
Geometric reasoning for
computer vision

M J L Orr and R B Fisher

Some general principles are formulated about geometric
reasoning in the context of model-based computer vision.
Such reasoning tries to draw inferences about the spatial
relationships between objects in a scene based on the
fragmentary and uncertain geometric evidence provided
by an image. The paper discusses the tasks the reasoner
is to perform for the vision program, the basic competences
it requires and the various methods of implementation.
In the section on basic competences, some speciJications
of the data types and operations needed in any geometric
reasoner are given.

Keywords: computer vision, geometry, reasoning,
uncertainty

The ability to reason about the geometry of a scene
is an essential aspect of any sophisticated vision system.
In this paper, geometric reasoning is divided into three
levels: tasks, operations and implementation. The first
level deals with the various tasks that seem appropriate
for a vision system to delegate to a geometric reasoning
package. The second level involves the ideal data types
and operations required to carry out these tasks, and
the third concerns implementation. As will be shown,
it is easier to formulate the required operations than
to find perfect implementations. Below are informal
definitions of models and images, two of the basic data
types with which we are concerned.

MODELS

It is assumed that object models are built up from primi-
tive geometric features (such as points, curves, surfaces
and volumes) placed in a coordinate frame belonging
to the model. It is further assumed that models are struc-
tured hierarchically, that is, complex models are built
out of simpler ones by specifying the placing of the
subcomponents in a frame pertaining to the aggregate.

Department of Artificial Intelligence, Edinburgh University, 5 Forrest

Hill, Edinburgh EH 1 2QL, UK

This paper was presented at the 2nd Alvey Vision Club Conference.
held at the University of Bristol, UK. during September 1986

IMAGES

The key point about images is that they should contain
entities that can correspond with the entities in the
models at all levels: features, clusters of features (simple
models) and clusters of clusters of features (complex
models). How image segmentation is achieved or how
model-to-image matches are hypothesized is not of con-
cern here. We are also unconcerned whether images are
2D or 24D: although the latter contain more informa-
tion, the principles of geometric reasoning are the same
for both.

TASKS

The geometric reasoning component of a vision system
is characterized by the tasks that it is expected to carry
out. This is the first level in the concept of a geometric
reasoner. Exactly which tasks come under the heading
of geometric reasoning is debatable, but some stand out
as obvious candidates. Included in these are establishing
position estimates and image prediction.

Establishing position estimates

Every identified feature in an image can be used to form
position constraints, first because it is visible, and second
because it has measurable properties (location, shape,
dimensions, etc.). Take, for example, the identification
of a point in the image with a point belonging to some
object model. This hypothesis constrains the translation
of the object in relation to the line of sight, and some
orientations of the object are excluded because the point
would be obscured from view.

Having established a set of constraints on the position
of a model from its individual features, the next step
is to combine them into a single position estimate. The
detection of inconsistent constraints is important here
to eliminate false hypotheses (for example, due to
erroneous feature identifications). If a consistent
estimate can be found, it may contain degrees of freedom
(especially if there is any rotational symmetry), or there
may be more than one estimate (mirror symmetry).

0262~8856/87/0323346 $03.00 @ 1987 Butterworth & Co. (Publishers) Ltd

~015 no 3 august 1987 233

In a similar way, position estimates for subcompo-
nents have to be aggregated into an estimate for the
parent object, but with one important difference. Since
the subcomponent estimates refer to the placement of
the subcomponents and not (as for features) to the place-
ment of the parent, the subcomponent estimates must
first be transformed, using their known positions relative
to the parent, into estimates for the parent object.

If the modelled relation between parts of the same
object involve degrees of freedom (the various sections
of a robot arm, for instance), then the vision system
must be able to use the image information to bind vari-
ables expressing this freedom to appropriate estimates.
This task also requires the ability to transform positions.

Image prediction

Having established a position estimate for an object,
the next step is to predict the appearance and location
of its features. This allows a critical comparison between
the predicted and observed features and affords a basis
for reasoning about occlusion effects. Additionally,
image prediction can be used to search for features not
already found in the image and subsequently to reline
the position estimate of the object on the basis of any
new information obtained. As an example, suppose an
estimate of the position of a bicycle is obtained from
the positions of two coplanar wheels at the correct dis-
tance apart, and is then used to predict the location
and appearance of the saddle and handlebars. Using
this prediction, the image is then searched for these sub-
components, with the following questions in mind. If
found, are they where they should be and can they be
used to refine the position already obtained from the
wheels? If not found, can their absence be explained?

Two points need mentioning here, which complicate
matters. First, predicted features are not necessarily
pixel-type entities. Although observed features are, by
definition, derived from pixel-based information, they
are also normally described in terms of more symbolic
entities, such as points, lines, surfaces, etc. Image pre-
diction can involve the generation of either or both types
of descriptions. Second, real images are formed from
objects that have exact positions in the world, but pre-
dicted images involve objects with positions that are
known only approximately and must reflect this by
representing both continuous (e.g. parameter value) and
discrete (e.g. feature appearance) variations.

BASIC REQUIREMENTS

flexible attachments, we need to be able to represent
positions with degrees of freedom; and, second, because
a certain amount of uncertainty is present in image
measurements, we also wish to represent positions that
are uncertain.

Positions are also transformations, i.e. rules for trans-
forming points, vectors and other positions from one
coordinate frame to another. By acknowledging free
variation and uncertainty, the notion of position is
extended from a point to a region of 6D parameter
space. Positional transformations are then no longer
one-to-one mappings, but one-to-many or many-to-
many. Thus, if we have uncertain positions we need
to be able to deal with uncertain points and uncertain
vectors.

In what follows, some simple data type specifications’
will be given, using the operators FRAME and
PLACED. Both operate on members of the set Position
and return members of the set Model. The latter includes
the special models World and Camera, so that we can
have world-centred and viewer-centred coordinate
systems as well as relative positions between models.
Thus, the functionality of FRAME and PLACED are
written as

FRAME: Position + Model
PLACED: Position + Model

FRAME returns the model whose frame is the reference
frame of a position, and PLACED yields the model
placed by a position.

Both FRAME and PLACED are termed ‘observer’
functions because they reveal a single aspect of a multi-
faceted object. Other observer functions would reveal
information about particular position parameters and
would map to pairs of real numbers (to denote a per-
mitted range) or to expressions relating parameters (if
the position contains any degrees of freedom). Some
‘constructor’ functions will be introduced below, which
generate instances of the Position data type from other
types or from other positions.

As an illustration of the notation being used, the
common operation of dividing two real numbers would
be specified as follows:

DIVIDE: Real, Real + Real u {undefined}

This statement should be read as: DIVIDE operates on
two arguments, both from the set ‘Real’ (real numbers),
and returns a member of the set ‘Real’ augmented by
the undefined object (LJ stands for set union). The unde-
fined object is a useful device to cater for inappropriate
arguments - in the case of DIVIDE, a divisor that
is zero.

Estimating positions from features

We now come to the second level of description of the
geometric reasoner -the abstract data types and opera-
tions required to carry out the tasks outlined above.

Positions
Each pairing of a model to a data feature produces
constraints on the position of the model to which the

The first and most obvious requirement is a data type
for representing positions. Positions are traditionally
represented by six independent quantities, three transla-
tional and three rotational. Unfortunately, this represen-
tation is not adequate for our purposes, for two reasons.
First, because we want to model objects that have

feature belongs. We then have an operation, LOCATE,
the inputs of which are the model and image features:

LOCATE: Image-Feature, Model-Feature
+ Position u {undefined}

for all x E Image-Feature andf, E Model_ Feature:
let p = LOCATEg, f,) then if p ! = undefined

234 image and vision computing

FRAME(p) = Camera
PLACED(p) = m

(where m is the model to whichf, belongs).

The last statement (beginning ‘for all. . .‘) states a rule
about the outcome of applying this operator, viz. that
if the result, p, is not the undefined object but a position,
then its frame is the camera (or viewing frame) and
it places the model to which the feature belongs. The
undefined result arises from inappropriate image-model
feature pairings: an image surface with a model edge,
for instance.

Merging positions

In general, models consist of more than just a single
feature. A surface model, for instance, might consist
of several curve features to represent its boundary and
vectors for its principle axes of curvature. If some or
all of these features have been identified and have pro-
duced constraints on the position of the surface, then
there must be some way of verifying consistency and
merging the separate estimates.

Consequently, an operation MERGE is needed that
will operate on sets of positions and returning positions.
If #(Position) is the power set of Position (the set of
all possible subsets of Position) then

MERGE: #(Position) + Position u {undefined,
inconsistent}

for all m,,m, E Model, S E #(Position):
if (for all q E S: FRAME(q) = m, and

PLACED(q) = m2)
let p = MERGE(S) then if p ! =
inconsistent

FRAME(p) = m,
PLACED(p) = m,;

else
MERGE(S) = undefined

The result is only defined when all the input positions
have the same coordinate frame and refer to the same
object. In addition, another special device - the incon-
sistent object - is used to signal that the positions in
S are contradictory and that a single estimate cannot
be derived from them.

Transforming position constraints

Suppose the position of an object A relative to another
object B is known, because they are parts of the same
larger model assembly, because we have a priori know-
ledge about their relationship (e.g. the position of the
camera in the world) or because of a relationship
between their features in the image (e.g. ‘face 1 of A
is against face 2 of B’). Consider two different problems.
First, if the position of A in the frame of some other
object C is known, what is the position B in this frame.
Second, if instead the position of C in A’s frame is
known, what is the position of C in B’s frame. These
problems require the operations TRANSFORM and IN-
VERSE, which obey the following rules in relation to
the operators FRAME and PLACED.

TRANSFORM: Position, Position + Position u
{undefined}

INVERSE: Position + Position
for all p, q E Position

let t = TRANSFORM@, q)
then if PLACED(p) = FRAME(q)

FRAME(r) = FRAME@)
PLACED(t) = PLACED(q)

else
t = undefined

for all p E Position
let q = INVERSE(p) then

FRAME(q) = PLACED@)
PLACED(q) = FRAME(p)

Now if we represent by X/Y a position whose FRAME
is X and whose PLACED object is Y, the two problems
can be written as

First problem: know A/B and C/A, want C/B:
C/B = TRANSFORM(C/A, A/B)

Second problem: know A/B and A/C, want C/B:
B/C = TRANSFORM(INVERSE(A/B), A/C)

Image prediction

Subsumed under the heading ‘image prediction’ are a
number of operations, ranging from the simple to the
complex, and differing by what is being predicted.
Simple predictions include feature properties (the normal
at a particular point on a particular surface, for instance)
and visibility (whether something can be seen). The most
complicated prediction would be the whole image, pixel
by pixel. Since we are concerned only with geometry,
and not reflectance, light intensity would not need to
form part of this prediction, but identity (i.e. pixel (XJ)
is due to feature 1 of model A etc.) and depth would.

The operation to be performed in any given prediction
task depends not only on the task but also on the nature
of the object whose image is to be predicted. For
example, to predict whether a plane surface is front
facing or not merely requires the calculation of its
surface normal projected along the line of sight, but
this operation would be insufficient if the surface were
curved. Of course, everything could be predicted by des-
cribing a synthesized image, just as the real image is
described, but it would seem sensible, for the sake of
efftciency, to take advantage of model features if they
can be used to carry out set tasks. Whatever route is
most efficient, they are all abstracted into the operation
PREDICT.

PREDICT: Model-feature, Position -+ Pred_feature

where Pred_feature is a separate data type from
Image-feature because it must incorporate variations
due to uncertain positions.

One approach to dealing with uncertainties is to
approximate an inexact position by an exact mean
position, thus transforming the problem into one of
traditional computer graphics and making image Pred_
features the same as Image-features. An alternative
is to partition an inexact position into several parts,
each of which can be averaged into an exact position,
thus producing a range of predictions.

~015 no 3 august 1987 235

Finally, the use of the operators that have been intro-
duced will now be illustrated. Suppose the vision system
and the geometric reasoner together have hypothesized
and located an object based on some subset of its con-
stituent surfaces. Using the estimated position of the
object, a position for any of its surfaces can be obtained
through the TRANSFORM operator and the known
relationship of object to surface as specified in the model.
Suppose that one of the object’s surfaces that has not
yet been found, but which has an estimated position,
is PREDICTed to be visible. The vision system then
conducts a search for this image feature. If it cannot
be found, then some explanation for its absence (e.g.
occlusion) is required if the object hypothesis is to stand
up. If it is found, the LOCATE operator can estimate
its position, which is then TRANSFORMed back into
one for the object. The hypothesis is falsified if this
new position does not MERGE successfully with the
original estimate.

IMPLEMENTATION REVIEW

Part of the motivation for an abstract specification of
geometric reasoning is to make explicit the important
implementation decisions. On the one hand, there may
not be easy solutions to some of the problems posed
in the specification. On the other, it might be possible
to relax the requirements of the specification so as to
permit a particular implementation solution but still
retain an acceptable level of competence. Each practical
system is made interesting by its own particular set of
compromises between what is desired and what can be
achieved.

Below some existing geometric reasoners are reviewed
in the light of the above discussion.

Imagine

Imagine’ is a vision system which uses 3D image data
and uses models and image descriptions based on surface
primitives. These surface patches are bits of planes,
cylinders and ellipsoids with boundaries defined by, in
the case of the models, a linked list of curves, and in
the case of the data, a linked list of 3D points, one
point for each pixel on the boundary. Both model and
data surfaces have central points with known surface
normals.

Imagine has two parallel position representations. One
representation is by homogeneous matrices with
numerical elements. This has the advantage that the
TRANSFORM function can be implemented by matrix
multiplication but the disadvantage that only exact
positions can be represented. The second representation
is by rectangular parameter volume (upper and lower
numerical bounds on each Cartesian parameter). This
has the advantage that the MERGE operation can be
implemented by intersecting parameter bounds.

The matrix form is used to represent the mean of
any inexact position and is employed whenever it is
required to transform a point, vector or position. Other-
wise, the parameter constraint form is used, which can
incorporate flexible attachment in the models by allow-
ing a parameter to be unbounded.

The TRANSFORM function is implemented for the
case in which at least one of its position arguments
is exact. If both arguments are exact, then the transfor-
mation is easily computed by matrix composition. If
one argument is a parameter constraint then each para-
meter range is partitioned into subsets, each of which
is characterized by a mean point. The mean points are
used to define a set of points in 6D parameter space,
which span the rectangular space defined by the para-
meter constraints. Each of these points represents an
exact position and can be transformed by matrix com-
position. The position returned from TRANSFORM,
a parameter constraint, is the smallest rectangle that
bounds the set of transformed points.

For estimating positions of surface hypotheses, two
separate groups of surface features are used to generate
two estimates, which are merged. The first group consists
of the boundary plus the translational position of, and
the surface normal at, the central point. The model posi-
tion is a composition of matrix transformations found
by first translating the model surface, so that the central
points are coincident, then rotating the model surface
about its central point, so that the surface normals are
coincident, and finally rotating it about its normal to
find the maximum correlation (in terms of cross section
width in a plane perpendicular to the normal) between
the two boundaries. If more than one peak is found
in the correlation (as would be the case for surface shapes
which have mirror symmetry) then the hypothesis splits
into several with different position estimates.

The second set of surface features consists of the
vector directions of the major and minor axis of curva-
ture which are used to estimate orientation only. Given
two distinct vectors in the data and two matched vectors
in the model, there is an analytical solution for the orien-
tation which transforms the model pair into the data
pair, provided the angle separating the vectors is the
same in both pairs. This condition is rarely met because
of small errors in the calculation of the data curvature
axis, but taking the cross products of each pair provides
two sets of matched pairs, each pair being exactly 90
apart. The estimates from the two sets are averaged
to form the final estimate.

Only surface primitives at the roots of the hierarchi-
cally structured models achieve raw position estimates.
Assemblies of surfaces or assemblies of assemblies have
to rely on merged position estimates from visible
subcomponents.

Acronym

Acronym3 is a vision system which uses 2D data and
3D model primitives. Object models are based on genera-
lized cylinders which are volumetric primitives. The low-
level image descriptions produce such measurements as
the length of a cylinder or the major-to-minor axis ratio
of its end.

Positions are represented by variables, one for each
of the six degrees of freedom. Restrictions on positions
are formed by relating expressions in the variables to
quantities measured from the image (e.g. cylinder
length). Suppose a feature of some hypothesis is charac-
terized by a scalar quantity d for which there is a known
expression, Av), in the vector v of coordinate variables.

236 image and vision computing

If the descriptive processes provide upper (d,) and lower
(d,) bounds on d, then the inequalities

f(v) < 4
.ftv) ’ 4

can be added to the restriction set for that hypothesis.
Acronym has a constraint manipulation system

(CMS) for processing restriction sets symbolically.
Although the actual CMS implemented for Acronym
has a weaker set of requirements, ideally it should be
able to

l decide if a restriction set is satisfiable (i.e. Can substi-
tutions be found for each quantifier such that all
the inequalities in the set are satisfied?)

l bound any expression in the quantifiers over the set
of satisfying substitutions

l calculate the unioning of two restriction sets

The operations MERGE, TRANSFORM and PREDICT
described above are achieved by, respectively, unioning
restriction sets, simplifying symbolic compositions of
positions and bounding expressions in variables.

Image analysis proceeds in a series of cycles between
prediction and interpretation. Image features are pre-
dicted from hypotheses on the basis of their current
restriction sets. The predictions are used to guide low-
level image description processes, which return noisy
feature measurements of quantities for which expressions
in the relevant variables are known. Restrictions on the
value of these expressions implied by the new measure-
ments are then added to the old restrictions and lead
to more refined predictions for the next cycle, and so
on.

RAPT

RAP? is an off-line programming language for planning
robot assembly tasks. Embedded in RAPT is a geometric
reasoner which takes assertions about the relative posi-
tions of bodies from the programming language and
infers their Cartesian positions. In the programming
language, relations are stated rather as a human might
state them, e.g. face 1 of body A is against face 2 of
body B. Internally, however, a relation is represented
by a symbolic composition of translations and rotations,
which may involve variables to represent the uncon-
strained degrees of freedom. A graph is formed of which
the nodes are the bodies in the assembly task and the
arcs are the relations between the bodies. If at least
two independent paths can be found between two nodes,
then there is an equation that relates two or more
independent expressions for the body’s position, and
some or all of the variables (degrees of freedom) can
be eliminated.

If RAPT style reasoning were incorporated into a vision
system, relations between bodies stated in the robot
assembly language would be replaced by relations
between image features and the camera geometry (e.g.
the hypothesis that a particular model edge lies in the
plane defined by an image line and the focal point of
the cameras). There are two main difficulties in using
RAPT in a vision context

l Since the bodies in a RAFT world are perfectly
constructed, and since all relations are precise (analy-
tical), there is no mechanism for incorporating noisy
image measurements.

l Relations that involve inequalities are not repre-
sented. For example, the ‘against’ relation between
plane faces means that the faces are coplanar and
facing in opposite directions but not that they also
overlap to some extent.

MERGE by least squares

According to Faugeras and Herbert6 models and images
have features but are unstructured. The features (model
and image) are plane surface patches characterized by
the surface normal and the distance from the origin.
The problem is to find the transformation that best maps
the model features into the image features. It is inter-
preted as a least-squares problem and elegantly solved
by reducing it to the problem of finding the eigenvalues
of a symmetrical 3 X 3 matrix.

Stochastic geometry

An alternative way of treating uncertain positions,
reported by Durrant-Whyte7, has come out of work in
stochastic geometrya. Durrant-Whyte tackles the
problem of applying (exact) coordinate transformations
to uncertain positions. Uncertainty is represented by a
probability distribution in parameter space, and its func-
tional form is chosen to be Gaussian because the trans-
formation of a Gaussian distribution is also a Gaussian
(although only to an approximation). Thus, all that is
needed to specify an uncertain position are the mean
parameter values and a variance-covariance matrix; its
transformation can be achieved by multiplications
involving the matrix representing the (exact) relation
between the two coordinate frames.

Durrant-Whyte’s method is not a full implementation
of the TRANSFORM function since its first argument
must be an exact position. It would be beneficial if his
method could be extended so that it could deal with
uncertainty in the transformation as well as in the
position.

SUMMARY

Geometric reasoning for robot vision has been divided
into three conceptual levels. The first concerns the
appropriate tasks for a geometric reasoner within the
larger context of a vision program. Two important tasks
have been identified: position estimation and image
prediction.

The second level deals with the abstract data types
and operations required to carry out the tasks identified.
The basic data type required is for position (translation
and rotation) and must be able to represent uncertainty
(small errors) and partial information (degrees of free-
dom). The operator that creates the position data type

vol5no3august1987 237

(‘LOCATE’ above) is an abstraction of the process by
which a pairing between a model feature and a data
feature generates a position constraint on the model.

The important operations on position are: MERGE,
when several positions all referring to the same object
in the same frame must be combined into one; TRANS-
FORM, which alters either the frame or object referred
to by a position; and PREDICT, which takes the posi-
tion and definition of a model feature and generates
its image.

Finally, the third level of geometric reasoning is the
implementation. Some practical examples have been
considered, including Imagine’ and Acronym3. Current
plans for Imagine II involve the implementation of an
Acronym-style constraint manipulation system. In the
previous, numerically based approach, constraints had
to be represented by rectangular volumes in 6D para-
meter space. Replacing this by an implementation based
on symbolic expressions will enable one to represent
a much larger class of constraints and corresponding
volumes in parameter space. In addition, a better frame-
work will be achieved for incorporating object variability
(in both scale and attachment) because constraints on
model and position parameters have exactly the same
form. A further discussion will be given in a forthcoming
paper’.

REFERENCES

1 Guttag, J V, Horowitz, E and Musser, D R ‘The design
of data type specifications’ in Yeh, R (ea.) Current
trends in programming methodology IV Prentice-Hall,
Englewood Cliffs, NJ, USA (1978)

2 Fisher, R B ‘From surfaces to objects’ PhD thesis
University of Edinburgh, UK (1986)

3 Brooks, R A ‘Symbolic reasoning among 3D models
and 2D images’ Artif. Zntell. Vol 17 (1981) p 285

4 Popplestone, R I, Ambler, A P and Bellos, I M ‘An
interpreter for a language describing assemblies’ Artif.
Zntell. Vol 14 (1980) p 79

5 Yin, B ‘A framework for handling vision in an object
level robot language’ Proc. ZJCAZ (1983)

6 Faugeras, 0 D and Hebert, H ‘A 3D recognition and
positioning algorithm using geometrical matching
between primitive surfaces’ Proc. ZJCAZ (1983)

7 Durrant-Whyte, H F ‘Concerning uncertain geometry
in robotics’ Conf. Geometric Reasoning, Oxford, UK
(July 1986)

8 Harding, E F and Kendall, D G Stochastic geometry
Wiley, UK (1974)

9 Fisher, R B and Orr, M J L ‘Network based geometric
reasoning’ to be presented at Alvey Vision Conf.,
Cambridge, UK (1987)

238 image and vision computing

