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Abstract This work proposes a novel workflow composition approach that
hinges upon ontologies and planning as its core technologies within an in-
tegrated framework. Video processing problems provide a fitting domain for
investigating the effectiveness of this integrated method as tackling such prob-
lems have not been fully explored by the workflow, planning and ontological
communities despite their combined beneficial traits to confront this known
hard problem. In addition, the pervasiveness of video data has proliferated the
need for more automated assistance for image processing-naive users, but no
adequate support has been provided as of yet.

The integrated approach was evaluated on a video set originating from open
sea environment of varying quality. Experiments to evaluate the efficiency,
adaptability to user’s changing needs and user learnability of this approach
were conducted on users who did not possess image processing expertise. The
findings indicate that using this integrated workflow composition and execu-
tion method: 1) provides a speed up of over 90% in execution time for video
classification tasks using full automatic processing compared to manual meth-
ods without loss of accuracy; 2) is more flexible and adaptable in response to
changes in user requests than modifying existing image processing programs
when the domain descriptions are altered; 3) assists the user in selecting opti-
mal solutions by providing recommended descriptions.
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1 Introduction

Traditional workflow systems have several drawbacks, e.g. in their inabilities
to rapidly react to changes, to construct workflow automatically (or with user
involvement) and to improve performance autonomously (or with user involve-
ment) in an incremental manner according to specified goals. Overcoming these
limitations would be highly beneficial for complex domains where such adver-
sities are exhibited. Video processing is one such domain that increasingly re-
quires attention as larger amounts of images and videos are becoming available
to those who are not technically adept in modelling the processes that are in-
volved in constructing complex video processing workflows. The requirements
to address the problem of automated video analyses for non-expert users in-
clude i) process automation; ii) rich process modelling; iii) performance-based
tool selection; and iv) adaptable to changing user needs.

Conventional video and image processing (VIP) systems, on the other hand,
are developed by image processing experts and are tailored to produce highly
specialised hand-crafted solutions for very specific tasks, making them rigid
and non-modular. Traditionally they produce single-executable systems that
work accurately on a specific set of data. The knowledge-based vision com-
munity have attempted to produce more modular solutions by incorporat-
ing ontologies. However, they have not been maximally utilised to encompass
aspects such as application context descriptions (e.g. lighting and clearness
effects) and qualitative measures.

This work aims to tackle some of the research gaps yet to be addressed by
the workflow and knowledge-based image processing communities by propos-
ing a novel workflow composition approach within an integrated framework.
This framework distinguishes three levels of abstraction via the design, work-
flow and processing layers. The core technologies that drive the workflow com-
position mechanism are ontologies and planning. Video processing problems
provide a fitting domain for investigating the effectiveness of this integrated
method as tackling such problems have not been fully explored by the work-
flow, planning and ontological communities despite their combined beneficial
traits to confront this known hard problem. In addition, the pervasiveness of
video data has proliferated the need for more automated assistance for image
processing-naive users, but no adequate support has been provided as of yet.

A set of modular ontologies was constructed to capture the goals, video
descriptions and capabilities (video processing tools). They are used in con-
junction with a domain independent planner to help with performance-based
selection of solution steps based on preconditions, effects and postconditions.

Two key innovations of the planner are the ability to support workflow
execution (by interleaving planning with execution) and can perform in auto-
matic or semi-automatic (interactive) mode. In the interactive mode, the user
is involved in tool selection based on the recommended descriptions provided
by the workflow system via the ontology. Once planning is complete, the result
of applying the tool of their choice is presented to the user visually for verifica-
tion. This plays a pivotal role in providing the user with control and the ability
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to make informed decisions. Video processing problems can also be solved in
more modular, reusable and adaptable ways compared to conventional image
processing systems.

The integrated approach was evaluated on a test set consisting of videos
originating from open sea environment of varying quality. Experiments to eval-
uate the efficiency, adaptability to user’s changing needs and user learnability
of this approach were conducted on users who did not possess image processing
expertise. The findings indicate that using this integrated workflow composi-
tion and execution method: 1) provides a speed up of over 90% in execution
time for video classification tasks using full automatic processing compared
to manual methods without loss of accuracy; 2) is more flexible and adapt-
able in response to changes in user requests (be it in the task, constraints to
the task or descriptions of the video) than modifying existing image process-
ing programs when the domain descriptions are altered; 3) assists the user in
selecting optimal solutions by providing recommended descriptions.

Outline. Section 2 describes existing workflow composition initiatives and
highlights their shortfalls. The workflow composition framework is outlined
in Section 3, which introduces the workflow tool and its components. One of
the major component, the ontology will be detailed in Section 4. The second
core technology, the planning mechanism is explained in Section 5. Evalua-
tion of the overall approach and analysis are provided in Section 6. Future
directions for this research is concluded in Section 7.

2 Grid Workflow Systems

With the advent of distributed computing in the past two decades, workflows
have been deployed in distributed platforms. In a distributed context, such as
the Grid or e-Science [9] a workflow can be abstracted as a composite web
service, i.e. a service that is made up of other services that are orchestrated in
order to perform some higher level functionality. The goal of e-Science work-
flow systems is to provide a specialised programming environment to simplify
the programming effort required by scientists to orchestrate a computational
science experiment [31]. Therefore, Grid-enabled systems must facilitate the
composition of multiple resources, and provide mechanisms for creating and
enacting these resources in a distributed manner. This requires means for
composing complex workflows for execution, which has attracted consider-
able effort within the Grid workflow community.

Several major workflow systems were analysed in terms of workflow com-
position. Among them include Pegasus [7], a workflow management system
that aims to support large-scale data management in a variety of applications
such as astronomy, neuroscience, biology, gravitational wave-science and high-
energy physics, Triana [32,33], a problem solving and workflow programming
environment that has been used for text, speech and image processing tasks,
Taverna [27], an open source workflow engine that aims to provide a language
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and software tools to facilitate easy use of workflow and distributed compute
technology for biologists and bioinformaticians and Kepler [17], a workflow
project that consists of a set of Java packages supporting heterogeneous, con-
current modelling to design and execute scientific workflows. Workflow com-
position mechanisms and limitations of current efforts will be discussed in the
following subsections.

2.1 Workflow Composition Mechanisms

Studies on workflow systems have revealed four aspects of the workflow lifecy-
cle – composition, mapping (onto resources), execution and provenance cap-
ture [6]. This paper focuses on the composition and execution aspects of
the workflow lifecycle. Workflow composition can be textual, graphical or
semantics-based. Textual workflow editing requires the user to describe the
workflow in a particular workflow language such as BPEL [1], SCUFL [26],
DAGMan [29] and DAX [7]. This method can be extremely difficult or error-
prone even for users who are technically adept with the workflow language.
Graphical renderings of workflows such as those utilised by Triana, Kepler and
VisTrails [3] are easy for small sized workflows with fewer than a few dozen
tasks. However many e-Science and video processing workflows are more com-
plex. Some workflows have both textual and graphical composition abilities.
The CoG Kit’s Karajan [35] uses either a scripting language, GridAnt or a
simple graphical editor to create workflows.

Blythe et al. [2] have researched into a planning-based approach to work-
flow construction and of declarative representations of data shared between
several components in the Grid. This approach is extendable to be used in
a web services context. Workflows are generated semi-automatically with the
integration of the Chimera system [10]. In Pegasus [7], abstract workflows1

may be constructed with the assistance from a workflow editor, such as the
Composition Analysis Tool (CAT) [16] which critiques partial workflows com-
posed by users and offers suggestions to fix composition errors and to complete
the workflow templates. It assumes that the user may not have the explicit
descriptions of the desired goals at the beginning. It utilises classical plan-
ning to perform workflow verification. Wings [12] extends this by dealing with
the creation and validation of very large scientific workflows. However, CAT
requires the user to construct a workflow before interactively verifying it to
produce a final workflow. Our effort, in contrast, aims to construct the work-
flow interactively or automatically.

Splunter et al. [34] propose a fully automated agent-based mechanism for
web service composition and execution using an open matching architecture.
In a similar vein to these two approaches, our effort aims to provide semi-
automatic and automatic means for workflow composition, but does not deal
with the mapping of resources onto the workflow components.

1 Directed acyclic graphs (DAGs) composed of tasks and data dependencies between them.
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Three distinct stages are distinguished for workflow creation; the creation
of workflow templates, the creation of workflow instances and the creation of
executable workflows (done by Pegasus). Workflow templates specify complex
analyses sequences while workflow sequences specify data. Workflow templates
and instances are semantic objects that are represented in ontologies using
OWL-DL. While semantics-based workflow composition is the subject of cur-
rent research, most efforts have focused on either easing the task of large scale
workflows creation for computational workflows and for web services [6].

2.2 Limitations of Current Grid Workflow Solutions

The major workflow systems mentioned at the beginning of the section possess
some features that are worth investigating in order to assess their suitability
and limitations for the purposes of this study. In terms of composition itself,
Pegasus’s main strength is in mapping abstract workflows to their concrete
(executable) forms, which are then executed by a scheduler. It also provides
adaptivity through a partitioner that uses planning to produce partial exe-
cutable workflows. It does not, however, provide automatic composition of the
abstract workflows.

Triana, Taverna and Kepler contain similar elements; Triana’s tasks are
conceptually the same as Taverna’s processes and Kepler’s actors. The ap-
proach in Kepler is very similar to Triana in that the workflow is visually con-
structed from actors (Java components), which can either be local processes
or can invoke remote services such as Web services. In terms of applicability,
Pegasus would best suit a domain with well-defined requirements and where
the overall goal could be determined from a given set of rules and constraints.
Triana is well-suited for composing complex workflows for Web services and
Peer to Peer services. Taverna is also suitable to be used in Web and Grid
services contexts, but its use may be limited to composing simple workflows,
whereas Kepler works very well for composing workflows for complex tasks
but it has yet to reach its potential as a fully Grid-enhanced system. Kepler
is built upon Ptolemy II which is primarily aimed at modelling concurrent
systems. Furthermore, it is designed to be used by scientists which imposes
some level of expertise to the user.

While existing workflow systems have more recently incorporated ontolo-
gies, their use is still limited. The use of such technologies should not be
exclusively independent, rather they should be fully integrated into the sys-
tem. Existing systems do not provide full ontological handling nor integration,
instead they make use of separate ontology tools to define and manipulate
ontologies. The main limitations of existing workflow initiatives can be sum-
marised as follows:

– Limited or no automated support in constructing workflows, thus requiring
the user to possess domain expertise.

– Unable to improve performance autonomously (or with user involvement)
in an incremental manner according to specified goals.
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– Generally do not have full integration of ontologies that would allow for
more powerful representation and reasoning abilities.

Next, the framework constructed to overcome the limitations of existing
efforts, in particular to provide automatic workflow composition is described.

3 Hybrid Three-layered Workflow Composition Framework

A hybrid semantics-based workflow composition method within a three-layered
framework was devised and implemented (Fig. 1). It distinguishes three dif-
ferent levels of abstraction through the design, workflow and processing lay-
ers. Each layer contains several key components that interact with one an-
other and with components in other layers. This has been the backbone of the
(Semantics-based Workflows for Analysing Videos) (SWAV) tool [21].

Fig. 1 color online: Overview of hybrid workflow composition framework for video pro-
cessing. It provides three levels of abstraction through the design, workflow and processing
layers. The core technologies include ontologies and a planner, used in the SWAV tool.

The design layer contains components that describe the domain knowl-
edge and available video processing tools. These are represented using ontolo-
gies and a process library. A modeller is someone who is able to manipulate
the components of the design layer, for example populate the process library
and modify the ontologies. Typically the modeller has training in conceptual
modelling and has knowledge in the application domain, but not necessar-
ily. The components could also be updated automatically, as will be shown
in Section 5. Knowledge about image processing tools, user-defined goals and
domain description is organised qualitatively and defined declaratively in this
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layer, allowing for versatility, rich representation and semantic interpretation.
The ontologies which are used for this purpose will be described in Section 4.

The process library developed in the design layer of the workflow framework
contains the code for the image processing tools and methods available to
the system. These are known as the process models. The first attempt in
populating the process library involved identifying all primitive tasks for the
planner based on the finest level of granularity. A primitive task is one that
is not further decomposable and may be performed directly by one or more
image processing tools, for instance a function call to a module within an
image processing library, an arithmetic, logical or assignment operation. Each
primitive task may take in one or more input values and return one or more
output values. Additionally, the process library contains the decomposition
of non primitive tasks or methods. This will be explained in Section 5. The
complete list of independent executables can be found in [20].

The workflow layer is the main interface between the user and the sys-
tem. It also acts as an intermediary between the design and processing layers.
It ensures the smooth interaction between the components, access to and from
various resources such as raw data, image and video processing toolset, and
communication with the user. Its main reasoning component is an execution-
enhanced planner that is responsible for transforming the high level user re-
quests into low level video processing solutions. Detailed workings of the plan-
ner is contained in Section 5.

The workflow enactor plays the important role of choreographing the flow
of processing within the system. It should be noted that unlike the workflow
enactors covered in Section 2, the SWAV tool does not deal with resource
allocation and scheduling, rather, on the composition of specific operators and
the execution of the operators given their predetermined parameters. First it
reads in the user request in textual form (use selects from a list of options).
Next it consults the goal and video description ontologies to formulate the
input that is then fed to the planner. When the planner, with the assistance of
the process library and capability ontology, returns the final solution plan, the
enactor prompts the user for further action. The user has access to the final
result of the video processing task visually, and has the choice to 1) rerun the
same task on the same video but with modifications to the domain information;
2) rate the quality of the result; or 3) perform another task. The composed
workflow is saved in a script file that can be invoked off-line. By being able to
view the result of each solution with changes to the domain information, the
user can assess the quality of the solution produced. This feedback mechanism
could be used as a basis for improving the overall performance of the system
as verifying the quality of the video processing solutions automatically is not
a trivial task. The planning mechanism is described in Section 5.

The processing layer consists of a set of video and image processing tools
that can perform various image processing functions. The functions of these
tools are represented in the capability ontology in the design layer. Once a
tool has been selected by the planner, it is applied to the video directly. The
final result is passed back to the workflow layer for output and evaluation.
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The functions (primitive tasks) that they can perform are represented se-
mantically in the capability ontology, described in Section 4. A set of video
processing tools developed for this research is available at [20].

Several prototypes of the workflow interface were designed over time; ini-
tially it uses a textual interface to communicate with the user and more re-
cently the SWAV tool incorporates a graphical interface (Fig. 2).

Fig. 2 color online: The SWAV interface which allows user to select a video and a task (top
left panels) and adjust domain settings (right panel). Annotated results are displayed to the
user.

4 Video and Image Processing Ontology

Ontologies are used for capturing knowledge and semantics in a domain and
have been used widely in several major fields including medical, linguistics
and enterprise. Domain ontologies are often modelled in a collaborative effort
between domain and ontology experts to capture consensual knowledge that
is formed between the domain experts that can be shared and reused among
them. In the video processing field, ontologies are extremely suitable to many
problems that require prior knowledge to be modelled and utilised in both
a descriptive and prescriptive capacity since they encode the concepts and
relationships between the components in the world.

4.1 Modularisation

For the purposes of this research, a set of ontologies was required to model
the video and image processing (VIP) field so that it can be used for do-
main description and understanding, as well as inference. The ontology should
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describe the domain knowledge and support reasoning tasks, while being rea-
sonably independent from the system. The principles adopted for the ontology
construction included simplicity, conciseness and appropriate categorisation.
For this reason, three aspects of the VIP field were highlighted. These were
identified as goal, video description and capability. These aspects were mo-
tivated by the context of their use within a planning system that requires
the goal and initial domain state model (which includes the initial video de-
scription) and also a performance-based selection of operators. Following the
SUMO (Suggested Upper Merged Ontology)2 ontology representation, a mod-
ular ontology construction was adopted (see Fig. 3). The modularisation aims
to separate the formulation of the problems from the description of the data
and the solutions to be produced.

Fig. 3 color online: Modular structure of the Video and Image Processing (VIP) Ontology.

The next three subsections describe the three ontologies, a more detailed
explanation of their construction in relation to the Fish4Knowledge project
can be found in [19].

4.2 Goal Ontology

The Goal Ontology contains the high level questions posed by the user and
interpreted by the workflow as VIP tasks, termed as goals, and the constraints
to the goals. The main concepts of the goal ontology is shown in Fig. 4.

Under the ‘Goal’ class, more specialised subclasses of video processing goals
are described. Some examples include ‘Object detection’, ‘Event detection’
and ‘Object Clustering’. Under each of these, even more specialised goals are
described. For instance, more specific goals of ‘Object detection’ include ‘Fish
detection’ and ‘Coral detection’, which are relevant for this work.

‘Constraint on Goal’ refers to the conditions that restrict the video and
image processing tasks or goals further. In our context, the main constriction
for a VIP goal is the ‘Duration’, a subclass of ‘Temporal Constraint’. Each
task may be performed on all the historical videos, or a portion specified by
the user – within a day, night, week, month, year, season, sunrise or sunset
(all specified as instances of the class ‘Duration’).

Other constraints types include ‘Control Constraint’, ‘Acceptable Error’
and ‘Detail Level’. The control constraints are those related to the speed of

2 http://www.ontologyportal.org/
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Fig. 4 color online: Goal ontology denoting the main classes of goals and constraints.

VIP processing and the quality of the results expected by the user. ‘Perfor-
mance Criteria’ allows the user to state whether the goal that they wish to
perform should be executed using a faster algorithm (indicated by the crite-
rion processing time) or whether it should take less (CPU) memory. Process-
ing time and memory are instances of ‘Performance Criteria’. Instances of the
class ‘Quality Criteria’ are reliability and robustness. ‘Quality Criteria’ with



Semantics- and Planning-based Workflow Composition for Video Processing 11

the value reliability constrains the solution to be the most accurate result. If
such a solution could not be found, then the system should fail rather than
produce alternative options. ‘Robustness’ indicates the reverse; that the sys-
tem should not break down completely in cases where a reliable solution could
not be found, instead it should return an alternative (imperfect) result.

Another constraint that the user may want to insert is the threshold for
errors, contained in the class ‘Acceptable Error’. A typical example of this
is contained in its subclass ‘Accuracy’, which states the accuracy level of a
detected object. Two instances of accuracy are prefer miss than false alarm’
and prefer false alarm than miss. Miss and false alarm are terminologies used
within VIP tasks that involve the detection of objects to indicate the accuracy
level of the detection. Consider a real object to be the object that needs to be
detected. A miss (false negative) occurs when a real object exists but is not
detected. A false alarm (false positive) occurs when an object that is not a
real object has been detected.

The class ‘Detail Level’ contains constraints that are specific to particular
details, for example detail of ‘Occurrence’. The criteria for ‘Occurrence’ is used
for detection tasks to constrict the number of objects to be detected. The value
‘all’ for occurrences imposes that all the objects should be identified.

The Goal Ontology is used for consistency checks when a user query is
detected in the system. It can check that the query matches with a goal or set
of goals that is achievable within the workflow system. It is also used to guide
the selection of higher level tasks for workflow and formulate input values to
the reasoning engine that is responsible for searching the VIP solution set for
a VIP task, i.e. to compose the workflow.

4.3 Video Description Ontology

The Video Description Ontology describes the concepts and relationships of
the video and image data, such as what constitutes video/image data, the
acquisition conditions such as lighting conditions, colour information, texture,
environmental conditions as well as spatial relations and the range and
type of their values. Fig. 5 gives a pictorial overview of the main components
of the Video Description Ontology. The upper level classes include ‘Video
Description’, ‘Descriptor Value’, ‘Relation’, and ‘Measurement Unit’.

The main class of this ontology is the ‘Video Description’ class, which has
two subclasses – ‘Description Element’ and ‘Descriptor’. A description element
can be either a ‘Visual Primitive’ or an ‘Acquisition Effect’. A visual primitive
describes visual effects of a video/image such as observed object’s geometric
and shape features, e.g. size, position and orientation while acquisition effect
descriptor contains the non-visual effects of the whole video/image that con-
tains the video/image class such as the brightness (luminosity), hue and noise
conditions. The descriptor for the description elements are contained under
the ‘Descriptor’ class and are connected to the ‘Description Element’ class via
the object property ‘hasDescriptionElement’ (not visible in the diagram).
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Fig. 5 color online: Main concepts of the Video Description Ontology.

Typical descriptors include shape, edge, colour, texture and environmental
conditions. Environmental conditions, which are acquisitional effects, include
factors such as current velocity, pollution level, water salinity, surge or wave,
water turbidity, water temperature and typhoon, specified as instances. These
values that the descriptors can hold are specified in the ‘Descriptor Value’
class and connected by the object property ‘hasValue’. For the most part,
qualitative values such as ‘low’, ‘medium’ and ‘high’ are preferred to quanti-
tative ones (e.g. numerical values). ‘Qualitative’ values could be transformed
to quantitative values using the ‘convertTo’ relation. This would require the
specific measurement unit derived from one of the classes under the concept
‘Measurement Unit’ and conversion function for the respective descriptor e.g.
a low velocity could be interpreted as movement with velocity within a range
of 0 and 25ms−13. Some descriptor values can be tied to their appropriate
measurement units. The property that specifies this is ‘hasMeasurementU-
nit’, which relates instances in the class ‘Descriptor’ to instances in the class
‘Measurement Unit’.

The goal and video description ontology were developed with collaboration
with image processing experts, knowledge-based vision communities and do-

3 Currently, there is not a fixed conversation formula. The actual conversion formula used
will be determined as we gain more experience by using our workflow system over time.
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main experts. Preliminary work with the Hermes project [28] brought about
initial versions of these two ontologies [22].

4.4 Capability Ontology

The capability ontology (Fig. 6) contains the classes of video and image pro-
cessing functions and tools. Each function (or capability) is associated with
one or more tools. A tool is a software component that can perform a video
or image processing task independently, or a technique within an integrated
vision library that may be invoked with given parameters. This ontology will
be used directly by the planner in order to identify the tools that will be
used to solve the problem. As this ontology was constructed from scratch,
the METHONTOLOGY methodology [13] was adopted. It is a comprehensive
methodology for building ontologies either from scratch, reusing other ontolo-
gies as they are, or by a process of re-engineering them. The framework enables
the construction of ontologies at the knowledge level, i.e. the conceptual level,
as opposed to the implementation level.

Fig. 6 color online: Main concepts of the Capability Ontology.
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This ontology will be used to identify the tools that will be used for work-
flow composition and execution of VIP tasks. In our context, it is used by a
reasoner and a process library for the selection of optimal VIP tools. The main
concepts intended for this ontology have been identified as ‘VIP Tool’, ‘VIP
Technique’ and ‘Domain Descriptions for VIP Tools’. Each VIP technique can
be used in association with one or more VIP tools. ‘Domain Description for
VIP Tool’ represent a combination of known domain descriptions (video de-
scriptions and/or constraints to goals) that are recommended for a subset of
the tools. This will be used to indicate the suitability of a VIP tool when a
given set of domain conditions hold at a certain point of execution. At present
these domain descriptions are represented as strings and tied to VIP tools,
e.g. Gaussian background model would have the description ‘Clear and Fast
Background Movement’ to indicate the best selection criteria for it.

The main types of VIP tools are video analysis tools, image enhancement
tools, clustering tools, image transform tools, basic structures and operations
tools, object description tools, structural analysis tools and object recognition
and classification tools. At present fish detection and tracking have been per-
formed more than the other tasks, hence the ontology has been populated with
most of the tools associated with these tasks. For other tasks that have not
been performed, e.g. fish clustering, the ontology will be extended and popu-
lated in due course. Detection and tracking tools fall under the class ‘Video
Analysis Tool’. Other types of video analysis tools are event detection tools,
background modelling tools and motion estimation tools.

The class ‘Object Description Tool’ specifies tools that extract features
such as colour, texture, size and contour, while image transform tools are those
concerned with operations such as point, geometric and domain transforma-
tions. ‘VIP Technique’ is a class that contains technologies that can perform
VIP operations. For now, two types of machine learning techniques have been
identified. These techniques could be used to accomplish the task of one or
more VIP tools. For example, neural netwworks can be used as classifiers as
well as detectors.

The Capability Ontology can be used for reasoning during workflow com-
position using planning. As planning takes into account preconditions before
selecting a step or tool, it will assess the domain conditions that hold to be
used in conjunction with an appropriate VIP tool.

4.5 Walkthrough

Based on the devised sub-ontologies, a walkthrough of their usage to provide
different levels of vocabulary in a seamless and related manner is explained
here. The flowchart in Fig. 7 outlines the workflow enactment process empha-
sising on points that require ontological usage.

The user may have a high level goal or task such as “Detect all the fish in

the video 1.mpeg” in mind. One way this could be represented and selected
are via the following criterion-value pairs in natural language:



Semantics- and Planning-based Workflow Composition for Video Processing 15

Fig. 7 color online: Flowchart of the workflow enactor’s interaction with the user annotated
with ontology use. Shaded processes denote user-provided input.

[Goal: goal = fish detection]
[Constraints: Performance = memory, Quality = reliability,
Accuracy = prefer miss than false alarm, Occurrence = all]

[Video Descriptions: Brightness = not known, Clearness = not known,
Green Tone = not known]

As a first step, the user selects the goal s/he wishes to conduct via the
workflow interface. This corresponds to steps 1 and 2 in the flowchart. Once
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the goal is retrieved, it is checked against the goal ontology (step 4). Axioms
in the goal ontology are used to check if the goal is indeed one that is valid for
the application in question. In this case the instance ‘fish detection’ is checked
against the class ‘goal’ to determine if they belong to the same hierarchy.

Next, the related constraints for the goal are determined (steps 5 and 6).
These are additional parameters to specify rules or restrictions that apply to
the goal. For the goal ‘fish detection’, the relevant constraints are Performance

Criteria, Quality Criteria, Accuracy and Occurrence, contained in the goal ontol-
ogy. The user may choose to provide all, some or none of these values. Adopting
the same principle used for goal retrieval, constraint values are checked if they
are valid (step 7), i.e. if they are descendants of the class ‘Constraint on Goal’.

Then, depending on the goal, the user is prompted for the video descrip-
tions (steps 9 and 10). For the task ‘fish detection’, the descriptions required
are brightness, clearness and green tone levels. As before, the user may choose
to provide all, some or none of these values. The values obtained are checked
against the video description ontology (step 11). The checking of validity is
again the same as with the goal and constraints, except that the values (in-
stances) are checked against the class ‘descriptor’ in the video description
ontology. In the absence of user information, constraints are set to default
values while video descriptions are obtained via preliminary analysis.

Once the goal, constraints and video descriptions are determined, the for-
mulation of the user’s problem is complete and this information will be fed
to the planner (step 12). The inner workings of the planner will be described
in Section 5.1. Basically, the planner seeks to find steps in the form of VIP
tools composed in sequential, iterative and conditional fashions in order to
solve the task. At each step of the way, the planner attempts to find a suitable
tool by consulting the capability ontology (step 14/16). This is done using the
‘check capability’ function, described in Algorithm 1 below.

check_capability(planning-step S, planning-mode Auto)

If Auto is true

Retrieve a tool, T that can perform S from capability ontology:

getTool(S)

Check that domain-criteria tied to this tool (if any) hold:

check_criteria(T)

return T

Else

Display description of S, D to user:

hasDescription(S, D)

Retrieve ALL tools that can perform S from capability ontology:

For each tool ti in Ts

Retrieve recommended domain descriptions, RD for ti:

hasPerformanceIndicator(ti, RD)

Display ti and RD to user

End for

Display also system’s recommended tool, ts

getTool(S)

Prompt user to select a tool T

Return T
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getTool(S)

canPerform(T, S)

instance(T, T1)

descendant_of(T1, tool)

Return T

check_criteria(T)

If a set of domain-criteria, DC exist for this tool

hasPerformanceIndicator(T, DC)

Retrieve the list of preconditions, P for DC:

instance_att_list(DC, P)

If all preconditions in P hold

return DC

Else return Fail

Else return ‘no_criteria’

Algorithm 1: VIP tool (planning step) selection via the ‘check capability’ function.

First it retrieves a tool that can perform the planning step. Subsequently,
it checks if the selected tool is linked to a list of domain conditions that
are deemed suitable for it according to image processing experts’ heuristics.
Not all tools are tied to domain conditions. The domain conditions that are
suitable for this tool are checked against the current domain conditions. If all
of them hold, then the tool is selected for execution. Otherwise it will try to
find another tool where such conditions hold, failing otherwise. This is applied
when the planning mode is automatic (steps 13 and 14). In semi-automatic
mode, user will make this tool selection whenever more than one tool is present
to perform a planning step. All the tools and their recommended descriptions
are displayed to the user who will select one of them (steps 15 and 16). The
descriptions are expressed in natural language to ease readability for the user.
When a tool is selected, it is applied directly to the video or image in question
(step 18). This planning interleaved with execution process continues until the
task is solved, i.e. when the goal is achieved (step 19).

5 Planning and Workflow Enactment

At the heart of the system lies a workflow enactor that interfaces the interac-
tions with the user and coordinates all the activities between the components
within the system. The main component is a planner that is responsible for
the derivation of video and image processing (VIP) solutions based on the pro-
vided goal and domain descriptions. Therefore, the planner is a reasoner that
translates the high level non-technical terms (user goals and preferences) to
low level technical terms (VIP operations) for workflow composition. This is
done with the assistance of the process library and ontologies. Two key innova-
tions of the planner are the ability to support workflow execution (interleaves
planning with execution) and can perform in automatic or semi-automatic
(interactive) mode. It extends the capabilities of typical planners by guiding
users to construct more optimal solutions via the provision of recommended
descriptions for the tools. It is also highly adaptable to user preferences.
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5.1 Planner Design and Representation

The planner was designed with the aim of enhancing the flexibilities of exist-
ing Hierarchical Task Network (HTN) planners. HTN planning uses so-called
methods or refinements to describe the decomposition of non primitive tasks in
terms of primitive and other non primitive tasks. Primitive tasks are directly
executable by applying an operator. The planner starts with an abstract net-
work representing the task to be accomplished, and proceeds by expanding the
abstract network into more detailed networks lower down in the abstraction
hierarchy, until the networks only contain executable actions. HTN methods
are a form of domain-specific knowledge (in the form of task decompositions).
This greatly reduces the search space of the planner by encoding knowledge
on how to go about looking for a plan in a domain and also enables the user
to control the type of solutions that are considered. Due to its successes and
practicalities, several major HTN planners have been developed over the past
decades, namely O-Plan [5], SHOP [25], I-X [30], HyHTN[18] and SHOP2 [24].

The design includes interleaving planning with execution, and providing
automatic and semi-automatic (interactive) modes of planning. The semi-
automatic mode of planning enables the user to construct more optimal so-
lutions by providing recommended descriptions when more than one tool is
available to perform a primitive task.

The implementation of the planner has been kept separate to the modelling
of the domain. The planner itself is domain-independent and can be tailored
to be used in different problem scenarios as long as the domain descriptions
and relevant ontologies are provided. Domain-specific information is encoded
in the knowledge base as facts and in the process library as primitive tasks
and methods. The planner and domain model are described declaratively using
SICStus Prolog 4.0. The planner was built based on ordered task decompo-
sition where the planning algorithm which composes tasks in the same order
that they will be executed.

The input to the planner are the goals, objects and conditions of the ob-
jects at the beginning of the problem (initial state), and a representation of
the actions that can be applied directly to primitive tasks (operators). For
HTN planning, a set of methods that describe how non primitive tasks are
decomposed into primitive and non primitive tasks are also required. The out-
put should be (partial) orderings of operators guaranteed to achieve the goals
when applied to the initial state.

A video processing task can be modelled as an HTN planning problem,
where a goal list, G is represented as the VIP task(s) to be solved, the primitive
tasks, p are represented by the VIP primitive tasks and the operators, O are
represented by the VIP tools that may perform the primitive tasks directly.
The methods, M specify how the non primitive tasks are decomposed into
primitive and non primitive subtasks. The primitive tasks and methods are
contained in the process library.
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Adapting the conventions provided in Ghallab et al. [11], an HTN planning
problem is a 5-tuple

P = (s0, G, P,O,M)

where s0 is the initial state, G is the goal list, P is a set of primitive tasks, O
is a set of operators, and M is a set of HTN methods. A primitive task, p ∈ P

is a 3-tuple

p = (name(p), preconditions(p), postconditions(p))

where name(p) is a unique name for the primitive task, preconditions(p) is a
set of literals that must hold for the task to be applied and postconditions(p)
is a set of literals that must hold after the task is applied.

An HTN method, m ∈ M is a 6-tuple

m = (name(m), task(m), preconditions(m), decomposition(m), effects(m),
postconditions(m))

where name(m) is a unique name for the method, task(m) is a non primitive
task, preconditions(m) is a set of literals that must hold for the task to be
applied, decomposition(m) is a set of primitive or non primitive tasks that m
can be decomposed into, effects(m) is a set of literals to be asserted after the
method is applied and postconditions(m) is a set of literals that must hold
after the task is applied. The planning domain, D, is the pair (O,M).

5.2 Primitive Tasks, Operators and Methods

30 VIP operators were identified and implemented for performing the task
video classification according to brightness, clearness and algal levels, fish de-
tection and counting. They were developed using a combination of top-down
and bottom-up approaches that allowed a suitable level of granularity of the
operators [23]. The corresponding primitive tasks that the operators can act
upon are encoded in the process library. As stated earlier, primitive tasks are
those that can be performed directly by operators or VIP tools.

For each primitive task, its corresponding technical name, preconditions,
parameter values, output values, postconditions and effects of applying this
task are specified. The preconditions are all the conditions that must hold
(prerequisites) for this primitive task to be performed. The effects are condi-
tions that will be asserted or retracted after completion of the task and the
postconditions are all the conditions that must hold after the task is applied.

Non primitive tasks are decomposable to primitive and non primitive sub-
tasks. Schemes for reducing them are encoded asmethods in the process library.
For each method, the name of the method, the preconditions, decomposition,
effects and postconditions are specified. The decomposition is given by a set of
subtasks that must be performed in order to achieve this non primitive task.
For VIP tasks, the methods are broadly categorised into three distinct types;
non recursive, recursive and multiple conditions. Non recursive method is the
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most common form that does not involve loops or branching of any sort, for
example a direct decomposition of a video classification method into process-
ing the image frames, followed by performing the classification on the frames
and finally writing the resulting frames onto a video. Recursive methods, as its
name suggest, model loops, hence the decomposition of these methods will in-
clude itself as a subtask. Multiple conditions arise when there is more than one
decomposition for a method. For instance, texture features can be computed
by either computing the histogram values followed by computing the statisti-
cal moments or by computing the Gabor filter. Two separate decompositions
will be possible for computing the texture features.

5.3 Planner Algorithm

Planning algorithms solve problems by applying applicable operators to initial
state to create new states, then repeating this process from the new states
until the goal state is reached. In HTN planning, the algorithm stops when all
the goal tasks have been achieved. The algorithm below describes the main
workings of the planner implemented for this thesis.

gplanner(initial-state S, goal-list [g1|G], domain D, solution-plan P)

Initialise P to be empty

If goal-list is empty, return P

Consider first element in the goal-list, g1 in goal list [g1|T]

Case 1: If g1 is primitive AND all its preconditions hold

1.1. If one or more operator instances (tools) match g1

Retrieve ALL operators (tools) T = [t1,..,tn] from capability

ontology that can perform g1

For each tool, ti in T

Retrieve suitable domain conditions for ti from capability ontology

End For

If more than one operator is available to perform g1

Display all applicable tools with suitable domain conditions

Prompt user to select preferred tool, tp

Else tp is the only available operator to perform g1

Apply tp to S and planning algorithm to rest of goal-list:

apply-operator(tp, Input_list, Add_list)

Check that all postconditions of g1 hold

gplanner(tp(S), G, D, P)

1.2 Else return fail

Case 2: If g1 is non primitive

2.1. If a method instance m matches g1 in S

AND all its preconditions hold

Append the decompositions of m into the front of the goal-list

Add all elements in m’s Add List to S

Check that all postconditions of m hold

Apply planning algorithm to this new list of goals:

gplanner(S, append(m(g1),G), D, P)

2.2 Else return fail



Semantics- and Planning-based Workflow Composition for Video Processing 21

% Apply_operator

apply-operator(Tool, Input_list, Add_list, P, S)

Update solution-plan P with Tool (append Tool to the end of P)

Execute Tool with parameters Input_list

Add all elements in Add_list (effects) to S

Algorithm 2: Workings of the SWAV planner in semi-automatic mode.

The domain is represented by the predicates that contain video descriptions
(e.g. brightness, clearness and green tone levels), the constraints (e.g. accu-
racy and processing time), methods (decompositions) and operators (tools to
execute the primitive tasks). The algorithm is a recursive function that works
on the goal list until it is empty. It inspects each item in the goal list to
see if it is a primitive task. If the item is a primitive task, it seeks to find
an operator that can perform the primitive task. This is done automatically
or semi-automatically, depending on the planning mode selected by the user.
Once found, the operator is applied and the primitive task is accomplished.
If the task is not primitive, it looks for a method instance that matches it
and appends its decompositions to the start of the goal list. The basis for the
planning algorithm was taken from HTN planners that generate plans in a
totally ordered fashion, where tasks are decomposed from left to right in the
same order that they will be executed. In addition, it can plan interactively,
interleave planning with workflow execution and has been enriched to make
use of knowledge from ontologies.

5.4 Automatic or Interactive Mode of Planning

The planner works in either automatic or semi-automatic (interactive) mode,
determined by the user before planning takes place. In the automatic mode,
user intervention during tool selection is not required. At each planning step,
the planner itself selects the tool deemed most optimal based on the domain
conditions that match with the tool’s recommended domain conditions en-
coded in the capability ontology. These conditions have been determined based
on image processing experts’ heuristics (determined empirically). Thus the pre-
ferred step in Algorithm 2 is selected by the system rather than the user. When
there are no heuristics to guide the tool selection, the first tool encountered
that can perform the primitive task is selected for execution. Hence it follows
a depth-first style of search.

In the semi-automatic mode, the planning process is interactive when
more than one tool is available to perform a primitive task. At this level, the
planner derives all the applicable VIP tools and their recommended domain
descriptions from the capability ontology (See Algorithm 1 in Section 4.5 for
the reasoning mechanism of this). The user selects the VIP operator/tool of
their choice based on the recommended domain descriptions for each tool as
guidance. Thus the planner allows the user to select a tool during the planning
process, giving them control and also the ability to make informed decisions.
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The next section will highlight how this control is followed through with user
verification of the final result.

5.5 Interleaving Planning with Execution

The planner follows a style of planning interleaved with execution. Once a
VIP tool is selected, it is executed before the next planning step is inferred.
This is because domain conditions could change as a result of the application
of a selected tool. This would then affect the planning process of subsequent
steps. However, replanning is not allowed until execution of the whole task is
completed. This is due to the fact that intermediate results cannot be used to
assess the optimality of the selected VIP tools (neither by the system nor the
user) and finding a suitable heuristic for this purpose is not trivial.

Once planning is complete, the user has access to the final video containing
the result of applying the tool(s) that they have selected. This will give them
a good indication of the optimality of the tool(s) that they have selected. Fig.
8 shows an example of this for a detection task. After viewing this result, they
may decide to replan in order to try different choices of tools. Section 6 includes
an evaluation of the learnability level achieved by the user in selecting the
optimal solutions based on the descriptions provided by the system using the
semi-automatic planning mode. The next section will illustrate two examples
on how domain descriptions can affect the selection of planning operators.

(a) Adaptive Gaus-
sian Mixture Model.

(b) IFD Model. (c) Poisson Model. (d) W4 Model.

Fig. 8 color online: Results of applying four different background models for fish detection
and counting task for the same video.

6 Evaluation

Three hypotheses were formulated by taking into consideration factors such
as diversity in user requirements, variety in the quality of the videos (lighting
conditions, object movement, etc.) and vastness of the data made available:

1. Automated support could be provided for users without image processing
expertise to perform VIP tasks in a time-efficient manner using a novel
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semantics- and planning-based workflow composition and execution system
without loss of accuracy in the quality of the solutions produced.

2. Constructing VIP solutions using multiple VIP executables employing plan-
ning and workflow technologies is more flexible and adaptable towards
changing users’ needs than modifying single executable programs.

3. The semantics and planning based automated-assisted mechanism to com-
pose and execute workflows for video processing tasks helps the user man-

age and learn the processes involved in constructing optimal solutions.

6.1 Data Set: Ecogrid Videos

Videos are captured, stored and made accessible to marine biologists contin-
uously via Ecogrid [8], a joint effort between the National Center for High
Performing Computing (NCHC), Taiwan and several local and international
research institutes which provides a Grid-based infrastructure for ecological
research. Data is acquired using geographically distributed sensors in various
protected sites such as Ken-Ting national park, Hobihu station and Lanyu
island. The video streams collected have enabled analysis in underwater reef
monitoring, among others. Interesting behaviours and characteristics of ma-
rine life such as fish and coral can be extracted from the videos by performing
analysis such as classification, detection, counting and tracking.

Fig. 9 color online: Sample shots from Ecogrid videos. From left to right: clear with fish,
algal presence on camera, medium brightness with fish, completely dark and human activity.

As can be seen from the image captures in Fig. 9, the videos were taken
in an uncontrolled open sea environment where the degree of luminosity and
water flow may vary depending upon the weather and the time of the day. The
water may also have varying degrees of clearness and cleanness. In addition,
the lighting conditions change very slowly, the camera and the background
are fixed, images are degraded by a blocking effect due to the compression,
and the fishes are regions whose colours are different from the background and
are bigger than a minimal area (they are unusable otherwise). Furthermore,
as algae grow rapidly in subtropical waters and on camera lens, it affects the
quality of the videos taken. Consequently, different degrees of greenish videos
are produced. In order to decrease the algae, frequent and manual cleaning of
the lens is required.
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6.2 Tasks and Subjects

Based on the video descriptions and other features displayed from the video
captures, as well as discussions with marine biologists, several broad categories
of tasks have been identified as useful for this test data. These are described
below, in order of increasing complexity:

T1. Video classification based on brightness, clearness and algal levels.
T2. Fish detection and counting in individual frames.
T3. Fish detection, counting and tracking in video.

(a) T1: Video classification. (b) T2: Fish detection and
counting in frames.

(c) T1 & T3: Video classi-
fication, fish detection and
tracking.

Fig. 10 color online: Sample visual results for video processing tasks.

The results are annotated to the original video in text and numerical for-
mat. For example, Fig. 10(a) shows the brightness, clearness and green tone
values on the resulting video while Fig. 10(b) shows the detected fish and the
number of fish in the current frame image on the top left (incorrect in this
frame). These tasks can be conducted in a combined fashion for more sophis-
ticated analysis, for instance T1 and T3 can be combined to conduct video
classification, fish detection, counting and tracking. Fig. 10(c) shows an exam-
ple result for this task. The final video is annotated with brightness, clearness,
green tone and fish presence values, as well as the number of fish in the current
frame (number at the top left of image) and the number of fish so far in the
video (number at the bottom left of image).

These tasks will be useful to extract higher level analyses such as popula-
tion analysis, fish behaviour at certain times of the day or year and suitable
environmental conditions for fish presence. However, extracting useful char-
acteristics and features from these videos would take too long to perform
manually. One minute’s clip requires approximately 15 minutes’ human effort
on average for basic processing tasks [4]. The following subjects and systems
were used for experimental purposes:

S1. An image processing-naive user who constructs the solution with the as-
sistance of the workflow tool using full automatic and/or semi-automatic
mode.

S2. An image processing-naive user who solves the goal manually.
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S3. An image processing expert who constructs the solution using specialised
tools (e.g. by writing an OpenCV [15] program).

S4. A workflow modeller who constructs the solution using the workflow tool
(e.g. by manipulating the process library and ontologies).

6.3 Statistical Hypothesis Testing using the t-distribution

Experiments demonstrating performance gains of plan generation with the
assistance of the workflow tool over manual processing and program generation
from scratch were conducted. Performance gains are measured in CPU time,
manual processing time, and quality of solutions as compared to the ground
truth provided by marine biologists, where appropriate. The experiments were
designed according to the principles outlined in [14], where first a hypothesis
and its counterpart null hypothesis are formulated, followed by the variables,
conditions and subjects for the experiments, then the hypothesis is tested by
providing measurement levels to report the results and finally an analysis to
accept or reject the null hypothesis. The two sample dependent t-test was
performed to determine the t value and its corresponding p value in order to
accept or reject the null hypothesis. The t value is given by Equation 1 below:

t =
d̄e

√

σ2

de

n

(1)

where n is the sample size, d̄e is the mean of the differences between the manual
and automatic times and σde is the standard deviation of this mean. Based on
the values of t and n, a significance level was computed. A significance level
of p < 0.05 was taken as an acceptable condition to reject the null hypothesis.

Where appropriate, tasks and systems from Section 6.2 will be referred to.
All the experiments were conducted on 27 videos selected from Ecogrid. For
experiments to test efficiency (Section 6.4) and user learnability (Section 6.6),
eight participants from a variety of backgrounds were selected as subjects.
None of them possessed image processing expertise; three computer scientists
and five non computer scientists. The backgrounds of the non computer sci-
entists include medicine, history and archaeology, physics, ecology and marine
biology. The reason for having this variety was to test the usability and effects
of the system on a mix of users, with technical expertise (computer scientists)
and without, with domain expertise (ecologist and marine biologist) and with-
out. These two experiments also required user-driven evaluation measures. All
experiments were conducted on a laptop operating on Ubuntu 8.04 with 512
MB RAM and 1.6 GHz processor speed.

6.4 Manual vs. Automatic Approaches for Video Classification Task

In this experiment, subjects were asked to classify 10 videos according to
brightness, clearness and green tone (algal) levels. First, they were required to
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conduct the task manually, and then using the workflow tool. Using manual
processing, each video was played using a video processing software where the
subject may pause and repeat the video in order to determine the brightness,
clearness and green tone levels. The subjects record the classification value for
brightness as “bright”, “medium”, or “dark”, the classification value for clear-
ness as “clear”, “medium” or “blur” and the classification value for green tone
level as “green” or “not green”. They were advised to select these classification
values based on their own judgement.

Using the workflow tool, the subjects selected the option to perform the
task ‘Video classification according to brightness, clearness and green tone
levels’. Then they were prompted to select between a fast and a slow processing
mode. For each video, they were required to run the slow processing followed
by the fast processing. They were given the freedom to perform this task
automatically using just the fast processing mode when they were confident
enough to do so, otherwise they would proceed to use the two modes on the
videos. The reason for conducting the experiment in this fashion was to test
the subjects’ confidence in the quality of the fast processing. The number of
videos processed before the user switched to using the fast processing mode
only was noted.

The fast processing algorithm was taken as the automatic processing time
as it has been empirically shown to produce the same quality of results as
the slow one. The CPU time taken to perform the task automatically and
the time taken to perform the task manually were computed. The accuracy
of the results were computed using the following procedure. As there were
three classification criteria (brightness, clearness and green tone), each match-
ing value of the automatic (system) or manual (subject) classification value
with the ground truth was given a score of 1. For each video manipulated
by each subject, a score of 3 would indicate 100% accuracy, in which case all
three classification values (brightness, clearness and green tone) matched the
recommended values. For all 10 videos manipulated by each subject, an aver-
age score was computed. A percentage was then calculated for the quality of
the solution produced. The users were also asked three additional questions,
whether they noticed any difference in the fast and slow automatic process-
ing times, whether they found the automatic processing less tedious than the
manual processing and which method would they prefer to use if the tasks
were to be done frequently.

6.4.1 Results

Table 1 contains the average time measurements, accuracies of the results
and the differences between automatic and manual processing for each subject
who participated in the experiment. As explained in the previous section,
the metrics were produced based on 10 videos processed by each subject,
out of a total of eight subjects. There was a total of 27 videos, where each
video was manipulated three times throughout the entire experiment. The
classification result provided by a marine biologist was taken as the base line



Semantics- and Planning-based Workflow Composition for Video Processing 27

for the accuracy. Based on these values, statistical tests were performed to
evaluate the efficiency of the methods of processing and the quality of the
solutions produced by the methods.

Table 1 color online: Time and accuracy of automatic versus manual processing, and their
differences for video classification task.

Subject Automatic Manual Difference
Time Accuracy Time Accuracy Time Accuracy
(s) (%) (s) (%) de da

1 2.12 61.11 47.90 76.19 -45.78 -15.08
2 2.13 61.11 39.65 53.33 -37.52 7.78
3 2.09 61.11 40.12 25.00 -38.03 36.11
4 2.06 61.11 45.33 87.50 -43.28 -26.39
5 2.13 61.11 35.02 52.38 -32.89 8.73
6 2.14 61.11 48.25 80.00 -46.11 -18.89
7 2.06 61.11 37.20 66.67 -35.14 -5.56
8 2.02 61.11 17.95 52.78 -15.93 8.33

Average 2.09 61.11 38.93 61.73 -36.83 -0.62

6.4.2 Testing of Efficiency

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the times taken to
conduct automatic and manual processing. The hypothesis, null hypothesis,
independent and dependent variables for this test are given below.

– Hypothesis: Image processing-naive users solve VIP tasks using the work-
flow tool faster than performing them manually.

– Null hypothesis: There is no difference in the time taken for image processing-
naive users to solve the task manually and with the workflow tool.

– Independent variables:
– Data (27 Ecogrid videos of various quality).
– Subjects and systems used for solving task: S1, S2.
– Task T1: Classify video according to brightness, clearness and algal levels.

– Dependent variables: Time taken to perform task manually versus time
taken to perform task automatically.

The t value, given by equation 1 was computed for this data yielding -
11.43. The degree of freedom is set to n − 1, which is 7. A value of t(7) =
-11.43 corresponds to a significance level of p ≪ 0.0001. This means that
the null hypothesis can be rejected. It can be concluded that the efficiency
of automatic processing is significantly higher than the efficiency of manual
processing.

6.4.3 Testing of Accuracy

A similar statistical hypothesis testing using the t-distribution was conducted
to measure the dependencies between the accuracies between the results ob-
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tained for automatic and manual processing. The hypothesis, null hypothesis,
independent and dependent variables for this test are given below.

– Hypothesis: The quality of the solutions produced by image processing-
naive users when solving video classification task using the automatic work-
flow tool is higher than quality of the solutions produced when they perform
the task manually.

– Null hypothesis: There is no difference in the quality of the solutions pro-
duced by image processing-naive users to solve the task manually and with
the workflow tool.

– Independent variables
– Data (27 Ecogrid videos of various quality).
– Subjects and systems used for solving task: S1, S2.
– Task T1: Classify video according to brightness, clearness and algal levels.

– Dependent variables: Quality of results as compared to ground truth.

The t value was computed using Equation 1, yielding -0.09133. The degree
of freedom is set to n−1, which is 7. A value of t(7) = -0.09133 corresponds to
a significance level of p = 0.4649. This means that the null hypothesis cannot
be rejected. Hence, the accuracy of manual processing, although slightly higher
on average, is not significant enough to indicate that it is more accurate than
the solutions produced by automatic processing.

6.4.4 Analysis

One observation from the results is on the relationship between the manual
processing times and accuracy. The accuracy of the subjects’ manual classi-
fication varied slightly. It was noted that subjects who had domain knowl-
edge (e.g. ecologist and marine biologist) had higher levels of accuracies in
the video classification than their counterparts without domain expertise (e.g.
computer scientists). However, they did not take less time in performing this
classification. The main findings of this experiment that compares automatic
and manual processing using efficiency and accuracy metrics are the following:

– Automatic processing for video classification is on average 94.73% faster
than manual processing without loss of accuracy in the solutions produced.

– 75% of the subjects found performing the video processing task using the
automatic tool was less tedious than performing it manually.

– All subjects preferred to use the automatic tool over the manual method
if they were to conduct the video classification task frequently.

The next experiment was aimed at testing the efficiency and accuracy levels
in the workflow tool and conventional image processing approaches when it
comes to adapting to changes in user preferences, with a focus on varying
domain descriptions.
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6.5 Single- vs. Multiple-Executable Approaches on Software Alteration

This experiment aims to show that the workflow system which adopts a
multiple-executable approach adapts quicker to changes in user preferences
than its single-executable counterpart (specialised image processing programs).
This is the test of adaptability of the workflow system to reconstruct solutions
efficiently when the user changes the domain descriptions for a task.

In this experiment, an image processing expert and a workflow modeller
have access to the same set of video and image processing tools; the former
has an OpenCV program with available image processing algorithms written
as functions and the latter in the form of independent executables defined in
the process library.

Both subjects were familiar with the systems that they were manipulating.
They were given an identical task to perform – fish detection, counting and
tracking in a video. Both systems were able to perform this task using a default
detecting and tracking algorithm. In the workflow tool, the Gaussian mixture
model was defined as the detection algorithm, no methods were defined for
the selection of any other detection algorithm. In the OpenCV program, the
Gaussian mixture model was used as the detection algorithm. Six scenarios
were presented to both subjects containing changes to domain conditions (see
Table 2). Both subjects were asked to make modifications or additions of code
to their respective systems to cater for these changes in order to solve the
VIP task as best as possible. For this purpose, they were both given which
detection algorithm should be selected in each case. The number of lines of code
(OpenCV for image processing expert and Prolog for workflow modeller) and
the time taken to make these modifications were computed for both subjects.
A line of code in OpenCV is represented by a valid C++ line of code, i.e. a line
ending with a semi-colon (;), a looping or conditional statement (if/for/while).
In Prolog, a line of code is a single predicate or fact ending with a full stop
(.) or a statement ending with a comma (,).

The quality of the solutions is calculated as follows. There are two values
to be considered, the first is the number of fish in the current frame and the
second is the number of fish in the video so far. Each of these is given a score
of 1 if there is a match with the ground truth. For each frame, the accuracy
could be 0%, 50% or 100%. An average accuracy as a percentage is computed

by taking the accuracy of 10 frames (1st, 6th, 11th, ..., 46th) from each video
over all 27 videos.

6.5.1 Results

Table 2 contains the results obtained for this experiment. For each domain
description altered, the time taken to modify the system, the number of lines
of code added, and the accuracy of the solution are given.

The results produced are used to compare the efficiency of two different
problem solving systems given equal starting points in the form of available
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Table 2 color online: Comparisons of number of new lines of code written, processing
times and accuracies of solutions between single-executable image processing program and
multiple-executable workflow system to adapt to changing domain descriptions.

Domain Descriptions Image Processing Expert Workflow Modeller
(User Preference) New Lines Time Accuracy New Lines Time Accuracy

of Code (min.) % of Code (min.) %

Prefer false alarm than miss 43 16 58.25 3 3 59.30
Prefer miss than false alarm 56 23 62.55 2 2 64.80
Clear, no background movement 43 16 58.46 3 3 60.71
Clear, background movement 61 27 60.42 2 2 60.10
Blur, no background movement 43 16 60.88 3 3 62.09
Blur, background movement 57 32 63.80 2 2 61.22

Average 50.50 21.67 60.73 2.50 2.50 61.37

solutions and equal expectations in the alterations required when user prefer-
ences change. Despite measuring the lines of code between two programming
languages, the experiment does not intend to compare the two programming
languages, but rather, to show the differences in effort required (i.e. time) to
solve video processing problems using two different approaches (single- versus
multiple-executable systems).

6.5.2 Testing of Efficiency

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the times taken to make
changes to the workflow tool and OpenCV program. The parameters for this
test are given below.

– Hypothesis: Constructing VIP solutions using the workflow tool is faster
than modifying existing image processing programs each time a domain
description is altered for a fish detection, counting and tracking task.

– Null hypothesis: There is no difference in the time taken to solve the task
using the workflow tool and modifying existing image processing programs
each time a domain description is altered for the same task.

– Independent variables
– Data (27 Ecogrid videos of various quality)
– Subjects and systems used for solving task: S3, S4.
– Task: T3 with the domain conditions given in Table 2.

– Dependent variables
1) Time taken to modify existing OpenCV program versus time taken to
encode changes in workflow tool.
2) Number of new lines of code added to encode the changes in OpenCV
program and workflow tool.

Using the formula provided by Equation 1, the value of t was computed to
be 7.01. The degree of freedom is set to n − 1, which is 5. A value of t(5)
= 7.01 corresponds to a significance level of p ≪ 0.05. This means that the
null hypothesis can be rejected. Thus the workflow tool is faster to adapt to
changes in domain descriptions than the image processing program.
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6.5.3 Testing of Accuracy

Again, statistical hypothesis testing using the t-distribution was conducted to
measure the dependencies between the results obtained for the accuracies of
the solutions provided by the workflow tool and the OpenCV program. The
parameters for this test are given below.

– Hypothesis: Constructing VIP solutions using the workflow tool yields more
accurate solutions than modifying existing image processing programs each
time a domain description is altered for a VIP task.

– Null hypothesis: There is no difference in the quality of the solutions ob-
tained using the workflow tool and modifying existing image processing
programs each time a domain description is altered for a VIP task.

– Independent variables
– Data (27 Ecogrid videos of various quality)
– Subjects and systems used for solving task: S3, S4.
– Task: T3 with the domain conditions given in Table 2.

– Dependent variables: Quality of solutions, assessed against manually de-
termined values.

Using the formula provided by Equation 1, the value of t was calculated
to be 1.01. The degree of freedom is set to n − 1, which is 5. A value of t(5)
= 1.01 corresponds to a significance level of p = 0.1794. This means that the
null hypothesis cannot be rejected. Thus, the quality of the solutions produced
by the workflow tool, although on average slightly better than the quality of
the solutions of the image processing program, is not significant enough to be
considered more superior.

6.5.4 Analysis

When an existing specialised image processing program can be found to sup-
port a specific task, the specialised program works very well. However, when
the user requirements (domain descriptions) are altered this is no longer guar-
anteed without modifications to the program. This modification could range
from 16 to 32 minutes for fish detection and counting tasks and take at most
61 lines of code to be written. The workflow tool, however, is adaptable to
these changes very efficiently, taking just 3 minutes and 3 lines of code at
most. The steps involved for the workflow modeller to encode these changes
include adding a method in the process library to encapsulate the new domain
descriptions as preconditions, and the relevant detection algorithm. Two more
lines are added in the capability ontology to introduce this description as a
performance criteria and to tie it to a relevant tool.

In terms of accuracy, the workflow tool on average performed slightly better
than the image processing program, however, this difference was not significant
enough to conclude that it produced solutions with better quality. Hence, with-
out loss of accuracy, the multiple-executable workflow tool is a more adaptable
problem solver than the single-executable image processing program.
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6.6 User Learnability in Selection of Optimal Tool for Detection Task

In this experiment, the system’s ability to help the user learn and manage the
processes involved in constructing optimal video processing solutions is tested.
An optimal tool is one that yields the best overall performance for the VIP
task. When the workflow tool is run in full automatic mode, it self-manages
the creation of workflows for the user. This is achieved by making use of
expert heuristics in assisting with the planning process. However, the system
is not able to assess the optimality of the plan that results from this automatic
solution as verifying video processing solutions computationally is not a trivial
task. Humans, on the other hand, are able to assess the optimality of the plan
by viewing the video containing the results. For example, it is trivial for a
human to verify that the system has counted two fish in a frame by observing
the count displayed in the resulting frame and the bounding boxes around the
fish (e.g. Fig. 10(c)). The aim of this experiment is to test whether the user
can compare the results of different tools for the same task and learn the best
performing tool from this comparison.

In this experiment, each subject was presented with seven pairs of similar
videos and seven pairs of dissimilar videos to perform a fish detection and
counting task. Similar videos have the same video descriptions (brightness,
clearness and green tone levels), while dissimilar videos have differing video
descriptions. For these 14 pairs, it was determined previously that similar
videos will use the same detection algorithms (hence same optimal detection
tool) while dissimilar videos required different detection algorithms (hence
not the same optimal detection tool) and have been used as baseline values
for the evaluation. The subject was asked to perform this task using the semi-

automatic mode of the workflow tool on all 14 pairs of videos. The ordering
of the pairs were mixed between similar and dissimilar. The aim was to test if
they were able to determine the most optimal tool for the detection algorithm
based on the recommended descriptions provided by the workflow tool. If they
were, then they should select this tool as the most optimal one in the next
similar video presented to them. They should also not conclude to select this
tool as the most optimal one in the next dissimilar video presented to them.

Before conducting the experiment, subjects were given a demonstration of
one run using the semi-automatic mode to familiarise them with the procedures
involved. Furthermore, they had performed the experiment in Section 6.4 and
have some familiarity with the system. For each pair, they first conducted
the task on the first video given. The workflow tool will display the video to
the subject before proceeding to solve the task. Knowing the descriptions of
the video (e.g. brightness, clearness, movement speed, presence of fish), the
subject will have more information when selecting a detection algorithm with
the help of the recommended descriptions provided by the workflow tool. After
selecting a detection algorithm, the workflow tool will display the final result
of this task based on this selection visually. The subject repeated the same
task on the same video by trying another detection algorithm, if they wished,
and observed the result.
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When they were confident with the most optimal tool, they proceeded
to perform the same task on the second video in the pair. This video could
have similar video descriptions as the previous one (i.e. similar) or not (i.e.
dissimilar). If the video descriptions are similar then the best tool inferred
from the previous run should also be the best (most optimal) tool for the
second run, otherwise it should not. During the second run, subjects were
asked which tool they would choose based on what they have inferred from
having conducted the experiment on the first video. Each time they selected
the best tool inferred from the first video for the second video in the similar
pairs, they were given a score of “correct”. Each time they selected the best
tool from the first video for the second video in the dissimilar pairs, they were
given a score of “incorrect”. If they were not able to infer the most optimal
tool from the first run, and thus could not infer any tool for the second video
based on the first, they were given a score of “incorrect”. The subjects were
asked five additional questions on the usability of the system. These included
verification of the system’s design principles, which included the option to
provide constraints and video descriptions, usefulness of the recommended
descriptions, and ease of use.

6.6.1 Testing of User Learnability

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the number of times the
user selected the correct tool based on a previous similar video and the num-
ber of times the user selected the incorrect tool based on a previous dissimilar
video. The parameters for this test are given below.

– Hypothesis: The semi-automated mechanism to compose workflows for fish
detection and counting task helps the user manage and learn the processes
involved in constructing optimal solutions.

– Null hypothesis: The descriptions provided by the workflow tool using the
semi-automated mechanism to compose workflows for fish detection and
counting task do not assist the user to learn the optimal solutions.

– Independent variables
– Data: 14 pairs of videos from 27 Ecogrid videos, 7 similar pairs and 7
dissimilar pairs.
– Subjects and systems used for solving task: S1.
– Task: T2 Detect and count fish in frames.

– Dependent variables
– Number of times correct tool was selected as optimal tool in second video
for similar pairs of videos.
– Number of times incorrect tool was selected as optimal tool in second
video for dissimilar pairs of videos.
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6.6.2 Results

Table 3 shows the results obtained to assess the level of user learnability when
using the workflow tool for seven pairs of similar videos and seven pairs of
dissimilar videos.

Table 3 color online: Number of times “correct” tool was selected in seven similar pairs of
videos, number of times “incorrect” tool was selected in seven dissimilar pairs of videos.

Subject Similar Pairs Dissimilar Pairs Difference
No. correct choices No. incorrect choices c− i

c i d

1 6 2 4
2 4 3 1
3 5 2 3
4 6 1 5
5 4 3 1
6 6 2 4
7 4 2 2
8 5 3 2

Average 5 2.25 2.75

The value of t was calculated to be 5.59 using Equation 1.The degree of
freedom is set to n − 1, which is 7. A value of t(7) = 5.59 corresponds to a
significance level of p = 0.0004. This means that the null hypothesis can be
rejected. With this, it can be concluded that subjects, more often than not,
selected the correct (optimal) tool when they were presented with a similar
video and did not choose this tool by chance. Hence, the semi-automatic mode
has helped the user learn and manage the processes involved in selecting the
optimal steps when solving a task.

6.6.3 Analysis

The results in Table 3 indicate that subjects were able to select the correct
optimal tool when they were presented with a similar video 5 out of 7 times on
average (71.43% of the time). This is relatively high compared to the instances
when they incorrectly chose an optimal tool learnt from a video for another
video that is not similar to the one where they have inferred the tool from,
which was 2.25 out of 7 times on average (32.14% of the time). The statistical
test proves that the workflow tool is indeed able to help subjects learn optimal
VIP tools without having any image processing knowledge, but purely from
their own visual capabilities in judging visual descriptions and from the textual
descriptions provided by the system.

The user’s understanding is tested via the provision of the description of
the tools when there was more than one tool to perform a task. By repeating
the same task using a different tool, the user can gain insight into how a
different solution can be produced and could then ‘judge’ which tool should
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be used for producing the most optimal solution. Hence when a new video
is presented and the same task is performed, the user would have learnt and
gained confidence in selecting the most suitable tool. The user can evaluate
the performance of any particular tool that they have selected for a particular
task. Using this feedback loop, the system can now learn which tools work
better for which type of videos (according to their video descriptions) and
under which constraint conditions.

To further validate the system’s usability and learnability features, the
findings of the questionnaire are summarised as follows:

– All subjects agreed on the appropriateness of having the option to provide
constraints and video descriptions to specify the VIP task in more detail.

– All subjects found the recommended domain descriptions suitable and help-
ful in assisting them make more informed decisions when selecting the best
detection algorithms (i.e. VIP tools).

– All subjects felt it was appropriate to be given the control to select tools
despite not having image processing expertise.

– On average, subjects were able to make the decision to run the fast pro-
cessing option for video classification task after just 6.4 runs.

– All subjects would prefer to use the automated tool if they were to perform
video classification and fish detection and counting tasks frequently.

These findings indicate that although the workflow tool and the domain
that it manipulates are both complex, users without expertise in workflow or
image processing domains can learn how to use the workflow tool and they
can even learn some aspects of solving image processing problems via selection
of VIP tools. These were achieved in a short period of time as indicated by
the experiment’s results. The experimental findings also verify and validate
the strength of the integrated approach. The efficiency and accuracy of the
results obtained indicate that the workflow system is able to produce results
comparable to those produced by humans and by competing systems (e.g.
image processing programs). The use of ontologies has been proven to be
beneficial via the provision of recommended descriptions that were useful to
users. The planner’s correctness and completeness has been tested on a set of
VIP tasks (goals), constraints and detection algorithms.

7 Conclusions

This research has contributed towards the provision of automatic workflow
composition via a novel framework that hinges on two key technologies, on-
tologies and planning. The integration has resulted in a semantics-rich and
flexible mechanism that is beneficial for the scientific, research and applica-
tion communities.

The framework has been evaluated on video processing tasks, in partic-
ular for underwater videos that vary in quality and for user requirements
that change. Higher time-efficiency has been achieved in automated-supported
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video processing tasks without loss of accuracy. In addition, a new, more flexi-
ble approach for video processing which utilises multiple executables that can
be reused was introduced. Consequently, non-experts can also learn to con-
struct optimal video processing workflows which was impossible prior to this.

Optimistically, this framework could eventually be used for general-purpose
video processing, not just confined to underwater videos. It could also serve as
an educational tool for naive users on a larger scale. At present, this approach
is being integrated onto a heterogeneous multi-core environment via a resource
scheduler and also to a web-based front-end. It is envisaged that this workflow
will be extended to support the management of live video streams for on-
demand user queries.
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