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Abstract

The addition of colour information to the computation of range/scene flow
is proposed to improve its accuracy and robustness to ambiguities. This is
applied in the form of additional optical flow constraints from aligned colour
image data. Combining constraints gives improved velocity displacement
fields for both synthetic and real datasets over using depth alone, or in using
depth plus intensity. This ultimately has benefits for the processing of dense,
temporal depth data obtainable from novel video-rate 3D capture systems.

1 Introduction

The computation of a dense instantaneous velocity field that describes the displacements
between two or more instances of a surface can be described as thesceneor range-flow.
The general distinction between the two terms is that the former is usually derived within a
multiple perspective camera framework, while the latter from orthographic scanned data.
These both extend the application of optical-flow techniques with the aim to accurately
reflect the motion and deformation of surfaces as 4D flow (i.e. across 3D space and time).
Recent advances being made in real-time stereo and scanning techniques motivate new
research into exploiting this flow-field as a useful tool to further segment, classify and
analyse data for a range of applications in the HCI, graphics and medical domains.

Estimates of observed optical-flow can be used to recover depth changes, particularly
when using multiple cameras and feature correspondences. As optical-flow is the projec-
tion of 3D surface motion onto an image plane, it can be used to recover thescene-flow
within the context of a physical framework that must take account of the camera’s in-
trinsic parameters and lighting conditions from various angles [12]. Scene-flow can also
be computed from raw 2.5D stereo depth-maps as if they were intensity images in order
track the apparent depth change [8]. However, the resulting 2D flow estimates must also
be reprojected back into 3D space, potentially leading to error over a large depth-of-field.

Alternatively, an approach can be adopted for raw range data (whether from a stereo
or a triangulated sensor) to deriverange-flow. In theory any optical flow technique can be
applied for estimation [5], but the most investigated approach which we directly build on
uses differential estimation techniques for measuring the temporal-spatial gradient (i.e.
Spieset al. [11]). One advantage is that range-flow can be computed directly on the
original surface by using localised estimates calculated directly from the sample grid as
the basis for creating a regularised, smooth flow field.



Both scene and range-flow are fundamentally similar in that they seek to capture the
4D motion and deformation of a surface. An advantage in using the regularly sampled
depth information (e.g. from laser-stripe scanners and dense stereo capture) is that it is
often accompanied by aligned intensity or colour information, which may not have been
directly utilised in the initial 3D capture. This extra information can further constrain and
thereby improve the accuracy, reduce aperture ambiguities, and increase density in the
flow estimates - as shown in the case of incorporating intensity [10]. Research in further
constraining optical-flow techniques has also investigated the use of texture [2] and colour
[1]. Relatively little work has applied these potential sources to range data despite their
obvious presence in vision, and in applying the benefits to 4D flow.

The use of colour in particular is proposed on the basis that the information contained
within additional colour channels is more representative of the actual surface properties
of the objects in question [6]. When considering that intensity depends on more global
assumptions about illumination and reflectance, then surface invariant colour characteris-
tics have obvious benefits in resolving certain types of localised motion ambiguity. This
is particularly the case in observing non-rigid deformation where attempting to track mo-
tion on the surface (even with accurate stereo correspondence) becomes an issue. Recent
quantitative assessment of standard optical flow techniques modified to include colour
have shown some some improvement over simply adding gray-scale intensity [3]. That
work has also illustrated the issues in deciding which channels to select and how to adjust
the weightings between them.

Thus, there has been research in adding colour to optical-flow [1, 3], and in
adding intensity to range-flow [10], yet no work that directly adds colour to 4D-
flow estimation. We propose below a generalised approach to incorporating multiple
aligned channels based on a simple Least Squares range-flow framework, and show
that adding colour can give better accuracy and reduced aperture ambiguity.

2 Calculating Colour Constrained 4D Flow

2.1 Isolating Channels

In our formulation we extend the original work of [10] which considers the varying depth
of an orthographically captured surface(X,Y,Z) as a function of timet, locally constrain-
ing arange flowfield in 3D

−→
f = [U,V,W]>by:

ZXU +ZYV +W+ZT = 0 (1)

where subscripts indicate partial derivatives for the simultaneous change in depthZ with
respect to local position in(X,Y,T). Similarly, since we also possess aligned intensity and
colour channels, we can generalise the constraint provided by achannel Cfor observed
3D/2D flow by:

CXU +CYV +CZW+CT = 0 (2)

whereCZ = 0 for colour and intensity channels, andCZ = 1 for range channels in the
case of a sensor aligned orthographic projection. Adding these additional constraints can
help resolve theaperture problemcommon to optical and range flow, where the normal
velocity can be recovered but not the tangential velocity. This can occur for example in
the 2D case of a line, and in the 3D case of a fold-edge, for which there is not enough



localised information to resolve motion along the direction of that line or edge. In com-
bining multiple estimates from separate unrelated channels (e.g. range and colour) we
anticipate fewer aperture problems due to the combined constraints serving to cancel out
such ambiguities. This would lead to an improvement in the overall accuracy.

In integrating colour it is necessary to consider how it can be represented and con-
verted, as defined by CIE standards. In particular, we are interested in isolating thelu-
minancecomponent (i.e. brightness, value, intensity) in order to identify thechromatic
components. Given that our initial input is normal 3-channelRGB, one alternative colour
space removes the effects of brightness vianormalised RGBvalues as:

NRGB=
[

R
R+G+B

,
G

R+G+B
,

B
R+G+B

]
. (3)

We are furthermore interested in the conversion of rawRGB to the more useful and
accurate device-independent colour space: CIELAB. This is a non-linear transform to
a spherical colour-space that directly isolates intensity(L) from red-green (A) and blue-
yellow (B) axes. From this it is further possible to convert the space to polar-coordinates,
giving theLCH representation for chroma (C) and hue (H) as:

H = arctan(
A
B

). (4)

Altogether we compare 6 methods of combining additional channel information: depth
by itself (Z), depth plus raw colour (ZRGB), depth and CIE LAB (ZLAB), depth plus only
luminance/intensity (ZI), depth plus three-channel brightness invariant colour (ZNRGB),
and depth plus one-channel hue (ZH). For simplicity, we do not consider more device-
dependent oriented colour-spaces such as CMYK, YIQ, and YUV (despite being often
faster to compute, they are specifically tuned to printing and display requirements).

2.2 Combining Constraints

As with optical-flow algorithms, we wish to locally estimate the motion by solving for−→
f = [U,V,W]>. To achieve this further assumptions must be made. One is to assume

nearby velocities are equivalent in relative direction and magnitude, and thus use aLeast
Squaresminimisation to integrate the velocities into full flow estimates. Here we assume
orthographic equally spaced data, but the technique can be adopted for other cases.

Fundamental to our approach is the way in which the individual channels must be
combined via a scaling valueβ . Spieset al. [10] calculate a single weighting on the
basis of the averages in intensity and depth gradient magnitudes (using a representative
training data set, but often only setting the value uniformly to 1.0). They also suggest the
possibility of adding multiple channels constraints by simply summing all contributions.
We instead desire a more robust and invariant estimation of the contribution by many
different channel to the combined estimate.

We do this firstly since we cannot assume that any two channels are in any way re-
lated to the same underlying process or sensor capabilities, and so cannot be compared
directly in terms of their scale or distributions. Thus, as described in [11] we scale the
other channels to have the same mean and variance at the depth data. This enables us to
overcome the initial discrepancies in sensor ranges and readings.



Secondly, we wish to give precedence to channels that are more reliable over those
that are worse affected by noise and by aperture ambiguity. A Lucas and Kanade [7, 5, 11]
based Least Squares approach can incorporate weighting when constructing a system of
linear equations to solve

−→
f for a local neighbourhood of sizeN pixels, overM channels: ∑M

e=1βeCX1 ∑M
e=1 βeCY1 1

...
...

...
∑M

e=1 βeCXN ∑M
e=1 βeCYN 1


︸ ︷︷ ︸

A

−→
f =

 −∑M
e=1 βeCT1

...
−∑M

e=1 βeCTN

 .

︸ ︷︷ ︸
B

(5)

In this way we are simply seeking to weight and combine the information provided by
all the channels within the same framework, as dictated by theirβ values. Each individual
channel’s coefficient matrix for the local planar 2D neighbourhood:[

(∑C2
X) (∑CXCY)

(∑CXCY) (∑C2
Y)

]
(6)

can be constructed and assessed for its reliabilityρ as thereciprocal of the condition
numberderived from the ratio of its maximum to minimum eigenvalues:

ρ =
1

λmax/λmin
. (7)

This represents the numerical stability of that channel’s contribution to the Least
Squares calculation. The beta value then expresses this contribution as a weighting for
each channel in the neighbourhood over the summation of all other channel reliabilities:

βe =
ρe

∑ρ
. (8)

If the summation∑ρ is not greater than a threshold levelθ , we can reject outright the
estimation for this neighbourhood as ill-conditioned.

2.3 Deriving Flow

To numerically generate a flow estimate for each uniformly spaced pixel of the aligned
input channels we construct the respective matricesA,B as defined above. We use robust
balanced Simoncelli filters [9] for derivative estimation which have been shown to provide
the best results by employing two stage low pass (noise reduction) and high pass (differ-
entiate) 5-tap filters. These are applied as convolutions across the appropriate dimensions
respectively for each channelsCX,CY andCT . For example, to calculateCX we first con-
volve across theT dimension using the smoothing kernel[0.036,0.249,0.431,0.249,0.036],
followed by similar smoothing across theY dimension, before finally convolving the dif-
ferentiation kernel[−0.108,−0.283,0.0,0.283,0.108] across theX dimension.

For Least Squares, the flow estimate can then be computed from these combined
derivatives by the pseudo inverse of equation 5:

−→
f = (A>W2A)−1A>WB (9)

where theW component expresses a weighting matrix over the neighbourhoodN drawn
from a zero mean 2D Gaussian. We also use a threshold ofθ = 0.5 to reject estimation.



3 Experiments

3.1 Synthetic Data

To quantitatively test the benefits of additional constraint channels we assess their accu-
racy in predicting the known rigid displacement of a surface. The two orthogonal syn-
thetic data-sets we rely on are a sloped plane (“slope”) and a sinusoidal plaid pattern
(“splaid”), each of a sampling size 100×100 as shown in figure 1.

Figure 1: Synthetic slope and splaid data-sets with depth and RGB colour.

The splaid surface is generated over the functional space of 2π ×2π for a frequency
of 3 (that is, repeated every 32 pixels). Of critical importance to these experiments is
that the colour and depth values are generated over the same functional space, such that
the observed displacement in depth must match exactly the motion of colour values on
the surface. We also seek to create a varied pattern that contains different aperture am-
biguities when represented in various colour channels, generated again by a interwoven
combination of sine waves - as seen in figure 2. Noise can also then be added by a ran-
dom amount drawn from a Gaussian distribution of standard deviationσ separately to
each input channel (representing the deficiencies in sensor capabilities).

Figure 2: Colour data in RGB, Intensity, Normalised RGB, LAB, and Hue.

To assess accuracy we use the standard [4] measurements of the relativemagnitude
error (Em) as a percentage, andangular error (Ea) in degrees between estimatefest and
known correct displacementfcor as:

Em =
|‖ fest‖−‖ fcor‖|

‖ fcor‖
×100, Ea = arccos(

fcor

‖ fcor‖
· fest

‖ fest‖
).
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Figure 3:Ea andEm for translation(1≤ TX ≤ 10) of the slope dataset.

Using these, we take the mean error over all the estimated flow vectors, and observe
the effects of 1D translation(1 ≤ TX ≤ 10) of the slope dataset as shown in figure 3
where 1pixel≈ 1unit. These show a complete failure to derive an estimate based on Z
alone due to the aperture ambiguity of the slope creating an ill-conditioned solution that
is rejected. However, combining additional information from the other channels allows
this to be resolved. These estimates progressively worsen as the plane translates further
acrossX, yet the RGB and NRGB solutions consistently provide the overall best results.
The addition of LAB also provides a relatively robust solution, while the addition of H
erratically affects the estimation due to its polar representation of colour which can result
in sudden transitions in spatial gradients.

The effects of a more complex uniform translation in 3D(1≤ TX,TY,TZ ≤ 10) for the
surface of the splaid dataset are shown in figure 4. Here the Z channel has enough local
information from the surface to make a good estimate and perform well for estimation
of smaller translations (especially in angle). Interestingly, the combined use of RGB
and NRGB has little improvement as they have an overall lower reliability than the Z
estimate. However, the addition of LAB colour provides the most robust correction for
larger translations due to theA andB channels having a relatively higher reliability.
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Figure 4:Ea andEm for translation(1≤ TX,TY,TZ ≤ 10) of the splaid dataset.



The addition of varying levels of noise to the slope dataset produce consistently infe-
rior results for NRGB and RGB as shown in figure 5 for the magnitude error of the slope
dataset (again translating only in X). The combined Intensity and LAB perform better in
this experiment due to the noise smoothing that occurs when combining separate channel
RGB input data. If the intensity channel were from a true intensity sensor, the effective
noise level would be higher and thus results would be worse.
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Figure 5:Emfor noiseσ = 0.001 (left) andσ = 0.01 (right).

3.2 Real Data

As a more qualitative assessment of the accuracy of the colour enhancement, we present
work on using 4D scene flow to look at the motion for an expression occurring on the
human face. A stereo capture rig constructed of two cameras was calibrated and used
in burst mode to capture a sequence of a subject making a “surprised” expression at 2.5
frames per second (each pixel≈ 2mm2). Dense stereo data was recovered from each of
the two simultaneous images via stereo photogrammetry, and transformed back to the
coordinate frame of the original left image for aligned colour data - shown in figure 6.
For computation, and to avoid aliasing, we reduce the sampling resolution to 80×120.

Figure 6: Real data “surprise” sequence frames.



Using our Least Squares approach we derive a range flow estimate between successive
frames of data, incorporating additional channels as shown in figure 7.
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Figure 7: Angle (top) with 0o = down= red, and magnitude (bottom) estimates over
subsequent frames for Z, ZI, ZH, ZLAB, ZNRGB, and ZRGB (left to right).

As can be seen, the additional channels immediately lead to an improved density
estimation compared to the Z channel alone. However, this can vary considerably due to
the large amounts of noise, and can in consequence predict too much planar displacement.
Overall, the ZLAB solution appears to capture best the motion of the eyes and jaw. This is
confirmed by comparing the Sum Squared Differences (SSD) between the actual surface
displacement in the two original frames of depth data, and the predicted displacement of
the range-flow (i.e. warping the previous frame) shown in table 1.

Channels: Z ZI ZH ZLAB ZNRGB ZRGB

SSD 0.110679 0.111088 0.111171 0.112795 0.109312 0.117954

Table 1: Sum Square Difference between warped and actual surfaces.

4 Conclusion

The addition of colour (or intensity) constraints within the range-flow calculation can be
shown to improve the estimation and resulting flow, as opposed to using depth alone,
by reducing aperture errors. In particular, the combined use of raw RGB channels can
generally reduce error further than simply combining with Intensity. The use of more
compact colour representations do in general provide help in resolving ambiguities, and
can prove robust in the presence of greater levels of noise. More channels also lead to
greater density of estimation.

We plan to use the increased accuracy offered by these extensions for the possibility
of analysing data obtainable from the next generation of video-rate 3D capture systems.
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