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ABSTRACT

Having ground truth is critical for evaluating segmentation al-
gorithms and estimating the ground truth from a collection of
manual segmentations remains a hard problem. A proper esti-
mation approach should take into account and compensate for
the inter-rater variation. In this paper, we conduct an analysis
of manual segmentations in order to have a better understand-
ing of the pattern of the variation and investigate whether in-
corporating such pattern information will improve the ground
truth estimation. We propose a level-set based approach that
solves the ground truth estimation in a probabilistic formu-
lation. The prior pattern information is incorporated into the
estimation model by adding a specially designed term in the
energy function. Experiments on both synthetic and real data
show that this prior information helps to find a more accurate
estimate of the ground truth.

Index Terms— Segmentation evaluation, ground truth

1. INTRODUCTION

Segmentation is the first step of the computer-based skin
lesion diagnosis algorithms and its accuracy is of crucial
importance for the subsequent analysis. The evaluation of
numerous computer-based skin lesion segmentation methods
becomes necessary. Having ground truth (GT) is critical for
the supervised evaluation, which considers the accuracy of
the segmentation result as the degree to which the result cor-
responds to GT through evaluation metrics. Unfortunately,
GT normally does not exist in practice and must be estimated
as a compromise within a group of raters [3]. However, the
inter-rater segmentations show a significant disagreement ac-
cording to the rater’s subjective criteria in placing the bound-
ary [3, 5]. Hence, the question is raised as how to compensate
for this inter-rater variability. To date, the most appropriate
strategy to combine such segmentations is unclear and it has
become a popular research topic in itself [7].
The STAPLE algorithm proposed by Warfield et al. [7] is so
far one of the most referenced approaches in the field. STA-
PLE treated decision fusion as a maximum-likelihood prob-
lem and solved it using the expectation-maximization(EM)
algorithm that guaranteed convergence, but not necessarily

global optimality. STAPLE gave the quantitive estimate of
the performance level parameters of raters in terms of the sen-
sitivity and specificity and, based on which, it could output a
probabilistic estimation of the GT simultaneously. However,
Langerak et al. and Klein et al. highlighted that the perfor-
mance of STAPLE was application dependent [6, 4]. It failed
when the performances of the raters varied greatly. This can
be explained by the fact that, even though fusing results in a
weighted way, STAPLE takes into account all raters. A bad
rater can contaminate the overall result, especially when an
inappropriate initialization is allocated. In this context, the
authors in [6] proposed a simplified STAPLE variant. This
variant iteratively selected the optimal segmentation results
based on image similarity measures and abandoned the ones
with poor quality due to the wrong registration result. The fi-
nal result was a combination of the optimal segmentations in a
weighted Majority Vote procedure. The selection step helped
to deal with the large variability problem encountered in their
application and hence produced better results than STAPLE.
Their approach required a large number of manual results be-
cause of their abandonment strategy and several parameters
needed to be tuned in the iteration step, like the number of
segmentations to be discarded and the similarity threshold.
Moreover, the algorithm had no guarantee of convergence. It
does however give us a hint as to whether or not a prior study
of the segmentations would help. Hence, we hypothesize that
a proper estimation of GT should take into account the seg-
mentation bias pattern, which can later serve as a priori in-
formation that guides the weighting of raters and drives the
GT closer to the truth. This strategy has not been attempted
in the related literature as far as the authors are aware.
In this paper, we conduct a pattern analysis of manual seg-
mentations and then investigate whether incorporating such
pattern information will improve the ground truth estimation.
We represent the ground truth estimation as an optimization
issue and propose a level-set based approach that maximiz-
ing the a posteriori probability (MAP) function. The perfor-
mance of this method will be evaluated on both synthetic and
real data. Some notations in the paper are listed as following:
Dij(x): the manual segmentation of the ith image drawn by the jth expert at pixel x

Ti(x): the estimated ground truth of the ith image at pixel x. Ti(x) ∈ {0, 1} and

[1: lesion, 0: normal skin]



I: the number of images; J : the number of raters

P(Ω): the partition of the image Ω into N distinct regions: {Ωn}Nn=1, ∪Nn=1Ωn ≡

Ω and Ωi ∩ Ωj = ∅, ∀i6=ji, j. N is the number of regions.

2. LESION MANUAL SEGMENTATION PATTERN
ANALYSIS

We present a comprehensive assessment using carefully vali-
dated segmentations of 50 lesion images. The lesion bound-
aries are obtained by 8 dermatologists from the Dermatology
department of the University of Edinburgh who directly draw
the lesion boundary on the colour image displayed in Adobe
Photoshop CS3 using a Wacom Clintiq 12WX Interactive pen
tablet independently. We then convert the results into binary-
valued images. To our knowledge, ground truth estimation
for lesion segmentation analysis has not been studied on such
a comparably large data set.
Visual inspection reveals the existence of both intra-rater and
inter-rater variations when segmenting the same lesion, but
the latter is more significant than the former according to a
previous study [5]. Hence, we assume that the inter-rater vari-
ation is the main factor that differentiates the segmentations
from different raters and should be compensated for during
the ground truth estimation procedure. In order to account
for the inter-rater variation, the authors in [8] considered the
existence of two bias patterns as underestimation and over-
estimation and compensated for it through the estimated bias
parameters. However, in lesion segmentation, using these two
patterns is not enough, since the rater would either trace the
lesion boundary exactly, or overestimate the boundary to an
extent, but no underestimation exists. The estimated ground
truth would still have some overestimation since all the results
make a contribution to the ground truth. We question whether
or not some other factors can help the GT to converge to a
more accurate lesion boundary.
According to observation, lesion manual segmentations vary
because of different rater’s segmentation policy. For some of
them, locating a general lesion region is necessary for a good
diagnosis. Hence, they give less effort to the exact edge de-
tails; while others might pay a great deal of attention to draw-
ing a very precise pixel-by-pixel boundary. In this context, we
assume that there are two patterns of manual results: detailed
segmentations that have finer details along the boundary and
less careful compact segmentations that tend to have a more
compact lesion region. We categorize all the manual results
drawn by 8 raters into two patterns based on two measure-
ments: Compactness measurement (CM = perimeter2

4π×area )
and Fractal Dimension (FD = log (N(s))

log (N) , N denotes the
number of squares covering the image field), using the k-
means clustering approach. For the purpose of comparison,
both CM and FD values are normalized across 50 test im-
ages. The scatter plot of these two values is shown in Fig. 1.
The results for a detailed style rater are highlighted in red;

while the ones for a compact style rater are highlighted in
green. Fig. 1 clearly illuminates a separation between two
segmentation patterns (detailed v.s. compact). Furthermore,
each rater keeps a consistent segmentation style over the 50
images. Hence, this pattern clustering result can be consid-
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Fig. 1: The scatter plot of FD and CM.

ered as useful prior information with potential value in esti-
mating the ground truth. In our application, we consider a
good quality lesion segmentation as one which has a small
average distance from the true boundary. In this context, the
detailed segmentation outperforms the compact segmenta-
tion and should be considered as more important.

3. GROUND TRUTH ESTIMATION METHODS

We treat the ground truth estimation as an optimization issue
and propose a level-set based approach. The main advantages
of using a level-set framework are: 1) the force that drives
the evolution of the level set function has a physical interpre-
tation, 2) it enables us to directly incorporate prior segmen-
tation pattern information into the estimation framework by
adding a specially designed term in the energy function E.
(A) Maximize the a posteriori (MAP) probability based
method (LSML)
Our MAP based formulation estimates the GT as a process of
finding the most possible partition P(Ω) of the image domain
under the observation of a set of manual results:

p(P|Di{1,2,...,J}) =

2∏
n=1

p(Ωn|Di{1,2,...,J}) (1)

=
2∏

n=1

∏
x∈Ωn

p(T (x)|Di{1,2,...,J}(x)). (2)

p(T (x)|Di{1,2,...,J}(x)) is the conditional probability of the pixel
x belongs to region T (x) and it has the format:

p(T (x) = 1|Di{1,2,...,J}(x)) =
p(T (x) = 1, Di{1,2,...,J}(x))

p(Di{1,2,...,J}(x))
(3)

=
a

a+ b
= W. (4)

p(T (x) = 0|Di{1,2,...,J}(x)) = 1−W = V. (5)

where a and b are defined under the assumption that the raters
perform the segmentation independently:

a = p(Di{1,2,...,J}(x)|T (x) = 1)p(T (x) = 1) (6)

=

J∏
j=1

p(Dij(x)|T (x) = 1)p(T (x) = 1) (7)



b = p(Di{1,2,...,J}(x)|T (x) = 0)p(T (x) = 0) (8)

=
J∏
j=1

p(Dij(x)|T (x) = 0)p(T (x) = 0) (9)

W and V are the joint conditional probability that pixel x be-
longs to the lesion and skin, respectively. The definition of
the likelihood function for an individual rater is inspired by
STAPLE and upholds the idea that the contribution of each
rater to GT estimation differs based upon their performance
(in terms of sensitivity (sentj) and specificity (spefj)):

p(Dij(x)|T (x) = 1) = sentj×sign(Dij(x))+(1−sentj)×(1− sign(Dij))
(10)

p(Dij(x)|T (x) = 0) = spefj×sign(1−Dij(x))+(1−spefj)×(sign(Dij)).
(11)

The prior information term p(T (x) is determined solely by the
labeling results at x. Maximizing the a posteriori probability
in Eq. 2 is equivalent to minimize its negative logarithm as

E = −
∑
n

∑
x∈Ωn

log p(T (x)|Di{1,2,...,J}(x)) (12)

= −{
∑

x∈Ωlesion

log (W ) +
∑

x∈Ωlesion

log (V )} (13)

The level-set representation of the above energy function can
be expressed as

E(φ) = −
∫
x∈Ω

H(φ(x)) log(W ) + (1−H(φ(x))) log(V )dx,(14)

where, H(φ) denotes the heaviside step function:H(φ) ≡

H(φ(x)) =

{
1 φ(x) ≥ 0, x ∈ Ωlesion
0 φ(x) < 0, x ∈ Ωskin

. The contour evolution
equation is obtained by maximizing the energy functional
using a gradient descent of the embedding function φ:

∂φ

∂t
= −

∂E(φ)

∂φ
= δ(φ)

(
log

W

V

)
. (15)

δ(φ) =
dH(φ)
dφ is the Dirac delta function. It has value 1 at the

lesion boundary and 0 elsewhere. The values ofW and V keep
updating iteratively until the boundary evolves to the location
where the probabilities of that pixel belonging to the lesion
and the skin are identical. If the conditional probability of
pixel x being lesion is larger than skin, there is a positive
force proportional to log(W/V ) driving the boundary to move
towards the skin direction and vice versa.
(B) Maximize the a posteriori probability based method in-
corporating the segmentation pattern information (LSMLP)
As discussed in section 2, given the aim of comparing
computer-based segmentations against the GT, it is reason-
able to generate a GT that has a more accurate boundary. We
remark that the detailed segmentations suit this requirement
better. Hence, we introduce a Shape Prior Model (denoted as
SPM ) that is built upon the detailed manual segmentations
using the Majority Vote Rule [5]. A shape prior based term
aiming at minimizing the distance between the estimated Ti
and SPM is formalized as:

Eshape =

∫
Ω

[Ti(x)− SPM(x)]
2
dx (16)

=

∫
Ω

H(φ)[1− SPM(x)]
2

+ [1−H(φ)][0− SPM(x)]
2
dx(17)

We add this term to the energy function of the LSML in
Eq. 14 and lead to a new energy function as:

ELSMLP = ELSML + Eshape. (18)

Minimizing the above energy function derives the boundary
evolution equation as:

∂φ

∂t
= −

∂E(φ)

∂φ
= δ(φ)

(
log

W

V
+ γ × (2× SPM(x)− 1)

)
. (19)

Here, γ weights the importance of the shape prior energy (we
set it to 0.4 in our experiment). In such a way, we give promi-
nence to the detailed segmentations and reduce the impact of
the compact segmentations. However, the above level-set for-
mulations are based on two key assumptions: 1) Each rater
independently perform the lesion segmentation job. 2) There
is no spatial correlation between pixels. The second assump-
tion can be relaxed by incorporating a Markov random field
model as stated in [8], but it is out of the scope of our work.

4. EXPERIMENTS AND RESULTS

In this section, we will compare the proposed approaches
against two popular ground truth estimation methods: the Ma-
jority Voting Rule (MV) and STAPLE, based on both syn-
thetic and real lesion data. In order to compare different meth-
ods, we choose to use both XOR [2] and FOM [1] as our com-
parison tools. XOR measures the spatial-region-based dis-
similarity between the real ground truthGT and the estimated
ground truthEGT . It is defined as XOR =

Area(EGT
⊕

GT)
Area(EGT+GT)

, with
a range from 0 (best) to 1 (worst).

⊕
denotes exclusive-OR;

+ means union. The smaller the XOR, the closer the ground
truth is to the manual results. FOM (Pratt’s Figure Of Merit)
is a dissimilarity measure that is often used to compare the
performance of edge detection algorithms [1]. It corresponds
to an empirical contour distance between the GT and EGT
in the form of FOM(CoT,CoD) = 1

max{length(CoT ),length(CoD)} ·∑length(CoT )
k=1

1
1+d2(k)

, where CoT and CoD are the boundary
representations of the GT and EGT . d(k) is the Euclidean
distance between the kth pixel of CoT and the nearest pixel
of CoD. It ranges from 0 (worst) to 1 (best).
Comparison on Synthetic Data
In order to compare the estimated GTs derived from differ-
ent approaches, we generate synthetic data that simulates the
two patterns of manual segmentations. The data is derived by
using a selected computer segmentation as the ground truth
that is represented as a level set function as φ. Developing the
synthetic data is compiled as the evolution of φ. The force
that drives the evolution of the level set function takes into
account both systematic and random errors. The formulation
of this process is as following:

∂φ

∂t
= Norm× F = Norm× (Random+ νdiv

∇φ
|∇φ|

). (20)

Norm is the normal to the curve and can be determined di-
rectly from the level set function as Norm = − 5φ

|5φ| . F is the
force comprised of two terms: 1) The Random term simu-
lates randomness errors. A uniformly distributed pseudoran-
dom value ranging from -1 to 1 is assigned to it. 2) The sec-
ond term is a regularization term related to the smoothness of
the evolving contour. ν denotes the weight. A larger weight
is used to simulate compact segmentation; while a smaller



Methods
Metrics MV STAPLE LSML LSMLP

XOR (%) 3.8409 3.7212 3.2733 2.1615
FOM (%) 8.9026 10.6596 13.1484 26.7412
Sensitivity 1.0000 1.0000 1.0000 1.0000
Specificity 0.9709 0.9719 0.9754 0.9839

Table 1: Performance of Ground Truth estimation methods.

weight is used for detailed segmentation. Moreover, overes-
timation is simulated using a morphological operation: dila-
tion. The scale of the dilation structure differs between de-
tailed and compact, smaller for the former and larger for the
latter.
Our synthetic data are comprised of 4 detailed and 4 com-
pact segmentations. The GTs estimated from the synthetic
data are displayed in Fig. 2a. The background grey image
is generated by aggregating individual rater binary segmen-
tations and it provides a visual representation of rater agree-
ment. The comparison results using XOR, FOM, sensitivity
and specificity metrics are demonstrated in Table. 1. These
results show: 1) The GT estimated using LSMLP is the clos-
est to the real ground truth. The improvement is significant
compared to the other approaches according to all four met-
rics. The method outperforms the others mainly because it
produces finer boundary details, especially at the locations
where two groups of segmentations have big differences, such
as those shown in Fig. 2a. 2) LSML produces the second best
result and STAPLE comes the third, though there is no sig-
nificant difference between them. MV is the worst because it
only produces a comprise that minimizes the average discrep-
ancy between estimated ground truth and the manual results
without taking into account individual performances.
Comparison on Real Lesion Data
We also apply the approaches on the real lesion data, exam-
ples of which are shown in Fig. 2b and Fig. 2c. The same

(a) Synthetic Data (b) Real Data (c) Real Data

Fig. 2: Test on both synthetic and real data

conclusion holds. The LSMLP outperforms the others at the
locations where the boundary is non-convex and missed in the
compact segmentations. Note, for fair comparison on both
synthetic and real data, the three iteration-based approaches
(STAPLE, LSML and LSMLP) are initialized with the same
setting: an initial circular boundary covering the lesion.

5. CONCLUSION AND FUTURE WORK

Having ground truth is critical for evaluating segmentation
algorithms and finding the ground truth remains a hard prob-
lem. A good GT estimation algorithm should take into ac-
count inter-rater variability that appear in manual segmenta-
tions. Little research has analyzed the patterns of the manual
segmentation results and we are the first group to study this
subject. We found that the manual segmentations of lesion
differed mainly because of the rater’s segmentation policies
and could be categorized into two groups: detailed and com-
pact. Using the categorization result as prior information, we
introduce a shape prior model that is built upon the detailed
segmentations. We then treat ground truth estimation as an
optimization problem and solve it under a level-set framework
based on a MAP formulation. The rater’s pattern is incorpo-
rated by adding an energy term related to a shape prior model
into LSML and results in LSMLP. Experiments on both syn-
thetic and real lesion data reveal that LSMLP outperforms all
the other methods that do not consider the prior information,
followed by LSML and STAPLE.
Future work will concentrate on: 1) generate the prior shape
model in a more comprehensive way, e.g.,based on princi-
pal components analysis (PCA). 2) relax the assumption that
pixels have a spatial independence by introducing a Markov
random field model as stated in [7]. 3) extend this work into
multiple phase applications, e.g.,multiple lesions in one im-
age.
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