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ABSTRACT

This paper describes a computational model for deriving a
decomposition of objects from laser rangefinder data. The
process aims to produce a set of parts defined by compact-
ness and smoothness of surface connectivity. Relying on a
general decomposition rule, any kind of objects made up of
free-form surfaces are partitioned. A robust method to par-
tition the object based on Markov Random Fields (MRF),
which allows to incorporate prior knowledge, is presented.
Shape index and curvedness descriptors along with discon-
tinuity and concavity distributions are introduced to classify
region labels correctly. In addition, a novel way to classify
the shape of a surface is proposed resulting in a better dis-
tinction of concave, convex and saddle shapes. To achieve a
reliable classification a multi-scale method provides a stable
estimation of the shape index.

1. INTRODUCTION

Image segmentation is an important early vision task to group
pixels with similar characteristic into homogeneous regions.
Many high level processing tasks (object recognition, sur-
face representation using volumetric models for example)
are based on such a preprocessed image. Descriptions ex-
tracted by a system must reflect the characteristics of the
environment. This paper is about computing such a descrip-
tion in 3D range data.

Segmentation of range images has been addressed by
many researchers e.g. [1, 2]. Measurements are used to seg-
ment a depth map into surface patches which are either pla-
nar or curved and which are described formally by a func-
tion. These methods are restricted to process mainly CAD
(Computer Aided Design) models. The recognition of com-
plex objects in a cluttered scene without a feature extrac-
tion or segmentation step is presented by Johnson [3] who
proposed a template matching procedure using spin images.
Charvis et. al. [4] proposed point signatures for describ-
ing the local shape around a point. Both methods aim to
extract local shape templates for every point on the model.
Unfortunately, the methods described above cannot be used

to extract a more generic description of an object. This is
a significant step which needs be carried out focusing on
object classification among other things.

Psychological studies have shown an underlying regu-
larity of part recognition [5]. A partitioning rule on the ba-
sis of the Transversality Regularity divides an object into
its constituent parts along all contours of concave discon-
tinuity of the tangent plane. The process described in our
paper aims to produce a set of parts generated by a generic
partitioning rule. The extraction of discontinuities does not
always deliver a continuous or even closed boundary. Thus,
boundary organization is needed to link spare discontinu-
ity points. A problem is whether a putative point is labeled
as boundary or dismissed due to noise in the image which
often leads to misclassification of region labels. The ap-
proach proposed in this paper assigns a feature vector taking
a shape index and curvedness estimation into account. The
combination of both ensures compactness, smoothness and
convexity of surface connectivity. A Markov Random Field
(MRF) is used to incorporate spatial interaction as well as
to to estimate slow spatial variations of the feature charac-
teristic of the image. The paper is structured along the com-
putational steps that define the procedure for decomposing
an object from sensor data. In Section 2, a mathematical
formulation is defined to decompose a scene. A novel com-
putation method is presented for consistent shape index es-
timation. Furthermore, the spatial interaction of shape in-
dex and curvedness components of the feature vector is de-
cribed.

2. PROBLEM FORMULATION

The decomposition scheme extracts convex constituent parts
of an object based on the local shape information. A quan-
titative measurement of the shape of a surface at a point s
is the shape index SI(s) and the curvedness C(s). Accord-
ing to Koenderink’s definition of the shape index [6] and its
adopted version [7] nine shape categories S = {S1, ..., S9}
are distinguished. The shape index provides a continous
gradation between salient shapes such as convex, saddle and
concave types. The curvedness is a measure of the scale or



the amount of curvature of a region.

2.1. Multiscale Shape Index Segmentation

The computation of the shape index which is based on the
curvatures of a surface, requires the estimation of a local
quadric surface function at point s [8]. Shape index estima-
tion on real range images is a difficult task because of the
effect of noise and outliers. In order to overcome these is-
sues a multiscale method [9] has been adopted to provide a
robust method for a correct classification of the shape.

A multi-scale Markov random field (MSRF) is used, hi-
erarchically ordered from the coarsest to finest level. The
random variable fields are denoted by xS(n) at scale n, where
n = 0 is the most detailed. They represent the estimated
shape index labels for each layer. The observed image is
given by yS . In a stochastic image model two different ran-
dom processes are defined. There is first an emission pro-
cess, which takes the point’s actual value into account. A
stochastic emission model defines the probabilites for each
point. A gaussian process is used to model the data related
process. The initialization parameters are retrieved from the
shape index characteristic. This data related term provides
the evidence of the estimation.

The second process establishes homogenous regions. The
region process is modeled by a multi-scale Markov random
field. The random variables indicate the categorized shape
index class. The process starts with a coarse-scale random
field. The field is successively refined until the final res-
olution of the image is reached. Labels at the finest scale
give the categorization of the individual points into shape
classes. The possible values of the values according to the
shape index description are xS(n)

s ε{0, 1, ...,M − 1} with
M = 9. The process expresses the assumptions about the
shape classes for each layer, which are passed on from the
coarser scale label to the finer scale label in a top-down fash-
ion.

Thus, the likelihoods are calculated recursively. The
emission probability is defined by

P (yS) =
∏

s

P (ySs |x
S(0)
s ) (1)

Using Bayes rule the probabilities are inverted to

P (xS(n)|yS , xS(n+1)) =
P (yS |xS(n))P (xS(n))|xS(n+1))

P (yS |xS(n+1))
(2)

The posterior probability is maximized over the set of
possible values for xS(n)

s . The transition probabilities
P (x

S(n)
s |x

S(n+1)
P(s) ) introduce additional prior knowledge of

the relationships between shape index classes over the over-
lapping pixel at the coarser scale.

P (xS(n)
s |x

S(n+1)
P(s) ) =

{

θ : x
S(n)
s = x

S(n+1)
P(s)

1−θ
M−1 : otherwise

(3)
It assumes if there is certain shape class at coarse scale

then with probability θ the same region type is present at the
finer scale. The parameter θ was set to 0.8.

2.2. Decomposition based on Shape Index and Curved-
ness

A common approach to introduce spatial interaction is to
model a scene x by a Markov random field (MRF). It is
well known that an MRF is Gibbs distributed (Hammersley-
Clifford theorem [10]). Hence its probability density P (xs)
is given by a Gibbs distribution

P (xs) =
1

Z
exp {−U(xs)} . (4)

with the normalization constant Z and the energy function
U(xs). According to the Bayes rule, the posterior probabil-
ity is computed by using the following formulation

P (xs|ys) =
P (ys|xs)P (xs)

P (ys)
∝ exp(−U(xs|ys)) (5)

where P (ys|xs) is the likelihood function of x for the ob-
servation y. The maximum a posteriori (MAP) estimate
is equivalently found by minimizing the posterior energy
U(xs|ys, µ).

The decomposition rule reflects the idea of splitting ob-
jects into their constituent parts along concave discontinu-
ities which results in a set of surfaces of similar shape char-
acteristic. Thus, the feature vector is made up of two com-
ponents (shape index and curvedness) to model the local
surface. The observation ySs is initialized with the model
estimates of section 2.1.

U(ys|xs) = (ySs − µ
Sxs

s )2 + η(ySs )(yCs − µ
Cxs

s )2 (6)

The effect of the curvedness component is weighted with
a function η(ySs ) which depends on the local shape index at
site s. A combined measurement makes sense if shape index
values indicate concave or saddle points, whereas higher
values represent convex shape classes, the curvedness term
is omitted in that case. Since the shape models of con-
stituent parts are not constant, an adaptive estimation method
[11] is adopted. Starting from global estimates, the segmen-
tation results slowly adapts to local shape variations. To es-
timate the local mean µSxs

s and µCxs

s , a window of size W
is centered at each site s. The estimation process takes place
within the window. By changing the window size from large



to small, the final segmentation will be governed by local
features.

The prior energy term consists of three terms: a con-
vexity term, a spatial continuity and an edge discontinuity
term.

U(xs) = V1 +
∑

{s,q}εC1

V2 +
∑

{s,q}εC1

V3 (7)

where C1 is set of pair-site cliques in a 8-neighborhood.
According to the decomposition rule, objects are represented
by convex surfaces. In order to facilitate the extraction of
convexity a single-site term is introduced to help minimize
the number of concave regions.

V1(xs) =

{

−α : f(µ
Sxs

s ) = convex

+α : otherwise
(8)

with the symbolic mapping function

f(µ
Sxs

s ) = {nonconvex, saddle, convex} (9)

which maps the shape index space into three shape descrip-
tions.

The spatial component of the energy function is given
by

V2(xs, xq) =

{

+β1 : xs 6= xq
−β1 : xs = xq

(10)

and the edge component term is represented by

V3(xs, xq) =







−β2 : xs 6= xq, x
E
s,q = 1

+β2 : xs = xq, x
E
s,q = 0

+β2 : otherwise

(11)

where xEs,q indicate an edge between sites s and q. Only
jump edges [12], representing occlusions, are used in this
approach. A dynamic edge linking procedure is adopted
from [13].

Based on the energy terms above, a posteriori energy is
defined as

U(xs|ys) =
χxs

T

[

U(ys|xs) + U(xs)
]

(12)

The distortion χxs describes the compactness of a re-
gion xs and T is the tolerated distortion constraint. It is a
global parameter which keeps region compact and reduces
misclassification of region labels due to outliers.

The energy term U(xs) is minimized with a local en-
ergy minimization method based on highest confidence first
(HCF) [14].

3. EXPERIMENTAL RESULTS

The performance of the algorithm is evaluated on a set of
plastic models. All data are collected from a range scan-
ner with a registered color image. Figure 1 shows the de-
composition result of Winnie the Pooh. As can be seen
the head is decomposed into several parts, which is cor-
rect since the cheeks, the nose and other parts have different
shapes. The beak of the bird in Figure 2 is subdivided into
two parts. It is not immediately obvious since the bound-
ary along those parts is not a real concavity, but considering
local distributions using an adaptive estimation, classifies
saddle points correctly and along with the curvedness infor-
mation a proper shape model is derived. Figure 3 and Figure
4 demonstrate similar results for this approach on other ob-
jects. The parameters are kept constant for all examples,
which proves the robustness of the method.

Fig. 1. Part decomposition - range image (left), decomposed
parts represented by different colors (right) with α = 0.1,
β1 = 0.01 and β2 = 0.01.

Fig. 2. Part decomposition - range image (left), decomposed
parts represented by different colors (right) with α = 0.1,
β1 = 0.01 and β2 = 0.01.



Fig. 3. Part decomposition - range image (left), decomposed
parts represented by different colors (right) with α = 0.1,
β1 = 0.01 and β2 = 0.01.

Fig. 4. Part decomposition - range image (left), decomposed
parts represented by different colors (right) with α = 0.1,
β1 = 0.01 and β2 = 0.01.

4. DISCUSSION AND CONCLUSION

A new method is developed to decompose an object based
on concave contours. Furthermore, a robust shape index es-
timation based on a multi-scale Markov random field allows
to integrate stable classification of concavities along with
range edge discontinuities into the decomposition frame-
work. Using an adaptive model, shape models are more
accurate near concave boundaries. The results are encour-
aging and will be further validated. Integrating a volumetric
model estimation for decomposed regions will be the next
step to get a high-level description.
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