,j) = 1 if pixel (i,j) was
changed. Let change(i,j) = 1 if the change detection
algorithm decided that pixel (i,j) changed. Then:

Pfn =

∑
(i,j) mask(i, j)(1 − change(i, j))

∑
(i,j) mask(i, j)

Pfp =

∑
(i,j)(1 − mask(i, j))change(i, j)

∑
(i,j)(1 − mask(i, j))

To experiment with different issues, we set up a
variety of scene changes:

• additional light sources

• moved light sources

• partial or complete shadows

• minor change to illumination spectrum

and, of course, removing the target objects. In all
cases, the aperture and focus of the camera remained
the same and the AGC was disabled.

We show here the results for 5 experiments each
for two test scenes. The first scene (Figure 1a) has
a flat ground plane with several colored 3D test ob-
jects, which causes shadow positions to move as the
light source is moved. The second scene (Figure 3a) is
largely all planar objects in a common plane.

The conditions varied in the first test scene are
summarized in this table, with OBJ: extra object
present, HFS: nearby halogen light fully shadowed
with translucent sheet of white paper, HPS: nearby
halogen light partly shadowed with translucent sheet
of white paper, FIL: halogen light red filtered and
TNL: nearby tungsten light moved to the left. The
overhead and nearby halogen lights were always on
and there was a nearby tungsten light initially at the
right.

IMG OBJ HFS HPS FIL TNL
1F Y
1A
1C Y
1D Y
1E Y
1G Y
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Figure 2: Experiment 1 results part 2: a) mask of too
bright pixels, b) mask of too dark pixels, c) results of
thresholding (at 32.4) RGB distance between images
F and A.

Test images 1F, 1A and 1G are shown in Figure 1.
Three of the ROC curves are shown in Figure 4. In

these curves, the smaller thresholds are at the bottom-
right portion of the curves increasing to a maximum at
the upper left. The percent of falsely detected pixels
was only displayed to 10% because this was the most
important region of the curve. The ideal curve would
pass very close to (0,0), meaning that it was possible to
achieve very few false detections while simultaneously
missing few object pixels. Figure 4a shows the curve
for when only the target objects were removed. This
plot shows that the RGB distance measure (“*”) is
comparable to the HSV measure (“x”) at low false de-
tection rates, with HS slightly better at very low rates.
If you can tolerate about 1% falsely detected pixels
(e.g. about 600), then you detect about 35% of the
changed pixels. Further, as the RGB and HSV curves
are generally closest to the origin, then these dis-
tance measures are better, and at higher percentages
of falsely detected pixels, the RGB measure is more
sensitive at detecting true changed pixels. The RGB
distance between images 1F and 1A when thresholded
at 32.4 is shown in Figure 2c. At this threshold, the
Pfn = 25% and Pfp = 2.6%.

In test images 1C, 1D and 1E, a similar relationship
between the RGB and HSV measures holds, although
they are nearly identical in performance, except in im-
age 1D (which is shown in Figure 4b). Here, the halo-
gen light source is partly shadowed and HSV is slightly
better at higher Pfa.

In test image 1G, the nearby tungsten light source
is placed at the left and the halogen light is turned off,
causing considerable change to the shadow positions

(Specularities are already masked out.) In this case,
none of the algorithms perform well (see Figure 4c),
with the HSV and Dot measures doing the least badly.
We do not have a substantiated hypothesis about why
the performance should be so bad, but some possi-
bilities are: a) there is a strong illumination gradient
here, so the global normalization described in Section
2 will not produce comparable RGB or V values, b)
the increased brightness in image G was non-linearly
compressed by the camera’s gamma compression and
c) the tungsten light source has a much redder color
spectrum applied locally rather than globally because
it is quite close to the scene.

Generally, the H and HS distance measures were
worse than the HSV measure (except with the strong
local illumination gradient), with H always worse than
HS. The HSvsV measure was generally better than H
and HS (except when the light spectrum changed), but
was always worse than or equaled by RGB and HSV.

Figure 1d) shows the ground-truth mask used in
the ROC curve calculation and parts b) and c) shows
the pixels marked as too bright and too dark in the
original image 1F.

a) b)

c)

Figure 3: Some experiment 2 test images: a) original
image 2A, b) image 2D with an object removed plus a
red filter on the halogen light source and c) image 2G
with an object removed plus table light on, halogen
off and a strong shadow.

The conditions varied in the second test scene are
summarized in this table, with OBJ: extra object
present, OVH: overhead fluorescent lights on, HAL:
nearby halogen light on, TAB: nearby tungsten incan-
descent light on, FIL: halogen light red filtered and



SHA: partial shadow cast by table lamp.
IMG OBJ OVH HAL TAB FIL SHA
2A Y Y Y
2C Y Y
2D Y Y Y
2E Y Y Y
2F Y Y
2G Y Y Y

Test images 2A, 2D and 2G are shown in Figure
3. In the results below, the H metric is always worst,
the HSvsV metric is always worse than or equal to
the RGB or HSV metric and the Dot metric is always
worse than the HS metric. So, these metrics are not
shown.

In test scene 2, when the test object is removed and
there is a no change (image 2C) or only a slight change
to the illumination spectrum (images 2D and 2E), the
ROC curves for change detection are all quite similar.
Figure 5a) shows the ROC curve for test image 2D
where the red filter was used. At low Pfp the RGB
and HSV measures are nearly identical, but at higher
Pfp the HSV measure is better. In test image 2C, the
ROC and HSV curves are nearly identical over the
whole range.

Test image 2F is like test image 2E except that
the overhead lights are turned off. Here, the ROC re-
sults (not shown) are poor, although slightly better
than those of Scene 1 image 1G, with the best re-
sult by the Dot and HS distance measures (which is
more predictable as these measures are independent of
absolute intensity). In this case, the absolute bright-
ness is quite different and the illumination gradient
is also quite different, so presumably the explanations
for poor results in Scene 1 image G also apply here.

Test image 2G (ROC curve shown in 5b) has some
interesting behavior: at very low percentages of falsely
detected changes, the RGB measure has the best per-
formance, but at slightly larger values, the HS is the
best. The hump in the HSV is due to the strong illumi-
nation gradient at the lower right. In the case of scene
2, the removed object has a higher contrast difference
with the background and so, with the RGB measure,
the contrast of the removed object is larger than the
contrast with the illumination for some object pixels.
This allows a threshold to select only object pixels.

5 Discussion and Conclusions
The main conclusion is that when the global illu-

mination does not change radically, the normal Eu-
clidean distance in the RGB or a modified HSV (Hue,
Saturation, Value) space works about equally well.
When there is significant changes in image spectrum,
then HSV works a bit better. Finally, if there is a

large local change in the illumination, none of the in-
vestigated methods work well, but using the H and S
components tends to work slightly better.

It is interesting that the intensity independent dis-
tance measures (e.g. Dot, HS, H) did not work as
well. Examining the data suggests that the reason for
this is that brightness changes associated with a scene
change are as important as spectral changes, and these
should be exploited when possible.

The main problems arise where there is a significant
change to local illumination spectrum, such as when
a light source with a different spectral composition is
nearby.
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Figure 4: Experiment 1 results part 1: a) ROC curve
of image 1A, b) ROC curve of image 1D and c) ROC
curve of image 1G. The horizontal axis is the percent
of false positives and the vertical axis is the percent
of false negatives. The curves are labeled as: ‘+’: dot
product, ‘*’: RGB distance, ‘o’: H distance, diamond:
HSvsV distance, square: HS distance and ‘x’: HSV
distance.
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Figure 5: Experiment 2 results part 1: a) ROC curve
of image D and b) ROC curve of image G. The hor-
izontal axis is the percent of false positives and the
vertical axis is the percent of false negatives. The
curves are labeled as: ‘*’: RGB distance, square: HS
distance, and ‘x’: HSV distance.


