
Geometric reasoning for 
computer vision 

M J L Orr and R B Fisher 

Some general principles are formulated about geometric 
reasoning in the context of model-based computer vision. 
Such reasoning tries to draw inferences about the spatial 
relationships between objects in a scene based on the 
fragmentary and uncertain geometric evidence provided 
by an image. The paper discusses the tasks the reasoner 
is to perform for the vision program, the basic competences 
it requires and the various methods of implementation. 
In the section on basic competences, some speciJications 
of the data types and operations needed in any geometric 
reasoner are given. 
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The ability to reason about the geometry of a scene 
is an essential aspect of any sophisticated vision system. 
In this paper, geometric reasoning is divided into three 
levels: tasks, operations and implementation. The first 
level deals with the various tasks that seem appropriate 
for a vision system to delegate to a geometric reasoning 
package. The second level involves the ideal data types 
and operations required to carry out these tasks, and 
the third concerns implementation. As will be shown, 
it is easier to formulate the required operations than 
to find perfect implementations. Below are informal 
definitions of models and images, two of the basic data 
types with which we are concerned. 

MODELS 

It is assumed that object models are built up from primi- 
tive geometric features (such as points, curves, surfaces 
and volumes) placed in a coordinate frame belonging 
to the model. It is further assumed that models are struc- 
tured hierarchically, that is, complex models are built 
out of simpler ones by specifying the placing of the 
subcomponents in a frame pertaining to the aggregate. 
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IMAGES 

The key point about images is that they should contain 
entities that can correspond with the entities in the 
models at all levels: features, clusters of features (simple 
models) and clusters of clusters of features (complex 
models). How image segmentation is achieved or how 
model-to-image matches are hypothesized is not of con- 
cern here. We are also unconcerned whether images are 
2D or 24D: although the latter contain more informa- 
tion, the principles of geometric reasoning are the same 
for both. 

TASKS 

The geometric reasoning component of a vision system 
is characterized by the tasks that it is expected to carry 
out. This is the first level in the concept of a geometric 
reasoner. Exactly which tasks come under the heading 
of geometric reasoning is debatable, but some stand out 
as obvious candidates. Included in these are establishing 
position estimates and image prediction. 

Establishing position estimates 

Every identified feature in an image can be used to form 
position constraints, first because it is visible, and second 
because it has measurable properties (location, shape, 
dimensions, etc.). Take, for example, the identification 
of a point in the image with a point belonging to some 
object model. This hypothesis constrains the translation 
of the object in relation to the line of sight, and some 
orientations of the object are excluded because the point 
would be obscured from view. 

Having established a set of constraints on the position 
of a model from its individual features, the next step 
is to combine them into a single position estimate. The 
detection of inconsistent constraints is important here 
to eliminate false hypotheses (for example, due to 
erroneous feature identifications). If a consistent 
estimate can be found, it may contain degrees of freedom 
(especially if there is any rotational symmetry), or there 
may be more than one estimate (mirror symmetry). 
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In a similar way, position estimates for subcompo- 
nents have to be aggregated into an estimate for the 
parent object, but with one important difference. Since 
the subcomponent estimates refer to the placement of 
the subcomponents and not (as for features) to the place- 
ment of the parent, the subcomponent estimates must 
first be transformed, using their known positions relative 
to the parent, into estimates for the parent object. 

If the modelled relation between parts of the same 
object involve degrees of freedom (the various sections 
of a robot arm, for instance), then the vision system 
must be able to use the image information to bind vari- 
ables expressing this freedom to appropriate estimates. 
This task also requires the ability to transform positions. 

Image prediction 

Having established a position estimate for an object, 
the next step is to predict the appearance and location 
of its features. This allows a critical comparison between 
the predicted and observed features and affords a basis 
for reasoning about occlusion effects. Additionally, 
image prediction can be used to search for features not 
already found in the image and subsequently to reline 
the position estimate of the object on the basis of any 
new information obtained. As an example, suppose an 
estimate of the position of a bicycle is obtained from 
the positions of two coplanar wheels at the correct dis- 
tance apart, and is then used to predict the location 
and appearance of the saddle and handlebars. Using 
this prediction, the image is then searched for these sub- 
components, with the following questions in mind. If 
found, are they where they should be and can they be 
used to refine the position already obtained from the 
wheels? If not found, can their absence be explained? 

Two points need mentioning here, which complicate 
matters. First, predicted features are not necessarily 
pixel-type entities. Although observed features are, by 
definition, derived from pixel-based information, they 
are also normally described in terms of more symbolic 
entities, such as points, lines, surfaces, etc. Image pre- 
diction can involve the generation of either or both types 
of descriptions. Second, real images are formed from 
objects that have exact positions in the world, but pre- 
dicted images involve objects with positions that are 
known only approximately and must reflect this by 
representing both continuous (e.g. parameter value) and 
discrete (e.g. feature appearance) variations. 

BASIC REQUIREMENTS 

flexible attachments, we need to be able to represent 
positions with degrees of freedom; and, second, because 
a certain amount of uncertainty is present in image 
measurements, we also wish to represent positions that 
are uncertain. 

Positions are also transformations, i.e. rules for trans- 
forming points, vectors and other positions from one 
coordinate frame to another. By acknowledging free 
variation and uncertainty, the notion of position is 
extended from a point to a region of 6D parameter 
space. Positional transformations are then no longer 
one-to-one mappings, but one-to-many or many-to- 
many. Thus, if we have uncertain positions we need 
to be able to deal with uncertain points and uncertain 
vectors. 

In what follows, some simple data type specifications’ 
will be given, using the operators FRAME and 
PLACED. Both operate on members of the set Position 
and return members of the set Model. The latter includes 
the special models World and Camera, so that we can 
have world-centred and viewer-centred coordinate 
systems as well as relative positions between models. 
Thus, the functionality of FRAME and PLACED are 
written as 

FRAME: Position + Model 
PLACED: Position + Model 

FRAME returns the model whose frame is the reference 
frame of a position, and PLACED yields the model 
placed by a position. 

Both FRAME and PLACED are termed ‘observer’ 
functions because they reveal a single aspect of a multi- 
faceted object. Other observer functions would reveal 
information about particular position parameters and 
would map to pairs of real numbers (to denote a per- 
mitted range) or to expressions relating parameters (if 
the position contains any degrees of freedom). Some 
‘constructor’ functions will be introduced below, which 
generate instances of the Position data type from other 
types or from other positions. 

As an illustration of the notation being used, the 
common operation of dividing two real numbers would 
be specified as follows: 

DIVIDE: Real, Real + Real u {undefined} 

This statement should be read as: DIVIDE operates on 
two arguments, both from the set ‘Real’ (real numbers), 
and returns a member of the set ‘Real’ augmented by 
the undefined object (LJ stands for set union). The unde- 
fined object is a useful device to cater for inappropriate 
arguments - in the case of DIVIDE, a divisor that 
is zero. 

Estimating positions from features 

We now come to the second level of description of the 
geometric reasoner -the abstract data types and opera- 
tions required to carry out the tasks outlined above. 

Positions 
Each pairing of a model to a data feature produces 
constraints on the position of the model to which the 

The first and most obvious requirement is a data type 
for representing positions. Positions are traditionally 
represented by six independent quantities, three transla- 
tional and three rotational. Unfortunately, this represen- 
tation is not adequate for our purposes, for two reasons. 
First, because we want to model objects that have 

feature belongs. We then have an operation, LOCATE, 
the inputs of which are the model and image features: 

LOCATE: Image-Feature, Model-Feature 
+ Position u {undefined} 

for all x E Image-Feature andf, E Model_ Feature: 
let p = LOCATEg, f,) then if p ! = undefined 
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FRAME(p) = Camera 
PLACED(p) = m 

(where m is the model to whichf, belongs). 

The last statement (beginning ‘for all. . .‘) states a rule 
about the outcome of applying this operator, viz. that 
if the result, p, is not the undefined object but a position, 
then its frame is the camera (or viewing frame) and 
it places the model to which the feature belongs. The 
undefined result arises from inappropriate image-model 
feature pairings: an image surface with a model edge, 
for instance. 

Merging positions 

In general, models consist of more than just a single 
feature. A surface model, for instance, might consist 
of several curve features to represent its boundary and 
vectors for its principle axes of curvature. If some or 
all of these features have been identified and have pro- 
duced constraints on the position of the surface, then 
there must be some way of verifying consistency and 
merging the separate estimates. 

Consequently, an operation MERGE is needed that 
will operate on sets of positions and returning positions. 
If #(Position) is the power set of Position (the set of 
all possible subsets of Position) then 

MERGE: #(Position) + Position u {undefined, 
inconsistent} 

for all m,,m, E Model, S E #(Position): 
if (for all q E S: FRAME(q) = m, and 

PLACED(q) = m2) 
let p = MERGE(S) then if p ! = 
inconsistent 

FRAME(p) = m, 
PLACED(p) = m,; 

else 
MERGE(S) = undefined 

The result is only defined when all the input positions 
have the same coordinate frame and refer to the same 
object. In addition, another special device - the incon- 
sistent object - is used to signal that the positions in 
S are contradictory and that a single estimate cannot 
be derived from them. 

Transforming position constraints 

Suppose the position of an object A relative to another 
object B is known, because they are parts of the same 
larger model assembly, because we have a priori know- 
ledge about their relationship (e.g. the position of the 
camera in the world) or because of a relationship 
between their features in the image (e.g. ‘face 1 of A 
is against face 2 of B’). Consider two different problems. 
First, if the position of A in the frame of some other 
object C is known, what is the position B in this frame. 
Second, if instead the position of C in A’s frame is 
known, what is the position of C in B’s frame. These 
problems require the operations TRANSFORM and IN- 
VERSE, which obey the following rules in relation to 
the operators FRAME and PLACED. 

TRANSFORM: Position, Position + Position u 
{undefined} 

INVERSE: Position + Position 
for all p, q E Position 

let t = TRANSFORM@, q) 
then if PLACED(p) = FRAME(q) 

FRAME(r) = FRAME@) 
PLACED(t) = PLACED(q) 

else 
t = undefined 

for all p E Position 
let q = INVERSE(p) then 

FRAME(q) = PLACED@) 
PLACED(q) = FRAME(p) 

Now if we represent by X/Y a position whose FRAME 
is X and whose PLACED object is Y, the two problems 
can be written as 

First problem: know A/B and C/A, want C/B: 
C/B = TRANSFORM(C/A, A/B) 

Second problem: know A/B and A/C, want C/B: 
B/C = TRANSFORM(INVERSE(A/B), A/C) 

Image prediction 

Subsumed under the heading ‘image prediction’ are a 
number of operations, ranging from the simple to the 
complex, and differing by what is being predicted. 
Simple predictions include feature properties (the normal 
at a particular point on a particular surface, for instance) 
and visibility (whether something can be seen). The most 
complicated prediction would be the whole image, pixel 
by pixel. Since we are concerned only with geometry, 
and not reflectance, light intensity would not need to 
form part of this prediction, but identity (i.e. pixel (XJ) 
is due to feature 1 of model A etc.) and depth would. 

The operation to be performed in any given prediction 
task depends not only on the task but also on the nature 
of the object whose image is to be predicted. For 
example, to predict whether a plane surface is front 
facing or not merely requires the calculation of its 
surface normal projected along the line of sight, but 
this operation would be insufficient if the surface were 
curved. Of course, everything could be predicted by des- 
cribing a synthesized image, just as the real image is 
described, but it would seem sensible, for the sake of 
efftciency, to take advantage of model features if they 
can be used to carry out set tasks. Whatever route is 
most efficient, they are all abstracted into the operation 
PREDICT. 

PREDICT: Model-feature, Position -+ Pred_feature 

where Pred_feature is a separate data type from 
Image-feature because it must incorporate variations 
due to uncertain positions. 

One approach to dealing with uncertainties is to 
approximate an inexact position by an exact mean 
position, thus transforming the problem into one of 
traditional computer graphics and making image Pred_ 
features the same as Image-features. An alternative 
is to partition an inexact position into several parts, 
each of which can be averaged into an exact position, 
thus producing a range of predictions. 
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Finally, the use of the operators that have been intro- 
duced will now be illustrated. Suppose the vision system 
and the geometric reasoner together have hypothesized 
and located an object based on some subset of its con- 
stituent surfaces. Using the estimated position of the 
object, a position for any of its surfaces can be obtained 
through the TRANSFORM operator and the known 
relationship of object to surface as specified in the model. 
Suppose that one of the object’s surfaces that has not 
yet been found, but which has an estimated position, 
is PREDICTed to be visible. The vision system then 
conducts a search for this image feature. If it cannot 
be found, then some explanation for its absence (e.g. 
occlusion) is required if the object hypothesis is to stand 
up. If it is found, the LOCATE operator can estimate 
its position, which is then TRANSFORMed back into 
one for the object. The hypothesis is falsified if this 
new position does not MERGE successfully with the 
original estimate. 

IMPLEMENTATION REVIEW 

Part of the motivation for an abstract specification of 
geometric reasoning is to make explicit the important 
implementation decisions. On the one hand, there may 
not be easy solutions to some of the problems posed 
in the specification. On the other, it might be possible 
to relax the requirements of the specification so as to 
permit a particular implementation solution but still 
retain an acceptable level of competence. Each practical 
system is made interesting by its own particular set of 
compromises between what is desired and what can be 
achieved. 

Below some existing geometric reasoners are reviewed 
in the light of the above discussion. 

Imagine 

Imagine’ is a vision system which uses 3D image data 
and uses models and image descriptions based on surface 
primitives. These surface patches are bits of planes, 
cylinders and ellipsoids with boundaries defined by, in 
the case of the models, a linked list of curves, and in 
the case of the data, a linked list of 3D points, one 
point for each pixel on the boundary. Both model and 
data surfaces have central points with known surface 
normals. 

Imagine has two parallel position representations. One 
representation is by homogeneous matrices with 
numerical elements. This has the advantage that the 
TRANSFORM function can be implemented by matrix 
multiplication but the disadvantage that only exact 
positions can be represented. The second representation 
is by rectangular parameter volume (upper and lower 
numerical bounds on each Cartesian parameter). This 
has the advantage that the MERGE operation can be 
implemented by intersecting parameter bounds. 

The matrix form is used to represent the mean of 
any inexact position and is employed whenever it is 
required to transform a point, vector or position. Other- 
wise, the parameter constraint form is used, which can 
incorporate flexible attachment in the models by allow- 
ing a parameter to be unbounded. 

The TRANSFORM function is implemented for the 
case in which at least one of its position arguments 
is exact. If both arguments are exact, then the transfor- 
mation is easily computed by matrix composition. If 
one argument is a parameter constraint then each para- 
meter range is partitioned into subsets, each of which 
is characterized by a mean point. The mean points are 
used to define a set of points in 6D parameter space, 
which span the rectangular space defined by the para- 
meter constraints. Each of these points represents an 
exact position and can be transformed by matrix com- 
position. The position returned from TRANSFORM, 
a parameter constraint, is the smallest rectangle that 
bounds the set of transformed points. 

For estimating positions of surface hypotheses, two 
separate groups of surface features are used to generate 
two estimates, which are merged. The first group consists 
of the boundary plus the translational position of, and 
the surface normal at, the central point. The model posi- 
tion is a composition of matrix transformations found 
by first translating the model surface, so that the central 
points are coincident, then rotating the model surface 
about its central point, so that the surface normals are 
coincident, and finally rotating it about its normal to 
find the maximum correlation (in terms of cross section 
width in a plane perpendicular to the normal) between 
the two boundaries. If more than one peak is found 
in the correlation (as would be the case for surface shapes 
which have mirror symmetry) then the hypothesis splits 
into several with different position estimates. 

The second set of surface features consists of the 
vector directions of the major and minor axis of curva- 
ture which are used to estimate orientation only. Given 
two distinct vectors in the data and two matched vectors 
in the model, there is an analytical solution for the orien- 
tation which transforms the model pair into the data 
pair, provided the angle separating the vectors is the 
same in both pairs. This condition is rarely met because 
of small errors in the calculation of the data curvature 
axis, but taking the cross products of each pair provides 
two sets of matched pairs, each pair being exactly 90 
apart. The estimates from the two sets are averaged 
to form the final estimate. 

Only surface primitives at the roots of the hierarchi- 
cally structured models achieve raw position estimates. 
Assemblies of surfaces or assemblies of assemblies have 
to rely on merged position estimates from visible 
subcomponents. 

Acronym 

Acronym3 is a vision system which uses 2D data and 
3D model primitives. Object models are based on genera- 
lized cylinders which are volumetric primitives. The low- 
level image descriptions produce such measurements as 
the length of a cylinder or the major-to-minor axis ratio 
of its end. 

Positions are represented by variables, one for each 
of the six degrees of freedom. Restrictions on positions 
are formed by relating expressions in the variables to 
quantities measured from the image (e.g. cylinder 
length). Suppose a feature of some hypothesis is charac- 
terized by a scalar quantity d for which there is a known 
expression, Av), in the vector v of coordinate variables. 
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If the descriptive processes provide upper (d,) and lower 
(d,) bounds on d, then the inequalities 

f(v) < 4 
.ftv) ’ 4 

can be added to the restriction set for that hypothesis. 
Acronym has a constraint manipulation system 

(CMS) for processing restriction sets symbolically. 
Although the actual CMS implemented for Acronym 
has a weaker set of requirements, ideally it should be 
able to 

l decide if a restriction set is satisfiable (i.e. Can substi- 
tutions be found for each quantifier such that all 
the inequalities in the set are satisfied?) 

l bound any expression in the quantifiers over the set 
of satisfying substitutions 

l calculate the unioning of two restriction sets 

The operations MERGE, TRANSFORM and PREDICT 
described above are achieved by, respectively, unioning 
restriction sets, simplifying symbolic compositions of 
positions and bounding expressions in variables. 

Image analysis proceeds in a series of cycles between 
prediction and interpretation. Image features are pre- 
dicted from hypotheses on the basis of their current 
restriction sets. The predictions are used to guide low- 
level image description processes, which return noisy 
feature measurements of quantities for which expressions 
in the relevant variables are known. Restrictions on the 
value of these expressions implied by the new measure- 
ments are then added to the old restrictions and lead 
to more refined predictions for the next cycle, and so 
on. 

RAPT 

RAP? is an off-line programming language for planning 
robot assembly tasks. Embedded in RAPT is a geometric 
reasoner which takes assertions about the relative posi- 
tions of bodies from the programming language and 
infers their Cartesian positions. In the programming 
language, relations are stated rather as a human might 
state them, e.g. face 1 of body A is against face 2 of 
body B. Internally, however, a relation is represented 
by a symbolic composition of translations and rotations, 
which may involve variables to represent the uncon- 
strained degrees of freedom. A graph is formed of which 
the nodes are the bodies in the assembly task and the 
arcs are the relations between the bodies. If at least 
two independent paths can be found between two nodes, 
then there is an equation that relates two or more 
independent expressions for the body’s position, and 
some or all of the variables (degrees of freedom) can 
be eliminated. 

If RAPT style reasoning were incorporated into a vision 
system, relations between bodies stated in the robot 
assembly language would be replaced by relations 
between image features and the camera geometry (e.g. 
the hypothesis that a particular model edge lies in the 
plane defined by an image line and the focal point of 
the cameras). There are two main difficulties in using 
RAPT in a vision context 

l Since the bodies in a RAFT world are perfectly 
constructed, and since all relations are precise (analy- 
tical), there is no mechanism for incorporating noisy 
image measurements. 

l Relations that involve inequalities are not repre- 
sented. For example, the ‘against’ relation between 
plane faces means that the faces are coplanar and 
facing in opposite directions but not that they also 
overlap to some extent. 

MERGE by least squares 

According to Faugeras and Herbert6 models and images 
have features but are unstructured. The features (model 
and image) are plane surface patches characterized by 
the surface normal and the distance from the origin. 
The problem is to find the transformation that best maps 
the model features into the image features. It is inter- 
preted as a least-squares problem and elegantly solved 
by reducing it to the problem of finding the eigenvalues 
of a symmetrical 3 X 3 matrix. 

Stochastic geometry 

An alternative way of treating uncertain positions, 
reported by Durrant-Whyte7, has come out of work in 
stochastic geometrya. Durrant-Whyte tackles the 
problem of applying (exact) coordinate transformations 
to uncertain positions. Uncertainty is represented by a 
probability distribution in parameter space, and its func- 
tional form is chosen to be Gaussian because the trans- 
formation of a Gaussian distribution is also a Gaussian 
(although only to an approximation). Thus, all that is 
needed to specify an uncertain position are the mean 
parameter values and a variance-covariance matrix; its 
transformation can be achieved by multiplications 
involving the matrix representing the (exact) relation 
between the two coordinate frames. 

Durrant-Whyte’s method is not a full implementation 
of the TRANSFORM function since its first argument 
must be an exact position. It would be beneficial if his 
method could be extended so that it could deal with 
uncertainty in the transformation as well as in the 
position. 

SUMMARY 

Geometric reasoning for robot vision has been divided 
into three conceptual levels. The first concerns the 
appropriate tasks for a geometric reasoner within the 
larger context of a vision program. Two important tasks 
have been identified: position estimation and image 
prediction. 

The second level deals with the abstract data types 
and operations required to carry out the tasks identified. 
The basic data type required is for position (translation 
and rotation) and must be able to represent uncertainty 
(small errors) and partial information (degrees of free- 
dom). The operator that creates the position data type 
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(‘LOCATE’ above) is an abstraction of the process by 
which a pairing between a model feature and a data 
feature generates a position constraint on the model. 

The important operations on position are: MERGE, 
when several positions all referring to the same object 
in the same frame must be combined into one; TRANS- 
FORM, which alters either the frame or object referred 
to by a position; and PREDICT, which takes the posi- 
tion and definition of a model feature and generates 
its image. 

Finally, the third level of geometric reasoning is the 
implementation. Some practical examples have been 
considered, including Imagine’ and Acronym3. Current 
plans for Imagine II involve the implementation of an 
Acronym-style constraint manipulation system. In the 
previous, numerically based approach, constraints had 
to be represented by rectangular volumes in 6D para- 
meter space. Replacing this by an implementation based 
on symbolic expressions will enable one to represent 
a much larger class of constraints and corresponding 
volumes in parameter space. In addition, a better frame- 
work will be achieved for incorporating object variability 
(in both scale and attachment) because constraints on 
model and position parameters have exactly the same 
form. A further discussion will be given in a forthcoming 
paper’. 
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