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Abstract

Despite recent advances in video action recognition achieving strong performance on existing
benchmarks, these models often lack robustness when faced with natural distribution shifts between
training and test data. We propose two novel evaluation methods to assess model resilience to
such distribution disparity. One method uses two different datasets collected from different sources
and uses one for training and validation, and the other for testing. More precisely, we created
dataset splits of HMDB-51 or UCF-101 for training, and Kinetics-400 for testing, using the subset
of the classes that are overlapping in both train and test datasets. The other proposed method
extracts the feature mean of each class from the target evaluation dataset’s training data (i.e. class
prototype), and estimates test video prediction as a cosine similarity score between each sample to
the class prototypes of each target class. This procedure does not alter model weights using the
target dataset and it does not require aligning overlapping classes of two different datasets, thus it is
a very efficient method to test the model robustness to distribution shifts, without prior knowledge
of the target distribution. We address the robustness problem by adversarial augmentation training
— generating augmented views of videos that are “hard” for the classification model by applying
gradient ascent on the augmentation parameters — as well as “curriculum” scheduling the strength of
the video augmentations. We experimentally demonstrate the superior performance of the proposed
adversarial augmentation approach over baselines across three state-of-the-art action recognition
models - TSM, Video Swin Transformer, and Uniformer. OQur curated datasets and source code are
publicly availableﬂ The presented work provides critical insight into model robustness to distribution
shifts and presents effective techniques to enhance video action recognition performance in a real-
world deployment.
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Test Data (Kinetics-400)

Figure 1: A common scenario with biased training data and testing with real-life data, with an example
class of “drink”. The training data is from the HMDB-51 dataset whose video samples are usually taken
from movies, and the test data is from the Kinetics-400 dataset which is from YouTube videos. There
are many reasons why the test data looks so different: poor camera quality, wrong orientation, extreme
camera shake, inconsistent frame rate, frame rate conversion artifacts (interlacing), poor lighting, lack of
professional post-processing (e.g. color grading), different ways of performing the action, poor framing,
inconsistent aspect ratios, editing artifacts, various actions happening at the same time. Thus, it is
common for the performance to drop significantly when the trained model is applied in more general
applications.
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1 Introduction

Video action recognition is a vital computer vision task with applications in surveillance, robotics, and
more. Video data exhibits greater diversity than image data, and therefore action recognition architec-
tures are not as robust to distribution shifts [38 [43], [58]. In addition to image-level effects like viewpoint
and appearance changes, video introduces effects such as camera motion, focus shifts, and background
object movements. Moreover, an action class incorporates substantial intra-class variation as illustrated
in Fig. [Il For example, the class “playing basketball” may involve dribbling, running, or shooting in dif-
ferent contexts. Furthermore, depending on the data source, there are biased video processing artifacts.
For example, videos collected from YouTube have standardized YouTube processing (VP9 compression),
making the dark areas have extremely low quality. Often, the videos go through a frame rate conversion
algorithm, which can create frame interlacing artifacts. As a result, the slight distribution shift in video
data can dramatically reduce the action recognition performance.

Data augmentation is one potential solution to account for this fragility. It is a popular method to
create synthetic variations of the existing training data that will enable classification models to gen-
eralize better to previously unseen test data. However, it is not yet clear what kind of augmentation
is necessary to generalize to test data with different distribution shifts. There has been much work
on automatically selecting augmentation policies given training and validation data [8] [22] [24] 34, [35].
However, such approaches optimize augmentation of the training data, and it is not clear how well the
resulting generalization applies to test data with much distribution shift.

To address the video domain shift problem, we propose an adversarial augmentation scheme that
generates “hard” video examples for the action recognition networks. The pipeline is simple to imple-
ment, and results in a meaningful improvement in performance on the proposed datasets with realistic



distribution shifts compared to no augmentation and random augmentation baselines. The benefits are
demonstrated using three popular action recognition architectures. The training and validation datasets
are subsets of HMDB-51 or UCF-101, and the test data are a subset from equivalent Kinetics-400 classes,
to realistically evaluate distribution shifts over the same action classes.

This approach and evaluation requires multiple datasets with common aligned action classes. The
paper also presents another simple method to evaluate robustness using a target dataset with different
classes using cosine similarity of features as logits. The method requires no training (i.e. fine-tuning)
on the target dataset, and thus it correctly measures the transferability of the trained classifier on the
target dataset.

To summarize, our contributions are:

1. Experiments reveal substantial performance degradation on our cross-dataset benchmarks, quan-

titatively demonstrating the challenge posed by real-world distribution shift.
2. We propose two novel evaluation protocols to assess model resilience to distribution disparity using
naturally sourced datasets, as opposed to solely artificially corrupted data:
2a) We construct new cross-dataset benchmarks by identifying overlapping classes between HMDB-
51, UCF-101, and Kinetics-400. Models are trained on either HMDB or UCF, and evaluated
on Kinetics data.

2b) We further introduce a similarity-based evaluation approach that estimates predictions us-
ing cosine similarity between embedded training and test features, without requiring class
alignment.

3. Through extensive experiments across multiple state-of-the-art architectures, we empirically demon-
strate that the proposed adversarial augmentation and curriculum adversarial training frameworks
enhance robustness to realistic distribution shifts between the training and test datasets.

4. We publicly release the constructed subsets of HMDB-51, UCF-101, and Kinetics-400 to enable
further research on this important problem.

2 Related Work

Action recognition.  Action recognition is the task of categorizing video sequences into predefined
action classes. Architectures based on 3D convolutional neural networks were previously dominant for
spatiotemporal feature learning. These include approaches such as inflating 2D models [7], incorporating
relational reasoning with non-local operations [55], and dual-stream designs [I4, [47]. More recently,
transformer networks have become prominent, demonstrating strong performance [12][33][39] despite their
exponential computational complexity [29]. For efficient video recognition, 2D backbone models remain
popular, using techniques like temporal feature aggregation [52], relational modeling [63], temporal shift
modules [36], frame selection [20] [3T, (7], channel-wise convolutions (i.e. height-width, height-time,
width-time) [50] or analyzing short-term and long-term temporal difference [53].

Data augmentation. [45] summarizes image data augmentation techniques for deep learning. Au-
toAugment [8] is an augmentation policy search algorithm that finds the best augmentation on a target
dataset, based on the highest validation accuracy. Due to AutoAugment’s expensive policy search,
Population-Based Augmentation [24], FastAutoAugment [35], and FasterAutoAugment [22] proposed
more efficient searching algorithms, by learning a schedule policy over a fixed-policy, using density
matching, and using differential augmentation with a generative adversarial network (GAN) [I8] ar-
chitecture that involves a policy generator and a discriminator, respectively. Differentiable Automatic
Data Augmentation [34] proposed a data augmentation policy searching algorithm (using the Relaxed
Bernoulli distribution [26]) which is differentiable, similar to FasterAutoaugment, and further introduced
an unbiased gradient estimator that enables joint optimization of the augmentation policies and network
parameters, instead of using a GAN. RandAugment [9] showed that simple random augmentations with
randomly sampled transformations achieve similar performance more efficiently.

However, the policies in most works are optimized on the training set, and we focus on the scenario
where test data can have severe distribution disparities which are unknown during the training time.
Adversarial training. Adversarial training (AT) is framed as a min-max problem whereby the
trained model uses observed training samples to minimize its prediction error, while an adversary at-
tempts to generate training samples that maximize it. It is well-established that AT is the most effective
way to achieve adversarial robustness [2]. It has further been shown to yield other types of robustness,
e.g. against natural corruptions [10], domain shift [30, 44 [64], and others. Note that even though the
classical definition of AT uses adversarial input noise [6l, [19], more adversarial image augmentations have
been studied, e.g. rotations [54] [62], contrast, jitter, etc. [3]. AT should be approached with care, as



generating adversarial training examples that are too challenging for the trained model may actually
harm downstream performance [5].

In this paper, we employ two measures to control the trade-off between augmentation strength and
performance: (i) We create maximally informative adversarial examples (confusing to the model, but
near the classification boundaries) via maximum-entropy regularization, as per the work of [11], 27, [59].
(ii) We train with curriculum AT as per the work of [5] [60], which means training with harder adversarial
examples over time.

Domain adaptation.  Domain adaptation is a transfer learning task where the source and target
datasets have a significant distribution shift while sharing the same task. [I3] explains types of domain
adaptation tasks and approaches.

There are discrepancy-based techniques that learn transferable features from a source domain to a
target domain [40, [61], reconstruction-based methods that utilize autoencoders, which aim to extract
useful features for the target domain [16, [I7], and adversarial domain adaptation approaches involving a
source / target discriminator that distinguishes where the data come from and a feature extractor that
aims to confuse the discriminator by trying to produce generic features regardless of the domain [T], 4] [T5],
25, [42], 146, [50], [51]. More recently, analyzing frequency components of deep feature maps using attention
to filter domain-general components [37] is proposed.

Domain adaptation for video action recognition was first proposed by using a feature alignment
approach on online test videos [38]. This work was evaluated using computationally simulated corrupted
videos, while we propose to use real examples that involve more diverse types of discrepancy between
the domains.

It is important to note that most domain adaptation techniques require examples from the target
dataset to be present, while our work focuses on evaluating using a completely unknown dataset.
Corruption robustness analysis. [23] provided benchmarks for measuring a neural network’s
robustness to corruptions and perturbations, by evaluating with 15 algorithmically-generated corruptions
(e.g. noise, blur, pixelate, compression artifacts). [58] extended this to video classification tasks and video
corruptions (e.g. video compression artifacts, frame rate conversion, bit error, packet loss). [43] reported
a large-scale robustness analysis of deep action recognition models again using pre-defined perturbations.

These approaches were evaluated using simulated data, while we propose to use real data for testing.
Evaluating robustness with augmented data prohibits the same augmentations to be used for training.
This paper focuses on a more realistic scenario where a known set of data augmentation strategies is
used for training and evaluation is done with unprocessed real data.

3 Problem and Methodology

Action recognition predicts an action category label given a video sequence. This paper explores how
well different variations of action recognition models, training, and loss functions generalize by evaluating
on a different data domain.

The main difference with transfer learning is that our approach does not tune model parameters using
the target evaluation dataset, whereas transfer learning usually involves fine-tuning the model with the
target dataset’s training set.

To improve generalizability, the training data is augmented. Hard-to-classify adversarial examples
are generated by applying gradient ascent on the augmentation parameters which are fully differentiable.
We then train the classifier using the AT (Adversarial Training) loss, calculated using both clean and
adversarial examples.

3.1 Adversarial Augmentation Training

Adversarial augmentation training uses a two stage training loop. See Fig. 2]
Stage 1: Generate adversarial examples.  “Hard” adversarial examples are found by tuning the
augmentation parameters using gradient ascent.

Let go(x) be an augmentation model with fully differentiable parameters 6, and fy(x) be a video
classification model with parameters ¢, that outputs class predictions given an input video x. The
goal of stage 1 is to find the augmentation parameters 6’ that maximize categorical cross-entropy loss.
Note that by mazimizing the loss, we aim to find the augmentation strategy that is challenging for the
classifier, and in Fig. [2] this is described as minimizing the negative cross-entropy loss.

At each training step, the augmentation parameters 6 are randomly initialized. Gradient ascent is
then done only on 6, freezing the classification parameters ¢ to learn adversarial augmentations, with



Stage 1: Freeze the classification model and tune the augmentation model
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Figure 2: The proposed adversarial augmentation training has two separate stages. Firstly, the classifica-
tion model is frozen while the differential augmentation model is trained using the negative cross-entropy
loss. This is equivalent to performing gradient ascent to maximize normal cross-entropy loss. As a re-
sult, the augmentation model will generate hard augmentations for the classification model. The second
stage trains the classification model using both clean and adversarial examples. The maximum entropy
regularization loss is integrated by subtracting the entropy of the adversarial examples, encouraging the
predictions to be evenly balanced.

the cross-entropy loss Lcr(fe(9e(%i)),v:). This optimizes augmentation parameters 6" for generating
adversarial examples.

Stage 2: Optimize the classification model. Next, the classification parameters ¢ are opti-
mized while freezing the augmentation parameters 6. For simplicity, x} = g¢-(x;) denotes the generated
adversarial example of x;. The vanilla AT loss is defined as:

Lat(fo(xi), fo(x7), i) = aLor(fs(xi), vi) + (1 — @) Lop(fs(x"), vi) (1)

which is a weighted average of the cross-entropy loss using the clean sample and the augmented sample.
Max-Entropy Regularization. The cross-entropy loss encourages predictions to be over-confident
by pushing the examples further from the classification boundaries. However, adversarial examples are
supposed to be confusing. We regularize the cross-entropy-based adversarial loss in Eq. by maximizing
the entropy, encouraging the overall predictions to be evenly balanced for adversarial examples.

Lar-me(fo(Xi), fo(x7),v:) = aLlcou(fe(Xi), vi)

(1= @) Lenlfo(x"), 5s) — 1Le(fa(x"2)) @

where entropy loss Lg is defined as

Lu(folxt)) = — g D0 157 () o7 (1)) 3)

c=1

C is the number of classes, and f q(f) (x}) is the prediction score of class ¢ for the adversarial example x.
Curriculum Adversarial Training. Applying curriculum training by starting from training with
“easy” samples and gradually generating “harder” samples makes the model more robust [5]. Here, the
classification models are trained initially from clean data without augmentation, and gradually harder
adversarial examples are added by scheduling the learning rate of the augmentation model.

3.2 Cross-Dataset Evaluation

We train on one dataset and test on another dataset, where there are distribution shifts between the
train and the test data. We propose two different evaluation approaches.

Matched Class Evaluation (Expt. 1). The first approach creates two datasets that share the same
classes, but have a significant disparity in the train and test data distribution. Classes that are common
to the two initial datasets are identified following the procedure described in TruZe [21I]. We describe



the procedure and curated datasets in Supplementary Material. This is the most realistic method to
evaluate on a distribution shift, but it requires some manual procedures as well as finding datasets that
share largely similar classes.

Cosine Similarity Evaluation (Expt. 2). The second method applies the feature extractor trained
on the source dataset to the videos in the target dataset, which are split into a training subset and a
test subset. This is a simpler method that does not require manual class matching. A more descriptive
procedure can be found in the Supplementary Material.

Formally, the class prototype c; € RM for each class k is the M-dimensional mean vector of the
embedded features belonging to that class in the training subset. Let Sy be the set of videos in the
training subset of the target dataset from class k. c¢j is computed by the following, where y; = k for all
(xi,yi) € Sk:

g L hulx) (4)

(x4,y:) €Sk

h., () is the embedded feature extraction function computed by training on the source dataset.

For a given test video from the test subset of the target dataset x; € S;°', the probability of a
given class label k is estimated using the cosine similarity of the embedding to the target dataset’s class
prototype cg, followed by softmax. Given the cosine similarity function d(x,c) = m we get:

exp(—d(hy (%), ck))
Zk/ exp(—d(hw(X;), )

where y denotes the class label. If the largest estimated P(-) is for the same class as the ground truth,
then this is a successful classification. Accuracy is computed over all samples in the test subset of the
target dataset.

The parameter w is not tuned during this operation. That is, the target dataset does not contribute
to fine-tuning the model. The motivation of this approach is to measure the transferability of the model
from a source dataset to a target dataset without actually tuning the model parameters, showing the
robustness of the model to sample distribution shift.

P(y = klx; € ) = (5)

4 Experiments

HMDB/Kinetics and UCF /Kinetics Datasets (Expt. 1). HMDB-51 [32] is a popular human
action recognition dataset that is composed of around 7,000 video clips divided into 51 categories, col-
lected from mainly movies as well as YouTube. The UCF-101 [49] dataset consists of 13,320 videos in
101 action classes collected from YouTube. Kinetics-400 [2§] is a large-scale action dataset in which each
video clip is around 10 seconds long, and there are over 300,000 videos in 400 classes.

Training datasets are created from subsets of HMDB-51 or UCF-101 and the subset of the Kinetics-
400 test set is used for testing. The subsets share the same classes between the training and test sets.
The motivation for this approach to creating the datasets is to simulate a real-world environment where
the test data comes from many unknown sources, with many variations in actions, capture conditions,
aspect ratio, and so on. The Kinetics-400 dataset has many more samples in the fine-grained classes, so
it was used for testing.

TruZe [21] is used to identify shared classes from the HMDB-51 and Kinetics-400, and UCF-101
and Kinetics-400 datasets, based on the visual and semantic similarity. More details on this procedure
can be found in the Supplementary Material. The final datasets are named HMDB-28/Kinetics-28 and
UCF-65/Kinetics-65, where the training sets are subsets of the HMDB and UCF data, respectively, and
test subsets come from Kinetics. The 28 and 65 refer to the number of shared classes. The three official
published splits of HMDB-51 and UCF-101 are used, but only the shared classes are selected. The results
in Table |l are the average performance over the three splits. The HMDB-28/Kinetics-28 dataset consists
of 3445 HMDB and 43406 Kinetics videos, and the UCF-65/Kinetics-65 dataset consists of 8935 UCF
and 78583 Kinetics videos.

HMDB <+ UCF Evaluation (Expt. 2). For the experiments using the cosine similarity function,
the HMDB-28 trained models are tested on UCF-101, and the UCF-65 trained models are tested on
HMDB-51, using the cosine similarity measure with class prototypes as predictions. The feature extractor
trained using the training data is then used on the target dataset. It is used to create class prototype
vectors (for each target class) from one part of the target dataset, and evaluation is based on the



Test Accuracy Test Accuracy
Model Train Dataset Augmentation Kinetics-65 Hh[DB-E)l Model Train Dataset Augmentation Kinetics-28 UCF-101

Matched Expt la | Cosine Expt 2a Matched Expt 1b | Cosine Expt 2b

None 39.13 £ 0.56 37.61 £ 1.88 None 29.75 £ 1.08 60.51 £ 0.79

. S Random 40.90 £ 0.32 38.19 £ 1.39 Random 30.13 £ 0.42 61.21 £ 0.57

-65 5 T -

TSM UCF-65 [77.50] Adversarial 42.42 £ 0.63 38.99 £ 1.26 TSM HMDE-28 [55.45] Adversarial 3244 £0.48 62.60 £ 0.59
Curriculum 42.51 + 0.62 39.14 + 1.21 Curriculum 32.82 £ 1.41 63.18 £ 0.71

None 37.08 £ 1.43 38.91 £ 1.63 None 25.26 + 0.80 59.88 + 0.55

. S Random 40.80 £ 1.90 40.61 £ 1.40 L g (g o | Random 26.63 = 0.97 60.99 £ 1.30
Swin UCF-65 [BL15] | 4 40 orcarial 42.27 + 0.24 | 4148 + 1.58 Swin HMDB-28 [54.67] | 4 4ersarial 27.31 % 0.57 62.57 + 0.72
Curriculum 41.20 £ 0.72 41.58 + 1.63 Curriculum 27.60 + 0.62 62.95 + 0.82

None 18.78 £ 0.22 21.39 £ 1.32 None 14.53 £ 0.51 28.23 +0.94

A . .C 4, K - 50 / Random 14.33 £+ 1.03 28.67 £ 1.36

Uniformer | UCF-65 [52.05] i:ll\],—;l:::ﬂ.ﬂ ;; 32, i 8 Z: 22641962 i 126160 Uniformer | HMDB-28 [20.43) | (4 0 0ol 15.13 + 0.79 29.88 + 2.62
Curriculum 23.61 + 0.27 24.93 + 1.60 Curriculum 15.25 + 0.75 30.83 £+ 1.04

Table 1: Results from three models (TSM ResNet50, Video Swin Transformer Tiny, and Uniformer-S),
two training datasets (UCF-65 and HMDB-28), four augmentation strategies (no augmentation, random,
adversarial, and curriculum), and two test datasets (Kinetics, and HMDB/UCF). In all cases, adversarial
augmentation or curriculum adversarial augmentation training outperformed all baselines. The columns
labeled Test Accuracy show the performance on the target test set. The values in brackets in the Train
Dataset columns show the “no augmentation” accuracy on the test set of the same dataset to demonstrate
the performance drop when evaluating to the Kinetics dataset.

classification accuracy of the other part of the dataset. This assesses the quality of the feature extractor
on another dataset with distribution shifts. The results in Table [I| are the average performance over the
nine splits, three runs from the source dataset and each run evaluates with three splits from the target
dataset.

See Supplementary Material for the resulting matching datasets in Table 2] and a summary table of
all experimental datasets (Expt. 1 and Expt. 2), in Table
Augmentation Methods. Results are compared for four different training approaches: training
without augmentation, with random augmentation, with adversarial augmentation, and with curriculum
AT [5] as described in Section Experiments used the popular efficient 2D TSM model [36] with
a ResNet50 backbone, Video Swin Transformer [39] Tiny, and Uniformer-S [33] model. ImageNet pre-
trained models were used instead of Kinetics pre-trained, so that the models never get to see the Kinetics
data distribution.

Augmentation used translation to a maximum of 28 pixels, 10° rotation, shear transform of 0.1,
and scale from 0.9 to 1.5. For curriculum training, no augmentation was used for 20 epochs, then AT
with a zero learning rate of the augmentation model was used for 20 more epochs. Then, AT with a
triangular learning rate scheduling from 0.1 to 1.0 on the augmentation model was used for the rest of
the training, except for the Uniformer model. For Uniformer, the above was done for only 20 epochs,
and then trained with random augmentation for 20 more epochs and fine-tuning with no augmentation
for the rest to mitigate under-fitting issues.

See the Supplementary Material for implementation details.

5 Results

5.1 Shared Class Experiments 1a, 1b

When the adversarial training approaches presented in Section|3.1]are applied, target dataset performance
improves. Table [I] summarizes the main cross-dataset evaluation results for the four augmentation
strategies presented in Section [3.1] The different adversarial augmentation strategies gave improved
accuracy for the target datasets (see Kinetics-28 and 65 results columns).

Also, unlike what is reported in [43], the convolutional architecture performed better with the distri-
bution shift compared to transformer models in most of the cases except for the Swin Transformer trained
on UCF-65 and tested on HMDB-51. We hypothesize that this is because the Kinetics test dataset shows
natural and realistic distribution shifts. In addition, we did not use the Kinetics pre-trained models, and
the transformer architectures require large-scale data to reach the maximum potential.

In all cases, the adversarial augmentation or curriculum methods outperform all baselines, given a
fixed network architecture, for all training and test datasets. Although the “random augmentation”
and “adversarial augmentation” allow an identical range of transforms, generating adversarial examples
through gradient ascent produces “harder than random” augmentation which improves the overall per-
formance. Furthermore, adding the simple curriculum mostly improved over the adversarial benchmark.

See the Supplementary Material for confusion matrices that show per-class performance drop with
distribution shifts and improvements using the proposed adversarial augmentation.



5.2 Cosine Similarity Evaluation 2a, 2b

The cosine-similarity-based accuracy results on HMDB-51 and UCF-101 are shown in the Cosine Expt
columns of Table [[I The results follow a very similar trend to the “realistic” Kinetics Expt 1. The
advantage of using this accuracy measure as compared to testing on Kinetics with overlapping classes is
that it requires no thorough analysis of the source and target datasets to find overlapping classes, making
it simple to set up the cross-dataset experiments even using new datasets.

6 Conclusion

This paper addressed the problem of model generalization to realistic test distribution shifts. Two
new datasets that are comprised of three existing datasets were created that shared the same subset of
label classes. Although the same classes were used, the variety of videos in the original dataset sources
meant that there was a huge distribution shift from the source to the target datasets. When using
the target datasets, action recognition performance dropped significantly. This led to trying adversarial
augmentation, with and without curriculum scheduling, as an approach to generating hard adversarially
augmented videos. This approach gave a small but meaningful improvement in performance, even with
the large distribution shift in the test data. The second cross-dataset evaluation approach, using the
cosine similarity as logits, also showed a similar trend as the matching dataset experiments, providing a
simpler alternative method without having to curate datasets with matching classes.



Supplementary Material

A TruZe Class Matching Procedure

For Expt. la and 1b, we follow TruZe [21] to identify overlapping classes in two different datasets. To
choose the common classes, visual features are extracted on two existing datasets using the I3D [7] model
pre-trained on Kinetics-400 [28] and semantic cues are extracted using the sen2vec [41] model pre-trained
on Wikipedia. The visual and semantic similarity features are combined and then used in the TruZe [21]
procedure (i.e. include exact matches, matches that can be either superset or subset, and matches that
predict the same visual and semantic matches) to obtain a set of extremely similar classes from the two
source action recognition datasets. The matched classes from the two datasets are verified manually and
a subset is selected that has a substantial overlap in visual and semantic cues. One dataset is used for
training and validation, and the other dataset is used for testing.

In TruZe, normally, classes from UCF or HMDB that have overlapping context with the corresponding
Kinetics class are removed, so that using the Kinetics pre-trained models would not bias the zero-shot
settings. However, in our robustness problem, the train and test datasets are created with the opposite
goal, where only overlapping classes are selected. For instance, the class “climb” in HMDB-51 is treated
as the same class as “rock climbing”, “ice climbing”, “climbing a rope”, and “climbing tree” in Kinetics-
400. Examples of the resulting splits for the matched class experiments (Expt la and 1b) can be found
in Table 2

B Cosine Similarity Evaluation Procedure

In Expt 2a and 2b, we use cosine similarity between class prototypes and features on the evaluating
dataset to estimate predictions. We then report accuracy with the simulated predictions to compare the
performance of augmentation strategies given distribution shifts.

We first train the classification model using the source dataset. Since the number and types of classes
of the training (source) and evaluation (target) datasets are different, we detach the last classification
layer of the source dataset classification model to use it as a feature extractor. We then calculate class
prototypes of all the classes in the target dataset by simply averaging the features of each class in
the training set, inspired by [48]. The prediction score of a sample from the target dataset’s test set is
estimated using the cosine similarity of their feature vector and the class prototypes, followed by softmax.
In other words, the cosine similarity is used as logits, which are formed by producing high activations on
classes that are closely aligned to the training set of the target dataset. Using these estimated prediction
probabilities, we report accuracy. We will show that adversarial augmentation of the source dataset also
produces improved classification of the target dataset, by producing a more robust feature extractor for
use with this similarity measure. Note that the source dataset is never used for evaluation, and only be
used for training the model, and the target dataset’s training set does not contribute to fine-tuning the
model. The role of all four splits in two different datasets can be found in Table

C Datasets

Table 4| summarizes all datasets used for the experiments (Expt. 1 and Expt. 2).

D Implementation Details.

Videos were resized to 224 x 224 and sampled to 8 frames sparsely similar to [52]. The classifier models
were trained for 200 epochs using an SGD optimizer with an initial learning rate of 0.0001, decaying
the learning rate using cosine annealing scheduling. For adversarial training (AT), the augmentation
model used a learning rate of 0.1. For adversarial plus curriculum training, the Lar.vg loss was used
with @ = 0.5 and v = 0.5. Two NVIDIA RTX 3090 GPUs were used with batch size 16 to train the
TSM models, an NVIDIA A100 GPU with batch size 16 and 32 for training the Uniformer and Swin
Transformer models, respectively.



HMDB-51 Classes | Kinetics-400 Classes
brush hair curling hair, dying hair, brushing hair
cartwheel cartwheeli

g, somersaulting

catch, throw shooting goal, juggling, catching or throwing frisbee, catching or throwing baseball, catching or throwing softball, throwing axe, throwing ball, throwing discus
clap clapping, applauding

climb rock climbing, ice climbing, climbing tree, climbing a rope

dive diving cliff, bungee jumping

dribble dribbling basketball

drink drinking beer, drinking shots, drinking

eat eating burger, eating cake, eating carrots, eating chips, eating doughnuts, eating hotdog, eating ice cream, eating spaghetti, eating watermelon

golf golf driving, golf chipping, golf putting

UCF-101 Classes Kinetics-400 Classes

Basketball shooting basketball, dribbling basketball, playing basketball
BasketballDunk dunking basketball

BodyWeightSquats | lunge, squat, dead lifting

BreastStroke swimming breast stroke, swimming back stroke
CleanAndJerk clean and jerk, snatch weight lifting
CliffDiving diving cliff, springboard diving

Haircut shaving head, braiding hair, getting a haircut
HorseRiding riding or walking with horse, riding mule
PlayingPiano playing piano, playing organ

Skiing skiing (not slalom or crosscountry), skiing crosscountry, skiing slalom

Table 2: The HMDB-28/Kinetics-28 (above) and UCF-65/Kinetics-65 (below) datasets which are subsets
from the original HMDB-51 UCF-101, Kinetics-400 datasets. Visually and semantically similar classes
were combined which allows testing with real-life data from YouTube that has a significant distribution
shift from the training data. The HMDB or UCF data are used for training and validation, and the
Kinetics data are used for testing.

| Dataset Type | # Classes | Split | Usage

train | Training
Source N test | Validation
train | Obtaining K class prototypes
Target K test Testing with cosine similarity as logits

Table 3: Purpose of all dataset splits for the cosine similarity evaluation method (Expt. 2). Given the
four splits of the data, the source dataset is used to train (with or without AT) and validate the model.
The target dataset is used to evaluate the model without further fine-tuning.

] Expt \ Name \ Original Dataset \ Usage
1a UCF-65 UCF-101 Training, validation
Kinetics-65 | Kinetics-400 Testing UCF-65 trained models
b HMDB-28 | HMDB-51 Training, validation
Kinetics-28 | Kinetics-400 Testing HMDB-28 trained models
9% UCF-65 UCF-101 Training, validation
HMDB-51 | (original) Testing UCF-65 trained models w/ cosine similarity
% HMDB-28 | HMDB-51 Training, validation
UCF-101 (original) Testing HMDB-28 trained models w/ cosine similarity

Table 4: List of datasets used for our experiments. The HMDB-51, UCF-101, and Kinetics-400 are the
original datasets. The UCF-65, Kinetics-65, HMDB-28, and Kinetics-28 are the proposed subsets.
E Adversarial Augmentation Examples

Some examples of adversarial augmentations in comparison to random augmentations are depicted in
Fig. One might think that the most extreme and unrealistic augmentations will be challenging to
the classifier. However, adversarial augmentation can sometimes render more realistic yet challenging
examples.

F Performance Drop with Distribution Shifts

Two confusion matrices are created collating the performance when training on HMDB-28 and testing
on either HMDB-28 or Kinetics-28 (test sets) similar to Expt la and 1b. The former is subtracted from
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situp eat smoke pullup

Figure 3: Examples of the vanilla and proposed augmentation examples in the HMDB-51 dataset while
training the Video Swin Transformer model.

the latter to record how much difference there is in the performance, which is shown in Fig. Eka). (The
figure also shows the same results when using UCF-65 and Kinetics-65.) In this figure, no augmentation
strategy is used. The figure shows that there is a dramatic performance drop when the models are
tested on a different dataset (Kinetics) to training (HMDB or UCF). Some categories such as “situp”,
“shoot_bow”, and “drink” are damaged more severely. As seen in Fig. [l HMDB/UCF videos have
objects and actors that are clearly visible and stable in the frame, while Kinetics videos tend to have
lots of camera motion with different sizes of the objects. The overall accuracy drop from UCF-65 to
Kinetics-65 is even more significant. These results show that the raw trained model is not robust to
distribution shifts between datasets, which is not ideal for deployment in real applications.

G Improvements on Classes with Larger Distribution Shifts

To demonstrate the improvement in transfer performance by the use of the curriculum adversarial strat-
egy, we computed the difference of the confusion matrices for None and Curriculum augmentation in
Expt. 1la and 1b. Fig. |5/ shows the results, where the reddish boxes on the diagonal indicate improved
performance. It is clear that the proposed adversarial augmentation makes the model more robust on
the classes with the larger distribution shifts, as presented in Fig. @] This supports our claim that the
proposed adversarial augmentation makes the model more robust in classes with a huge distribution
shift.
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