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Abstract. This paper deals with the reconstruction of 3D geometric shapes based on observed
noisy 3D measurements and multiple coupled non-linear shape constraints. Here a shape could
be a complete object, a portion of an object, a part of a building etc. The paper suggests a
general incremental framework whereby constraints can be added and integrated in the model
reconstruction process, resulting in an optimal trade-offbetween minimization of the shape
fitting error and the constraint tolerances. After defining sets of main constraints for objects
containing planar and quadric surfaces, the paper shows that our scheme is well behaved
and the approach is valid through application on different real parts. This work is the first
to give such a large framework for the integration of numerical geometric relationships in
object modelling from range data. The technique is expectedto have a great impact in reverse
engineering applications and manufactured object modelling where the majority of parts are
designed with intended feature relationships.
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Figure 1. The production-perfection cycle of a part

1. Introduction

The framework of this work is reverse engineering. In parts manufacturing,
reverse engineering is typically concerned with measuringan existing object
so that a surface or solid model can be deduced in order to takeadvantage
of CAD/CAM technologies. It is also often necessary to produce a copy of a
part when no original drawings or documentation are available. In other cases
we may want to re-engineer an existing part, when analysis and modifications
are required to construct a new improved product. Even though it is possible
to turn to a computer-aided design to fashion a new part, it isonly after the
real model is made and evaluated that we can see if the object fits the real
world. For this reason designers rely on real 3D objects (real scale wood,
clay models) as starting point. Such a procedure is particularly important to
areas involving aesthetic design e.g. the automobile industry or generation of
custom fits to human surfaces such as helmets, space suits or prostheses. For
these reasons reverse engineering is a fundamental step of the now-standard
production-perfection cycle of part (Figure.1). This process starts with the
CAD stage. Next (step 2), the rapid prototyping stage converts the CAD data
into a real prototype. Rapid prototyping is a technique allowing the direct
production of prototypes by a computer-controlled process. Often, the shape
of the produced object undergoes some improvement carried out by hand
to adapt it to its real environment (step 3). The hand-improved model is
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Figure 2. Many hand-worked optimization (step 3) could be replaced byestablishing new
constraints on the shape and incorporating them in the modeldesign process.

back again into the digital world of CAD through 3D optical measurement
techniques (step 4), for instance a 3D laser scanner.

In this process the notion of constraints is normally involved in step
1 where geometric relationships between object features together with 3D
measurement data contribute in the production of the optimal object model
shape.

The first motivation behind incorporating geometric constraints is that
models needed by industry are generally designed with intended geometric
relationships between the object features so this aspect should be exploited
rather than ignored. The consideration of these relationships is actually neces-
sary because some attributes of the object would have no sense if the object
modelling scheme did not take into account these constraints. For example,
take the case when we want to estimate the distance between two parallel
planes: if the plane fitting results gave two planes which arenot parallel,
then the distance measured between them would have no significance. Fur-
thermore exploiting the available known relationships would be useful for
reducing the effects of registration errors and mis-calibration, thus improving
the accuracy of the estimated part features’ parameters andconsequently the
quality of the modelling.

The second motivation is that once the part is produced (step2) many
improvements are carried manually (step 3) to optimize the part and make it
fit with the real world (e.g fit with another part, adjust the part to fit a particu-
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lar customer). These improvements could be represented by new constraints
on the part’s shape. By integrating these constraints into the CAD design
process step (Figure.2) the work piece optimization would be reduced to the
minimum tasks and hence many cycles in the part production process would
be saved. In other cases, such improvements could not be achieved by hand
due to the complexity of the object or when we want to extend the application
of the process to complex environments such as buildings or industrial plants.

Our problem is presented as follows: Given sets of 3D measurement
points representing surfaces belonging to a certain object, we want to estimate
the different parameters of the surfaces, taking into account the geometric
relationships between these surfaces and the specific shapes of surfaces as
well.

A state vector~p is associated to the object, which includes all paramet-
ers related to the patches. The shape defined by the parametervector~p has
to best fit the data while satisfying the constraints. Consider F(~p) to be an
objective function defining the relationship between the set of data and the
parameters andCk(~p), k = 1::M the set of constraint functions defining the
geometric constraints.Ck(~p) is a vector function associated with constraint
k. The problem can be then stated as follows: Find the parameter vector~p
minimizing the functionF(~p) subject to the constraints

Ck(~p)� τk; k = 1::M (1)

Hereτk represents the tolerance related to the constraintCk. Ideally the tol-
erances have zero values, but practically, for geometric constraints they are
assigned certain values which reflect the allowed geometricinaccuracies in
the relative locations and shapes of features. It is up to thedesigner to set
the tolerances, however an appropriate definition of the tolerances for a given
object can be set up by using the scheme developed by Requicha[16].

As a simple example consider the three surfaces of a tetrahedron (Fig.3).
The surfaces have three orientation constraints reflectingthe three angles
900, 900 and 1200 between the three surface normals. Consider~p a vector
containing the parameters of the surfaces,~p has then to fit the data points as-
sociated with the surfaces, minimizing a least squares error function and also
satisfying the three constraint functions associated to the surface orientations.

2. Related work

A review of the main reverse engineering research in the CAD community
[7, 18, 19, 22] revealed that the exploitation of geometric constraints has not
been fully investigated. This lack was discussed in the survey work of Varady
et al [20].
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Figure 3. The tetrahedron object with the extracted surfaces

Incorporating geometric relationships in object modelling has to tackle
two problems. The first is how to represent the constraints. The second is how
to integrate these constraints into the shape fitting process. These two aspects
are not entirely independent, the shape fitting technique imposes restrictions
on the constraint representation and vice versa.

A first step in the direction of incorporating constraints for ensuring the
consistency of the reconstruction was done by Porrill [15].He linearized a
set of nonlinear constraints and combined them with a Kalmanfilter applied
to wire frame model construction. Porrill’s method takes advantage of the
recursive linear estimation of the Kalman filter, but guarantees satisfaction of
the constraints only to linearized first order. Additional iterations are needed
at each step if more accuracy is required. This last condition has been taken
into account in the work of De Geeteret al [4] by defining a “Smoothly
Constrained Kalman Filter”. The key idea of their approach is to replace non-
linear constraints by a set of linear constraints applied iteratively and updated
by new measurements in order to reduce the linearization error. However, the
characteristics of Kalman filtering makes these methods essentially adapted
for iteratively acquired data and many data samples. Moreover, there was no
mechanism for determining how successfully the constraints were satisfied
and only lines and planes were considered in both of the aboveworks.

The constraints considered by Bolleet al [2] in their approach to 3D
object position covered only the shape of the surfaces. Theychose a specific
representation for the treated features: plane, cylinder and sphere.

Compared to Porrill’s and De Geeter’s work, our approach avoids the
drawbacks of linearization, since the constraints are completely implemented.
Moreover, our approach covers a larger category of feature shapes. Regard-
ing the work of Bolle [2], the type of constraints which can beheld by our
approach go beyond the restricted set of surface shapes and cover also the
geometric relationships between object features. To our knowledge the work
appears to be the first to give such a large framework for the integration of
geometric relationships for object reconstruction.
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3. The geometric constraints

The set of constraints associated with a given object can be divided mainly
into two categories. The first one is the surface intrinsic constraints covering
the geometric properties which arise from the specific shapes of the surfaces.
This category includes particular properties of the surface such as symmetry
with respect to a point or a line. For quadric surfaces such ascones or cross-
section cylinders this property is the circular shape of thesurface.

The second category named, the feature extrinsic constraints, defines the
geometric and topological relationships between the different object features.
Table I summarizes these relationships. We notice here thatpoints and lines
in this table may be either physical features of the object like summits or
vertices and edges or implicit features like centres, axes of symmetry. This
list is not exhaustive and this classification may not be unique. Nevertheless
it covers a large number of constraints in manufactured objects.

Table I. Relationships between features.

point line plane quadric surface

point coincident inclusion inclusion inclusion

separation separation separation separation

line - coincident inclusion inclusion

relative orientation relative orientation relative orientation

separation separation separation

plane - - coincident relative orientation

relative orientation separation

separation

quadric surface - - - coincident

relative orientation

separation

3.1. COINCIDENCE CONSTRAINTS

Shapes commonly contain features which are associated to the same geomet-
ric entity (Figure.4.a) or which coincide at the same position (Figure.4.b). In
the first case these constraints are implicitly imposed by considering the same
parameters for each feature. In the second case the parameters associated to
each feature are equated and the resulting equations have then to be satisfied.
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Figure 4. (a): The two edgesE1 andE2 belong to the same line. The two facesP1 andP2 are
associated to the same plane. (b) The centres of the circlesCir1 andCir2 coincide at the same
pointC. The cylindersCyl1 andCyl2 have a common axis.

3.2. INCLUSION CONSTRAINTS

A particular feature point may be included in an object feature e.g. line, plane
or quadric patch. Similarly a feature line may be included ina plane or a
particular quadric surface (Fig.5) such as a cylinder and a cone.

3.3. RELATIVE ORIENTATION CONSTRAINT

There are many orientation relationships which can be deduced and exploited
in a given part, such as the two common particular cases of parallelism and
orthogonality (Fig.6.a). The presence of these two characteristics is easily
detected in an object.

P

axecyl
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E
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Figure 5. (a): The axis of the cylinder patchCyl is included in the planeP. (b) The line
associated to the edgeE is included in the cylinderCyl.
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Figure 6. (a): Each pair of planes(P1;P2;P3) makes an angle of 90o, the axis of the cylinder
Cyl is orthogonal toP1. (b): The planes(P1;P2) are separated by distanced. (c): Each pair of
parallel planes of the hexagonal prism are separated by the same distance.

3.4. RELATIVE SEPARATION CONSTRAINT

The relative separation between features can be exploited when the distance
between parallel features (Fig.6.b) is already known or needs to be imposed
or when the object has a symmetry aspect leading to some separation distance
relationships (Fig.6.c).

3.5. OTHER CONSTRAINTS

There are also other types of constraints like those imposeddirectly on the
surface parameters as a consequence of the surface representation e.g. the
representation of a plane by the equationax+by+ cz+d = 0 where[a;b;c]
is normal vector to the plane andd is the distance of the plane to the origin
requires that the sum of the squared elements of the normal tobe equal to
one. Such constraints are called the unit constraints.

4. Optimization of shape satisfying the constraints

Given sets of 3D measurement points representing surfaces belonging to a
certain object, we want to estimate the different surface parameters, tak-
ing into account the geometric relationships between thesesurfaces and the
specific shapes of surfaces as well.

A state vector~p is associated to the object, which includes all parameters
related to the different patches. The vector~p has to best fit the data while
satisfying the constraints. ConsiderF(~p) to be an objective function defin-
ing the relationship between the measured data points and the parameters.
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This function is generally a minimization criterion (e.g. sum of least squares
residuals, maximum likelihood function, etc.).

ConsiderCk(~p), k = 1::M, the set of constraint functions defining
the geometric constraints whereCk(~p) is a vector function associated with
constraintk. The problem can be then stated as follows:

minimize F(~p)
subject to the constraints Ck(~p)� τk; k = 1::M (2)

Thus the problem which we are dealing with is a constrained optimiza-
tion problem.

4.1. THE OBJECTIVE FUNCTION

ConsiderS1; :; :SN the set of surfaces and~p1; :; : ~pN the set of parameter vectors
related to them. Each vector~pi has to minimize a given surface fit error cri-
terionJi associated with the surfaceSi such as the least squares error criterion.
The set of the parameter vectors has then to minimize the following object
function:

J = J1+ J2+ :::::::JN (3)

By considering a polynomial description of the surfaces, each surfaceSi

can be represented by: ~hi
T~pi = 0 (4)

where~hi is the measurement vector with each component of the formxαyβzγ

for some(α;β;γ). For instance a plane surface defined by the equationax+
by+ cz+ d = 0, has the measurement vector is~h = [x;y;z;1]T . For a sphere
defined bya(x2 + y2 + z2) + 2ux + 2vy + 2wz+ d = 0, it is~h = [x2 + y2 +
z2;x;y;z;1]

This formulation has the advantage to lead to a compact quadric ex-
pression of the objective function because of its linearitywith respect to the
parameters. Indeed, givenmi measurements, the least squares criterion related
to the equation (4) is

Ji = mi

∑
l=1

(~hi
l

T~pi)2 = ~pi
T Hi~pi (5)

where Hi = ∑mi
l=1(~hl

i
~hl

i

T ) represents the sample covariance matrix of the surface
Si. By concatenating all the vectors~pi

T into one vector~p= [~p1
T ; ~p2

T ; :; :; :; ~pN
T ]T

equation (3) can be written as a function of the parameter vector~p and we get
the following objective function:

F(~p) = J = ~pT
H ~p; H = 2664 H1 (0) : (0)(0) H2 : (0)(0) : : (0)(0) : (0) HN

3775 (6)
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Such a function is convex if and only if the matrixH is positive, which
is the case. Besides, under the above form, the objective equation contains
separate terms for the data and the parameters. The data matrix H can be
thus computed off-line before the optimization.

The objective function could be taken as the likelihood of the range data
given the parameters (with a negative sign since we want to minimize). The
likelihood function has the advantage of accounting for thestatistical aspect
of the measurements. As a first step, we have chosen the least squares func-
tion. The integration of the data noise characteristics in the LS function can be
done afterwards with no particular difficulty, leading to the same estimation
of the likelihood function in the case of the Gaussian distribution.

4.2. CONSTRAINT FORMULATION

The different constraints are implemented under a matrix formulation. The
matrix notation leads to a compact form and avoids expressions with many
variables in particular for the second order derivatives that may be eventually
needed in the optmization algorithm. This allows a fast, automatic and easy
implementation of the constraints.

Some intrinsic constraints, for instance circularity of quadric surfaces
could be imposed implicitly by choosing a suitable form of the surface equa-
tion. However, the implementation of the reduced form in theoptimization
algorithm may cause some complexity. Indeed, because of thenonlinearity
of these forms, it has not been possible to get an objective function with
separated terms for the data and the parameters. Thus, the data terms could not
be computed off-line. This may increase the computational cost dramatically.
Examples of how constraints can be implemented are found in section 6.

4.3. THE OPTIMIZATION ALGORITHM

Optimization techniques fall into two broad branches namely Operation
Research techniques and the recent evolutionary techniques.

Evolutionary computation techniques [10, 11] have been having increas-
ing attraction for their potential to solve complex problems. In short they are
stochastic optimization methods. They are conveniently presented using the
metaphor of natural evolution: they start from a randomly generated set of
points or solutions of the search space (population of individuals). Then this
set evolves following a process close the natural selectionprinciple. At each
stage a new population is generated using simulated geneticoperations such
as mutation or crossover. The probability of survival of thenew solutions de-
pends on how well they fit a given evaluation function. The best are kept with
high probability and the worst are discarded. This process is repeated until
the set of solutions converges to the one best fitting the evaluation function.
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The main advantages of the evolutionary techniques is that they do not
have many mathematical requirements about the optimization problem. They
are 0-order methods, in the sense that they operate only on the objective
function and they can handle linear or nonlinear problems, constrained or
unconstrained.

The main drawback of these techniques is that they are highlytime
consuming. This is due to the fact that to ensure convergence, the number
of generated solutions has to be high, and at each iteration all the solutions
have to be evaluated. This increases the computation time dramatically.

The second branch of the optimization techniques are the classical op-
eration research techniques. They are more mature than the evolutionary
techniques. They involve search techniques, numerical analysis and differ-
ential tools. Most of these techniques use an iterative scheme. A reasonable
initialisation causes significant speedup in convergence.A detailed review
and analysis of these optimization techniques could be found in [8, 9].

We believe that the evolutionary techniques are suitable mainly to the
optimization cases where objective functions and constraints are very com-
plex, presenting hard-handled aspects such nonlinearity,non-differentiability,
or do have not explicit forms. Indeed the earlier mentioned characteristics of
the evolutionary techniques allow them to by-pass these problems.

As our optimization problem does not have these problems, the opera-
tional research techniques are more appropriate. This argument is supported
by the time-consuming characteristic of the evolutionary techniques, where
the average scale of the processing time is on the order of hours. This charac-
teristic makes these methods not appropriate for interactive user environments
and impractical for a static verification and checking of theresults when
experiments have to be repeated many times. The other important reason
for opting for search techniques is that we can obtain a reasonable initial
estimate of the model parameters. This initial solution is the estimation of
the model parameters without considering the constraints.This estimation is
not far away from the optimal one since it is obtained from thereal object
prototype.

Theoretically a solution of the problem stated in (2) is given by finding
the set(~p;λ1;λ2; :; :;λk) minimizing the following equation:

E(~p) = F(~p)+ M

∑
k=1

λkCk(~p)
F(~p) = ~pT

H ~p (7)

Ck(~p) = ~pT Ak~p+BT
k ~p+Ck

Under the Khun-Tucker conditions [8](Chapter 9), namely that the ob-
jective function and the constraint functions are continuously differentiable
and the gradients of the constraint functions are linearly independent, the
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optimal set(~p;λ1;λ2; :; :;λk) minimizing (7) is the solution of the system:

∂F
∂~p + M

∑
k=1

λk
∂Ck

∂~p = 0 (8)

In some particular cases it is possible to get a closed form solution for
(8) such as the generalized eigenvalues methods. This depends on the char-
acteristics of the constraint functions and whether it is possible to combine
them efficiently with the objective function. When the constraints are linear
(having the formA~p+B = 0) the standard quadratic programming methods
could be applied to solve this system.

However the geometric constraints are mainly non-linear. Generally it
is not trivial to develop an analytical solution for such problem. In this case
an algorithmic numerical approach could be of great help taking into account
the increasing capabilities of computing.

Now if we look to the objective function and the constraint functions
in (7) we see that they are explicitly defined as a function of the paramet-
ers, they are smooth, differentiable and they both have a quadratic structure.
From (5) we can notice that each submatrixHi of H in (6) is the sum of

cross-product terms~hl
i
~hl

i

T
. ThusHi as well asH are positive definite. Con-

sequently the objective function is convex. Such functionscould be efficiently
minimized. Besides it has the important property that its minimum is global.
If the constraint functions are squared, thus enforced to bealso convex, the
optimization problem (7) would be a convex optimization problem forλk > 0.
For such problem an optimal solution exists, moreover this solution corres-
ponds to the solution of the system (8) defined by the Khun-Tucker conditions
[17](section 27,28).

The problem would be to determine the set(~p;λ1;λ2; :; :;λk) minimiz-
ing:

E(~p) = F(~p)+ M

∑
k=1

λk(Ck(~p)2); λk > 0 (9)

To provide a numerical solution of this problem we have been investigat-
ing an approach in the framework of sequential unconstrained minimization.
The basic idea is to attach different penalty functions to the objective function
F(~p) in such a way that the optimal solutions of successive unconstrained
problems approach the optimal solution of the problem (9). Indeed the term
∑M

k=1 λk(Ck(~p)2) could be seen as a penalty function controlling the con-
straints satisfaction. The scheme then increments the set of λk iteratively, at
each step minimize (9) by a standard non-constrained technique, update the
solution~p, and repeat the process until the constraints are satisfied.For equal
values ofλk, Fiacco and McCormick [6] have shown that the solutions of
(9) converge towards the same solution of the problem (2) when λk tends to
infinity.
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In more detail the proposed algorithm is: We start with a parameter vec-
tor~p [0] that minimizes the least squares objective function and attempt to find
a nearby vector~p [1] that minimizes (9) for small valuesλk. Then we iterat-
ively increase the set ofλk slightly and solve for a new optimal parameter~p [n+1] using the previous~p [n]. At each iterationn, the algorithm increases
eachλk by a certain amount and a new~p [n] is found such that the optimiz-
ation function is minimized by means of the standard Levenberg-Marquardt
algorithm (see Appendix). The parameter vector~p [n] is then updated to the
new estimate~p [n+1] which becomes the initial estimate at the next values
of λk. The algorithm stops when the constraints are satisfied to the desired
degree or when the parameter vector remains stable for a certain number of
iterations. A simplified version of the algorithm is illustrated in Figure 7.a
in which a singleλ is associated to the constraints. At each iterationλ is
increased by multiplying it by a factor inversely proportional to the constraint
value decrease.

A computational problem associated with this algorithm emerges when
λk become too large. This problem arises in the Hessian matrix of the optim-
ization function (9) involved in Levenberg-Marquardt algorithm. This matrix
becomes ill-conditioned for high values ofλk. To overcome this problem we
have used the technique developed by Broydenet al [3] for updating the
parameter vector~p at the level of the Levenberg-Marquardt algorithm.

k (p)C

λ initialise p and  

p
0

p 

λ λ 0

k (p)CΣ
k

C(p) =       

find p minimizing F(p) +      C(p) λ

kτ> λ λ +    ∆λ

while 

k=1..M

update p

Figure 7. Optim: the constraint optimization algorithm.
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The initialization of the parameter vector is crucial to guarantee the con-
vergence of the algorithm to the desired solution. For this reason the initial
vector was the one which best fitted the set of data in the absence of con-
straints. This vector can be obtained by estimating each surface’s parameter
vector separately and then concatenating the vectors into asingle one. Nat-
urally, the option of minimizing the objective functionF(~p) alone has to be
avoided since it leads to the trivial null vector solution. On the other hand, the
initial valuesλk have to be large enough to avoid the above trivial solution
and to give the constraints a certain weight. A convenient value for the initial
λk is :

λ[0]
k = F(~p[0])

Ck(~p[0]) (10)

where~p[0] is the initial parameter estimation obtained by concatenating the
unconstrained estimates.

5. Implementation

First, the algorithm was developed and implemented under MATLAB, mainly
to check the behaviour and the convergence of the algorithm as well as the
validity of the results. This version rapidly turned out to be inconvenient since
a new implementation is needed to be done for each part. The next step was
then to develop a program which can hold any part and automatically convert
the information given by the user about the object (surfacesand constraints)
into a structure (set of objective function and constraint functions) ready to
be integrated into the optimization algorithm. A simple constraint language
compiler was developed under C++ for this purpose. The inputfile is a list
of statements in which the user declares the surfaces, theiridentifications and
the files where the associated 3D measurement points are stored. Then the
constraints are declared with their associated values and tolerances. Figure 8
shows the structure of the input file and the language statements.

The whole package (the compiler and the optimization algorithm) has
been implemented on a 200Mhz SUN Ultrasparc workstation. The computa-
tion time is in the range of 3-10 minutes for the different test objects. This
range is suitable for CAD work.

6. A simple example

Consider a simple polyhedral object, for instance a partialtetrahedron. Sup-
pose that the tetrahedron is composed from three surfaces,S1;S2 and S3

(Fig.3).
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SURFACES /* begin of surfaces declaration */.SURFACE TYPE Identi�er data �le.END SURFACES /* end of surfaces declaration */CONSTRAINTS /*begin of constraints declaration */PARALLEL PLANES.Identi�er1 Identi�er2.END PARALLEL PLANESINTRINSIC CONSTRAINTS.Identi�er Constraint Type Tolerance.END INTRINSIC CONSTRAINTSORIENTATION PLANE PLANE.Identi�er1 Identi�er2 Angle Tolerance.END ORIENTATION PLANE PLANEORIENTATION PLANE QUADRIC.Identi�er1 Identi�er2 Angle Tolerance.END ORIENTATION PLANE QUADRIC...END CONSTRAINTS /*end of constraints declaration */

Figure 8. Structure of the input file for the constraint language compiler: the upper case words
are the key words of the language

Following the paradigm of Section 4.1, each surface is represented by
the equation: ~hi

j

T~pi = 0 ; i = 1::3~hi
j = [xi

j;yi
j;zi

j;1]T ; ~pi = [ni
x;ni

y;ni
z;di]T

The object is then represented by the parameter vector:~p = [n1
x ;n1

y ;n1
z ;d1;n2

x ;n2
y ;n2

z ;d2;n3
x ;n3

y ;n3
z ;d3]
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The objective function is expressed by:

F(~p) = J = ~pT
H ~p = 24 H1 (0)4 (0)4(0)4 H2 (0)4(0)4 (0)4 H3

35
where

Hi = ∑
j
(~hi

j)(~hi
j)T

The surfaces have three orientation constraints reflectingthe three angles
900, 900 and 1200 between the three surface normals~n1, ~n2 and ~n3. These
constraints are represented by the following equations~n1

T ~n2 = �0:5~n1
T ~n3 = 0~n2
T ~n3 = 0

from which the constraint functions are deduced:

Angle1(~p) = (~pT A1~p+0:5)2 = 0

Angle2(~p) = (~pT A2~p)2 = 0

Angle3(~p) = (~pT A3~p)2 = 0

where

A1 =�
A1(i; j) = A1( j; i) = 1=2 if i = 1+ t; j = 5+ t; 0� t � 2
A1(i; j) = A1( j; i) = 0 otherwise

A2 =�
A2(i; j) = A2( j; i) = 1=2 if i = 1+ t; j = 9+ t; 0� t � 2
A2(i; j) = A2( j; i) = 0 otherwise

A3 =�
A3(i; j) = A3( j; i) = 1=2 if i = 5+ t; j = 9+ t; 0� t � 2
A3(i; j) = A3( j; i) = 0 otherwise

The surfaces normals are also constrained to be unit. This leads to the
following unit constraints:

Unit1(~p) = (~pTU1~p�1)2 = 0

Unit2(~p) = (~pTU2~p�1)2 = 0

Unit3(~p) = (~pTU3~p�1)2 = 0

whereU1, U2 andU3 are diagonal matrices defined by

U1 =�
U1(i; i) = 1 for i = 1::3
U1(i; i) = 0 otherwise

U2 =�
U2(i; i) = 1 for i = 5::7
U2(i; i) = 0 otherwise
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17SURFACESPLANE S1 \S1.dat"PLANE S2 \S2.dat"PLANE S3 \S3.dat"END SURFACESCONSTRAINTSORIENTATION PLANE PLANES1 S2 120 10e-4S1 S3 90 10e-4S2 S3 90 10e-4END ORIENTATION PLANE PLANEEND CONSTRAINTS
Figure 9. Input file of the tetrahedron object.

U3 =�
U3(i; i) = 1 for i = 9::11
U3(i; i) = 0 otherwise

The expression of the optimization function is then~pT
H ~p+ 3

∑
l=1

λl
unitUnitl(~p)+ 3

∑
l=1

λl
angleAnglel(~p)

The input file related to this object is shown in Figure 9.

7. Experiments

The experiments were carried out on real parts having planarand quadric sur-
faces (cylinder, cone, sphere). The process of extracting the different surfaces
of a given part (Fig.10) starts by scanning the part by a 3D laser triangulation
range sensor. With this device a cloud of 3D points representing the shape
of the object are obtained. The next step is to segment the points into sets
associated to the different surfaces of the object. This is achieved using the
rangeseg program [12]. To be fully measured, most of the objects have to be
scanned at different views. Therefore the measurement datapoints obtained in
each view have to be registered to the same reference frame. This operation is
carried out manually by visualising the data points associated to the different
views and manipulating the set of points by hand. Since the user relies only
on his eye to judge the quality of the registration the data points locations are
expected to be additionally corrupted by systematic errors. Actually we have
intentionally performed the registration by hand to check the sensitivity of
the algorithm with respect to the registration errors.
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Data capture 

Preprocessing

Segmentation and surface fitting

CAD model creation-improvement

Figure 10. Steps of the object modelling process

This section will present two experiments carried out on twomulti-
quadric objects. These experiments check the behaviour andthe convergence
of the algorithm as well as the impact of constraint satisfaction on the quality
of object shape reconstruction.

In order to save some space, the expressions of the differentconstraints
and the way how they were set up will not be developed. The readers can
could find more details in [21].

7.1. RECONSTRUCTION EXPERIMENT1

The object (Fig.11) tested in this experiment comprises twolateral planes
S1 andS2, a back planeS3, a bottom planeS4, a cylindrical surfaceS5 and
a conic surfaceS6. The cylinder surface and the back plane surface contain
more than twenty thousands points each. The number of pointsfor each of
the other surfaces range from four to nine thousand. The cylindrical patch is
less than a half cylinder (40% arc), the conic patch occupiesa small area of
the whole cone (less than 30%)

The surfaces of the object have the following constraints:

1. S1 makes an angle of 120o with S2 (we consider the angle between
normals).

2. S1 andS2 are perpendicular toS3.

3. S1 andS2 make an angle of 120o with S4.

4. S3 is perpendicular toS4.

5. The axis of the cylindrical patchS5 is parallel toS3’s normal.

6. The axis of the cone patchS6 is parallel toS4’s normal.

7. The cylindrical patch is circular.

8. The cone patch is circular.
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(a)
(b)

(c) (d)

lateral plane

S1
cylinder patch

S2cone patch

S5

S6

back plane
S3

bottom plane

S4

lateral plane

Figure 11. four views of the multi-quadric object

Constraints 5 and 6 are imposed by associating the normals toS3 and S4

respectively to the orientation vectors of the cylinder axis and the cone axis
and thus could be combined with the angle constraints (see [21] for explicit
development).

The complete optimisation function is then given by the expression:

E(~p) = ~pT H~p+λ1Cunit(~p)+λ2Cang(~p)+λ3Ccirccyl (~p)+λ4Ccirccone(~p)
Since the surfaces cannot be recovered from a single view, four views (Fig.11)
have been registered by hand. 100 estimations were carried out for statistical
comparison. At each trial 50% of the surface’s points are selected randomly.
The results shown in this section are the average of these estimations. The
results regarding the algorithm convergence are shown in Figure 12. The be-
haviour of the different constraints during the optimization have been mapped
as a function of the associatedλi as well as the least squares residual and
the sum of the constraint functions. The figures show a nearlylinear logar-
ithmic decrease of the constraints. It is also noticed that at the end of the
optimization all the constraints are highly satisfied. The least squares error
converges to a stable value and the constraint function vanishes at the end of
the optimization. Thus, the final part shape satisfies the shape constraints at
a slight increase in the least squares fitting error. The figures also show that
it is possible to continue the optimization further until a higher tolerance is
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reached, however this is limited practically by the numerical accuracy of the
machine.
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Figure 12. a,b,c,d : Decrease of the different constraint errors as function of the relatedλ. e,f
: Variation of the least squares error and the total constraint error.
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The angles between the different fitted planes are presentedin Table II.
It should be noticed that all the angles converge to the actual values. Table III
and Table IV contain the estimated values of some attributesof the cylinder
and the cone. The values show that each of the axis constraints are perfectly
satisfied, the estimated radius and the cone half angleα improve when the
constraints are introduced.

Table II. The surface’s relative angle estimation with and without constraints.

angle (S1;S2) (S1;S3) (S1;S4) (S2;S3) (S2;S4) (S3;S4)

without constraints 119.76 92.08 121.01 87.45 119.20 90.39

with constraints 120:00� 1 90:00� 120:00� 90:00� 120:00� 90:00�
actual values 120 90 120 90 120 90

We notice the good shape improvement, relative to the unconstrained
least squares method, given by a reduction of bias of about 22mm and 30 re-
spectively in the radius and the half angle estimation. The standard deviations
of the estimations have been reduced as well.

The radius estimation is within the hoped tolerances, a systematic error
of about 0:5mm is quite nice. However the cone half angle estimation involves
a larger systematic error (about 1:8o). Two factors may contribute to this.
The registration error may be too large since the registration was done by
hand and the limited area of the cone patch which covers less then 30 %
of the whole cone. It is known that when a quadric patch does not contain
enough information concerning the curvature, the estimation is very biased,
even when robust techniques are applied, because it is not possible to predict
the variation of the surface curvature.

Table III. The cylinder characteristic estimates with and without constraints.

cylinder parameters angle(axis,S3’s normal) radius standard deviation of radius

without constraints 2.34 37.81 0.63

with constraints 0:00� 59.65 0.08

actual values 0 60 0

1 * means that the estimated value is constrained to be equal tothe true value.

revisedpaper.tex; 6/04/2000; 15:35; p.21



22

Table IV. The cone characteristic estimates with and without constraints.

cone attributes angle(axis,S4’s normal) α standard deviation ofα

without constraints 6.08 26.01 0.30

with constraints 0:00� 31.83 0.13

actual values 0 30 0

7.2. RECONSTRUCTION EXPERIMENT2

The object (Fig.13) contains six plane surfacesS1;S2;S3;S4;S5;S6, a cyl-
indrical surfaceS7 and a spherical surfaceS8. The surfacesS1;S2;S3;S4;S5

form a square prism, the surfaceS5 is a square plane surface. The cylindrical
patch is a whole cylinder and the spherical patch occupies a half sphere.

About 10, 000 and 3000 points were measured from the cylinderand
sphere respectively. 1500 points in average were measured from each of the
surface planes except for the plane surfaceS6 from which less than 300 points
were measured.

The surfaces of the object have the following relationships:

1. S1;S3 are parallel.

2. S2;S4 are parallel.

3. S5;S6 are parallel.

4. S1;S3 are orthogonal toS2;S4.

5. S5;S6 are orthogonal toS1;S3 andS2;S4.

6. S1;S3 andS2;S4 are separated by the same distance.

7. The cylinder axis is parallel toS1;S2;S3 andS4 and orthogonal toS5;S6.

8. The cylinder axis is located midway betweenS1 and S3 and midway
betweenS2 andS4.

9. The cylindrical patch is circular.

10. The sphere centre lies on the cylinder axis.

11. The radius of the cylinder is equal to the radius of sphere.

12. The length diagonal of surfaceS5 is equal to the cylinder diameter.
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Constraints 1;2 and 3 allow a single normal to be associated with each pair of
planes(S1;S3), (S2;S4) and(S5;S6). Constraint 7 is imposed by associating
S5’s normal to the axis of the cylinder and thus combined with the angle
constraints. The other constraints are explicitly defined.

The optimization function is expressed by:

E(~p) = ~pT H~p+λ1Cunit(~p)+λ2Cangl(~p)+λ3Cdist(~p)+λ4Caxe pos(~p)+λ5Ccirc(~p)+λ6Csphcenter (~p)+λ7Cequradius(~p)+λ8Cmedian(~p)
The surfaces of the objects were recovered from 4 views shownin Figure

plane S1

plane S2
plane S5 plane S6

plane S3

plane S4 sphere patch S8

cylinder patch  S7

Figure 13. Four views of the multi-quadric object.

13. Similarly to the previous object 100 trials were performed. At each of
them 50% of the surfaces’s points are selected randomly leading to a differ-
ent initialisation each trial. In all the trials, the decrease of all the constraint
errors and the high level of satisfaction of the constraintsat the end of the
optimization for a slight increase of the least squares error are essentially
similar to that observed in the previous experiments and so similar graphs are
not shown here.

7.3. ALGORITHM EVALUATION EXPERIMENTS

Other experiments trials were carried out in order to give answers to the
following questions:
1. How stable is the convergence of the algorithm ?
2. How close is the estimation to the actual optimal value ?
3. What are the effects of leaving some features unconstrained ?
4. What is the effect of constraint invalidity ?
5. What is the effect of constraint inconsistency ?
6. Does the global shape improve with local constraints ?
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7.3.1. Stability of the convergence
The different estimations resulting from the 100 trials were examined stat-
istically. Figure 14.a shows the maximum and the minimum value (scaled by
the absolute value of the mean) for each parameter. The closeness of each pair
of extrema is well noticed. This aspect is further confirmed by the standard
deviations of the parameters illustrated in Figure 14.b. The distribution of the
least squares errors of the different estimations is shown in Figure 15. The
related relative variance is 1.94%. Thus we can conclude that the algorithm
is stable.
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Figure 14. (a): maximum (+) and minimum (o) value for each parameter scaled by the
absolute value of the mean. (b): relative standard deviation of the parameters.
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Figure 15. Distribution of the least squares errors.
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7.3.2. Closeness to the actual optimal solution
By “actual optimal solution” we mean the estimation obtained from a process
where the constraints are defined, incorporated and satisfied within the least
squares error formulation. The solution provided in this case completely sat-
isfies the constraints. So one may ask how close is the estimate obtained by
our approach to this optimal solution. As we have mentioned previously, such
an ideal and elegant formulation is difficult or impossible to achieve for many
objects due to the complexity and to the non-linearity of thegeometric con-
straints. In fact one purpose and motivation of our approachis to overcome
this problem. Nevertheless it is possible for some simple particular cases to
combine the constraints with the least squares error.

So, in order to make a comparison with the optimal solution a sub-part of
the multi-quadric object shown in Figure 13 was considered.It is composed
of the two parallel planesS1 andS3. The objective is to estimate the planes’
orientation taking into account the parallel constraint. For the first case, the
parallel constraint is implicitly considered by associating one normal to both
planes. The optimization function is then:~nT H~n+λ(1�~nT~n)
whereH is the appropriate data matrix. The second term of the function is the
unit constraint. A closed form solution is provided by the eigenvalue method.

In the second case each plane was assigned a different normalvector.
The equality of the two normals has to be satisfied through theoptimization
process. According to our approach the objective function is:~n1

T H1~n1+ ~n3
T H3~n3+λ1(1� ~n1

T ~n1)2+λ2(1� ~n3
T ~n3)2+λ3(1� ~n1

T ~n3)2

100 tests were applied for each of the two cases. The average of the
results are summarized in Table V. The estimations are similar in the two

Table V. Mean estimates of S1 and S3 normal and LS error in the two types of solutions.~n ~n1 ~n3 angle(~n1; ~n3) (degree) LS error

Closed form

0:5316

0:6733

0:5139

- - - 9.07

Optimization -

0:5316

0:6733

0:5139

0:5316

0:6733

0:5139

0.00 9.06

cases. This shows that both solutions converge to the same value and almost
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equally minimize the least squares error. The LS of the second solution is
slightly lower than the optimal solution one. This is because in the optimal
case the constraint is perfectly satisfied so the least squares error has to absorb
all the error. The same convergence of the two solutions is further confirmed
from the distribution of the difference between the two approaches (angle(~n; ~nc) where~nc is the mean of~n1 and ~n3) and the difference between the
related LS residuals from the 100 trials (Fig.16). Thus we conclude that our
optimization process leads us to solutions that are very close to the optimal.
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Figure 16. (a): Distribution of the estimation difference. (b): Distribution of the LS residuals
difference.

7.3.3. Leaving some features unconstrained
Another series of tests has been performed without considering the diagonal
constraint (constraint 12). This is in order to check if thiswill affect the pos-
ition of the four plane surfaces with respect to the cylinderaxis and therefore
the estimation of the edge of the square surfaceS5. Results are shown in
Table VI with the previous results for comparison. It is noticed that the radius
estimation is not affected but the incorporation of the additional constraints
slightly reduces the diagonal length error.

7.3.4. Invalidity of the constraints
Suppose that one or more constraints do not reflect the actualrelationships
between features and therefore are invalid. What would be the behaviour of
the algorithm? Will these “false constraints” be satisfied?What could be the
resulting estimated model ?

To answer these questions, some angle constraints were set to an incor-
rect values. Three tests were carried out, in the first the angle (~n1; ~n2) was set
to π=3, in the second the angle(~n1; ~n5) was set toπ=3 and in the third test
both angles(~n1; ~n5) and(~n2; ~n5) were set toπ=3 (note that the correct angles
areπ=2 for both angles).
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Table VI. comparison of the estimation without median constraints with previous results.

distance(S1;S3) distance(S2;S4) diagonal ofS5 cylinder radius

without constraints – – – 14.64

with all constraints 21.17 21.17 29.94 14.97

without median constraint 21.15 21.15 29.91 14.97

actual values 21.28 21.28 30.02 15.01

In all these tests the behaviour and the convergence of the algorithm
were qualitatively similar to those of the previous experiments. The algorithm
converges, the least squares error stabilizes and all the constraints are satisfied
at the end of the process although the least squares error is greater than the
valid constraints case (Figure 17). Table VII summarizes the estimated model
characteristics in each of the three tests.

Table VII. The object characteristic estimates for invalidconstraints and true constraints (last row).~n1 ~n2 ~n5 Rcyl Rsph axecyl Centersph(~n1; ~n2) = π=3
-0.61
-0.47
-0.62

-0.58
0.52
-0.62

0.72
-0.02
-0.69

14.97 14.97
0.72
-0.02
-0.69

86.30
-87.38
17.44(~n1; ~n5) = π=3

-0.08
-0.60
-0.78

-0.46
0.72
-0.50

0.72
-0.02
-0.69

14.97 14.97
0.72
-0.02
-0.69

86.31
-87.41
17.44(~n1; ~n5) = π=3(~n2; ~n5) = π=3

-0.02
-0.68
-0.72

0.05
0.72
-0.68

0.72
-0.02
-0.69

14.97 14.97
0.72
-0.02
-0.69

86.31
-87.42
17.44

true constraints
-0.52
-0.67
-0.51

-0.45
0.73
-0.50

0.72
-0.02
-0.69

14.97 14.97
0.72
-0.02
-0.69

86.30
-87.38
17.44

An examination of Table VII leads to the following observations:
1. In all of the three tests the cylinder and the sphere characteristics are not
affected by the invalid constraints.
2. The normal~n1 which is involved in each of the invalid constraints is
affected in three tests.
3. The normal~n2 is changed in the first and third test where it is involved in
the invalid constraints whereas it is unchanged in the second test where it is
not involved.
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Figure 17. (a):Constraint error function and least squares error function function for valid
constraints. (b):Constraint error and least squares errorfunction for invalid constraints (3rd

test).)

4. The normal~n5 is kept unchanged in all the tests even in those where it is
involved in the invalid constraints.

From these observations we can deduce that invalid constraints affect
the object feature’s locations by shifting the involved features toward posi-
tions where these constraints are satisfied. Consequently,this will increase
the least squares error. The locations and the characteristics of the surfaces
which are not involved in the invalid constraints are not affected (the sphere
and the cylinder). However the normal~n5 seems not to satisfy this rule since
its orientation stays unchanged for all the cases where it isinvolved in an
invalid constraint. This is explained by the fact that contrary to ~n1 and ~n2,
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29~n5 is also involved in other constraints, in particular it is constrained to have
the same orientation as the cylinder axis. The satisfactionof this constraint
keeps it collinear to the cylinder axis and prevents its orientation from being
affected. Thus the algorithm satisfies the invalid constraints in which~n5 is
involved by acting on the other normals involved in these constraints.

7.3.5. Inconsistency of the constraints
In this test we investigated what the behaviour of the algorithm would be
when some constraints are inconsistent and have a contradiction between
them. For this purpose we introduced two additional inconsistent angle con-
straints (imposing the angles(~n1; ~n2) and (~n1; ~n5) to be π=3) that conflict
with the two original consistent constraints (defining eachpair of (~n1; ~n2) and(~n1; ~n5) as orthogonal vectors). The trial carried out with these inconsistent
constraints revealed that the algorithm converges normally (Figure 18) with
both the least squares and the constraint functions stabilizing at the end of
the algorithm. From Figure 18.a we notice that the angle constraints are not
satisfied. This is obvious because it is not possible to satisfy conflicting con-
straints simultaneously. The converging values of the constraint function (the
sum of all the constraints) in Figure 18.b and the angle constraints error are
practically equal at the end of the optimization process. This shows that the
other consistent constraints are satisfied. This result is quite useful, it means
that the set of constraints affected by the inconsistency can be detected by
observing the convergence of each constraint error function rather than its
reduction to zero. More analysis is needed to detect the smallest subset of
constraints causing the inconsistency however.
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Figure 18. (a): The sum of the angle constraints’ errors. (b): the constraint function. (c) the
least squares error
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7.3.6. Global shape improvement
The different tables shown in this section compare the geometric charac-
teristics of the object for an optimization with and withoutconstraints and
show the improvement of the object characteristic estimates when constraints
are applied. The results presented in the tables are the average of the 100
estimations. The angles between each pair of surfaces(S1;S2);(S1;S5) and(S2;S5) were set as constraints and the constraints were nearly perfectly sat-
isfied. From Table VIII we notice the satisfaction of the square property of
the prism, illustrated by the equality of the two distances separating(S1;S3)
and (S2;S4). Their values are close to the actual length of the edge of the
square planeS5 and closeness of the estimated value of the diagonal ofS5 to
the actual value when the constraints are considered. The distances between
these last surfaces for an optimization without constraints is not mentioned in
this table since the estimated surfaces are not parallel.

Table VIII. Improvement of the prism characteristic estimates.

distance(S1;S3) distance(S2;S4) diagonal ofS5

with constraints 21.17 21.17 29.95

standard deviation/mean 0.03 % 0.03% 0.03%

actual values 21.28 21.28 30.02

The improvement of the quadric surface estimation is confirmed again
for this object ( Table IX and Table X). The radius estimationerror is less
than 0:04mm for both the cylinder and the sphere. The standard deviations of
the cylinder and the sphere radius have been significantly reduced as well.

Table IX. Improvement of the cylinder characteristic estimates.

cylinder parameters angle(axis,S5’s normal) radius (mm)

without constraints 1.55 14.64

σ/mean without constraints - 0.12%

with constraints 0:00� 14.97

σ/mean with constraints - 0.03%

actual values 0 15.01
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Table X. Improvement of the sphere characteristic estimates.

sphere parameters distance(centre, cylinder axis) radius (mm)

without constraints 1.36 16.02

σ/mean without constraints - 0.11%

with constraints 0:00� 14.97

σ/mean with constraints - 0.03%

actual values 0 15.01

8. Conclusion

This work presents a method for the reconstruction of shape incorporating
geometric constraints. It can hold a large number of varied constraint types
and incorporates them integrally without the need for linearization.

The experiments carried out on the different objects confirmthe con-
vergence of the algorithm. The parameter optimization search does produce
shape fitting that satisfies almost perfectly the constraints. They show in par-
ticular that the least squares error grows slightly as the constraints are applied
and the weighting values increased, but it stabilizes abovecertain values of
the λk while the constraint errors are still decreasing. Thus it ispossible to
satisfy the constraints up to the desired tolerance withoutseriously affecting
the quality of the data fitting. This allows the user to control the degree of
satisfaction of the constraints and to set the tolerances ashigh as necessary.
The processing time for the different objects is typically afew minutes and
is is expected to be further reduced with more optimized versions of the
implementation.

The above observations suggest that the proposed approach allows flex-
ibility in the incorporation of the constraints, as well as for their satisfaction.
Indeed the low computing time of the algorithm allows an interactive user
environment. This is not possible with techniques requiring several hours
computing time such as techniques based on genetic algorithms.

Regarding the slight increases of the LS error, we have to bear in mind
that the increase of the least squares residuals value may not reflect a bad
estimation in the case when measurement errors are systematic, e.g. mis-
calibration and registration error. This last type of erroris expected in our data
since the registration process is performed by hand. We believe that the slight
increase of the least squares error as a consequence of the constraints satis-
faction is a result of the object being located more accurately. However we
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intend to investigate a more robust form for the objective function involving
the data noise statistics.

The different trials applied on the multi-quadric objects confirm the sta-
bility of the convergence of the algorithm. The low values ofthe parameters’
variances illustrates the stability of the solution provided by the optimization
search process. The tests have shown as well that the proposed approach leads
to an estimate which is close to the optimal solution in the case where the
constraints could be combined with the least squares error.The experiments
also show that applying the constraints to only some features does not ser-
iously affect the estimation of the unconstrained surfaces. The estimation is
still improved compared to the case of unconstrained optimization.

The examination of some constraint invalidity cases has shown the con-
straints are always satisfied whether they are valid or not and the behaviour of
the algorithm is typically the same. The satisfaction of an invalid constraint
leads to the relocation of the involved and less constrainedfeatures (having
more degrees of freedom) toward positions where the inconsistency is re-
moved. However, this will result in a false object model. Thetrial performed
with constraint inconsistency revealed the same behaviourregarding the con-
vergence of the algorithm but the inconsistent constraintsare not satisfied at
the end of the optimization. This suggests that constraint validity and con-
sistency checking have to be done before starting the optimization process,
or at least examination of the constraint error results to determine if a set of
inconsistent constraints have been supplied.

Regarding the shape estimation accuracy, the comparison ofthe object
dimension estimates with those from unconstrained fitting confirms that the
proposed approach improves the quality of the shape reconstruction to a high
degree. For the second quadric object the radius of the cylinder and the sphere
have an estimation error in the range of 0:04mm, the edge of the square prism
has an estimation error around 0:1mm. The radius of the cylinder patch estim-
ated from the registered half cylinder has an estimation error around 0:01mm.
For a single view it is less than 0:5mm. The same range of error is obtained
for the radius of the cylinder patch of the first multi-quadric object.

Results for the cone patch are less satisfactory for the firstmulti-quadric
object. This is mainly due to the relatively small area of theconic patch.
Actually, we intentionally chose to work with small patchesbecause uncon-
strained fitting surface techniques fail to give reasonableestimates in this case
(see the radius estimation in Table III) even with robust algorithms due to the
“poorness” of the information embodied in the patch.

Although the experiments presented in this work were performed on
single objects, the proposed approach can hold for multipleobjects. Indeed,
generally industrial parts are designed to fit to each other,so geometric rela-
tionships between the parts may be considered and the resulting constraints
can be incorporated as well in the optimization process.

revisedpaper.tex; 6/04/2000; 15:35; p.32



33

Another area we are starting to investigate is how one might automatic-
ally identify inter-surface relationships that can have a constraint applied. In
manufacturing objects, simple angular and spatial relationships are given by
design. So, it should be straightforward to define simple statistical tests that
hypothesize standard feature relationships, subject to the feature’s statistical
position distribution. With this analysis, a computer program could propose a
variety of constraints that a human could either accept or reject, after which
shape reconstruction could occur.

The proposed technique restricts its scope to applicationswhere a reas-
onable initial solution is available. Also the approach canhold only geometric
constraints that can be represented by continuous and differentiable functions.
More complex objects with higher order surfaces can use by the approach as
far as this condition is fulfilled.

Finally, although this work is mainly intended for object modelling it
may be extended to any constrained built environment application, for ex-
ample modelling of different parts of an industrial plant (pipes, reservoirs,
etc) needs the consideration of the geometric relationships between these
different parts in order that the whole model will be consistent. The same
is true as well for modelling different compartments of buildings. Cities are
probably too under-constrained.
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Appendix: Levenberg-Marquadt algorithm

Here are the main steps of the Levenberg-Marquardt algorithm applied to a
simple optimization function:

E(~p) = F(~p)+C(~p)
α = α0 % initialization
Edecrease = big value

while Edecrease > ε % a threshold

Do GE=Grad(E(~p)) = ∂
∂~p(E(~p))

Loop: HE=Hessian(E(~p)) = ∂2

∂2~p(E(~p))
HE = HE +α(diag(HE))
solveHE

~δp =�GE~pupdated = ~p+ ~δp
Edecrease = E(~pupdated)�E(~p)
if Edecrease > 0

increaseα
go to Loop

else ~p = ~pupdated

decreaseα

end if
end while
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