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Abstract. This paper compares the suitability and efficacy of five al-
gorithms for determining the peak position of a line or light stripe to
subpixel accuracy. The algorithms are compared in terms of accuracy,
robustness and computational speed. In addition to empirical testing,
a theoretical comparison is also presented to provide a framework for
analysis of the empirical results.

1 Introduction

It is often necessary to make measurements which are outwith the precision of
a visual measurement system which relies on locational accuracy to the near-
est pixel. For example, in an imaging system which relies on accuracies to the
nearest, pixel while translating from 2-D camera coordinates to 3-D world coor-
dinates, the accuracy of the estimated 3-D coordinates of a point in space will
be limited by the image resolution. If a large spatial volume is projected onto
the imaging surface, each single pixel on the imaging surface will record infor-
mation from a range of positions. In our range sensor (working volume 20cm on
a side) and each pixel images about 1 mm? of the scene. This limited resolution
is not good enough for precision robotic image analysis. Therefore, algorithms
that estimate feature positions to subpixel accuracy by interpolating the sensor
response function (e.g.[4, 3,5]) are useful. This paper compares five algorithms
for determining the peak image position of a image line or stripe to subpixel
accuracy.

To determine the stripe to subpixel accuracy, the image of the stripe width
must be observed over more than one pixel. Here, we assume that the spread of
intensity values across the width of the stripe is not simply random, but conforms
to some kind of distribution and this pixel spread is exploited in the design of
the subpixel interpolation algorithms. Some spread is almost always the case
because although it is possible optically to focus the stripe to less than a single
pixel width, the operative response of individual sensor elements often leads to a
measurement that is several pixels wide. If we did obtain an image of the stripe
which was only a pixel wide, it would be impossible to determine where the peak
of the stripe was located within the pixel because we would have data from only
one pixel with which to interpolate. An example of a typical intensity response
versus position is shown in Figure 1.
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Fig. 1. Typical intensity values from contiguous pixels

2 An Example Subpixel Stripe-Based Range Sensor

An example of where subpixel stripe detection methods are useful is in our
laser stripe based triangulation sensor, which is used to acquire range images of
objects (see Figure 2). The target object is placed on a platform mounted on
a linear micro-stepper which is activated under software control. The platform
moves in small increments under a stationary laser stripe, and at each forward
step of the platform a pair of digitized images of the laser stripe on the object
is acquired using two cameras located on either side of the object. These images
are then processed in software to derive a slice of range values of the object.
Each successive step produces a fresh slice and these slices are accumulated to
provide a complete range image of the object.

The digitized image from each camera is processed to determine the position
of the stripe to subpixel precision. Because of the camera and stripe placement,
the stripe is viewed in the image as a nearly vertical curve, the shape of which
is determined by the shape of the object on which the stripe impinges. Since
the curve is vertical, the scanning of the raster image is performed from left to
right so as to process pixel values across the width of the perceived stripe. The
y-coordinate of the pixel is determined by the vertical distance of the scan line
from the top of the image. The z-coordinate is determined by the location of
the pixel along a particular scan line. Therefore, when we refer to the subpixel
position of the peak of the stripe, we are discussing the z-coordinate of the pixel.

Once the peak of the stripe has been detected, the image coordinates of the
peak are used to determine the 3D, real-world coordinates of the point by using
the known projective transform between the camera model and the real world in
conjunction with the known 3D equation of the stripe plane. Greater accuracy in
determining the peak position in 2D will automatically result in a more accurate
determination of the location of the stripe in 3D coordinates, which in turn will
produce more accurate estimates of object dimensions and location.

3 Description of Algorithms

All subpixel algorithms that we could locate in the literature plus a new one
(Gaussian) are analyzed below.
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Fig. 2. Schematic of micro-stepper set-up

In the analyses below, z is the pixel position of the observed peak sensor
reading with value f(z). f(z—1) and f(z+1) are the values of the adjacent pixels,
etc. The true peak is at  + § and we will estimate § by 5. The calculations use
intensity values that have had the background image intensity value subtracted.

3.1 Gaussian approximation

This algorithm uses the three highest, contiguous intensity values around the
observed peak of the stripe and assumes that the observed peak shape fits a
Gaussian profile. This assumption is approximately true as the light incident on
the scene is known to be nearly Gaussian distributed. The real distribution, of
course, will not be Gaussian, because each pixel integrates light over its field
of view, the physical sensor pads of the solid-state cameras we use have a gap
between them, the sensor pads have internal structure that affects their sensi-
tivity, and not all sensor pads are equally sensitive. None the less, while we do
not know the exact form of the distribution, we assume that the composition of
all these effects can be modeled by a Gaussian distribution. The subpixel offset
(8) of the peak is given by :

1 m(f@—1)-h(fz+1)
2 (7 — 1) —2In(f(2)) +In (f(w + 1))

5:



As the f() are usually integers in the range 0-255, the log calculation can be
performed by table lookup. We have not found any previous references to this
form of peak detector in the literature.

3.2 Center of Mass

The center-of-mass algorithm also assumes that the spread of intensity values
across the stripe conforms to a Gaussian distribution. Thus, the location of
the peak can be computed by a simple weighted-average method. The subpixel
location of the peak is given by :

fla+1)— fl—1)
fa-D+f@) + @+ 1)

The above equation describes the method using only three points. However,
we have compared the same algorithm using 3, 5 and 7 points (denoted CoM 3,
CoM5 and CoMT7) to compute the center of mass. The extension of the algo-
rithm for the latter two cases is:

2f(x+2)+ f(x+1)— f(z —1)—2f(x —2)
fla =2+ fl@ D+ f@)+ fla+ 1)+ fz +2)

5=

5=
for the CoM5 algorithm and for the CoM7 algorithm:

3f(r+3)+2f(x+2)+ flz+1)— fz—1)—2f(x —2) — 3f(z — 3)

6:f(a:—3)+f(a:—2)+f(a:—1)+f(:v)+f(a:+1)+f(a:+2)+f(a:+3)

Algorithms to use all points along the raster scan also exist (e.g. as used in [6]).

3.3 Linear Interpolation

This method assumes that a simple, linear relationship defines the spread of
intensity values before and after the peak. Thus, if the three highest intensity
values are identified as before, then :

If f(x+1) > f(z-1)

1(flz+1) - flz—1))

= @~ fla 1)

else
1 +1) 1)
OESICED)

3.4 Parabolic Estimator

A continuous version of the peak finder is derivable from the Taylor series ex-
pansion of the signal intensity near the peak. If the peak is at f(z + ) and we
observe the signal at f(x), then we have:



f'x+0) = 0= f'(x) +6f"(x) + O(5%)
Hence, neglecting the higher order terms,
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We can estimate the derivatives discretely, resulting in:

fla—1)— fla+1)
(f@+1) —2f(@) + fz —1))

This estimator is also that found by fitting a parabolic (i.e. second-order) func-
tion to the points f(z — 1), f(x) and f(z +1). In the experiments below, we call

this the parabolic estimator.
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3.5 Blais and Rioux Detectors

Blais and Rioux[2] introduced fourth and eighth order linear filters:

gi(0) = £z~ 2+ fla— 1)~ flo+1) — f(z +2)
gs(x) = Fz— )+ f(z —3) + flx —2) + fz— 1) —
fle+1)=f(x+2)— f(z+3)— f(z+4)

to which we also add a second order filter:

g2(x) = flz —1) = f(z +1)

These operators act like a form of numerical derivative operator. The peak po-
sition is estimated as above by:

& g(z)
"= @ gD

The results of Blais and Rioux showed that the 4** order operator had bet-
ter performance than the 8" order operator over the stripe widths that we are
interested in here, so we only analyze it (called BR4 below) and the simplified
274 order operator (called BR2 below). The 8" order operator has better per-
formance for stripe widths with Gaussian width parameter larger than 2 pixels.
Note that this operator is only applied in the given form for f(z+1) > f(z —1).
If f(z+1) < f(z — 1), then:

o 9e-1

g(x —1) —g(z)



4 Maximum Error of Estimators

Assuming that the observed stripe has Gaussian form and the true peak po-
sition is near to an observed pixel, we determine the relationship between the
estimated and true peak positions (i.e. offsets from that pixel), for each of the

peak detectors. Assume that the continuous stripe is modeled by:

(n—8)2

fn) ==
where f% <d< % is the true peak position and f is sampled at n =-2,-1, 0, 1,
2, .. . We ignore the problems of pixels integrating their inputs over their spatial

extent, as well as any shaping functions the camera and digitizer may apply.
We might ask what is the maximum deviation | § — 4 | over the range —1 <

6 < % for each estimator. We generated sampled stripes for values of § over

this interval and calculated the estimated . For three values of ¢ the maximum

errors are:

o Gaussian CoM3 CoM5 CoM?7 Linear Parabolic BR2 BR4
0.5 0.0 0.026 0.023 0.023 0.087 0.169 0.009 0.015
1.0 0.0 0.223 0.042 0.003 0.043 0.047 0.034 0.018
1.5 0.0 0.350 0.178 0.060 0.067 0.021 0.019 0.014

Figure 3(left) shows the error versus ¢ for the CoMT estimator for o = 1.0.
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Fig. 3. Error versus § For Unbiased (left) and Biased (right) COM7 Estimator

By weighting the estimator (5’ = aemmatmﬁ) we can, for a given o, reduce
the maximum error by spreading the error across the full range. Figure 3(right)
shows the error for the resulting CoMY7 estimator when a = 1.006. This shows



that the maximum error has been reduced by almost a factor of 10. By choosing
an appropriate value of a for each algorithm and the expected value of o, we can
minimize the maximum error. Here, we choose the & that minimizes the error
for stripe width ¢ = 1.0 pixel, and examine the maximum error for the same
three real stripe widths:

o Gaussian CoM3 CoM5 CoM?7 Linear Parabolic BR2 BR4
0.5 0.0 0.380 0.041 0.021 0.103 0.156 0.026 0.023
1.0 0.0 0.005 0.002 0.000 0.030 0.029 0.024 0.013
1.5 0.0 0.239 0.150 0.057 0.049 0.034 0.022 0.011

|a 1.0 1.85 1.093 1.006 0.93 1.08 0.95 0.975|

This shows that, in at least the case of ¢ = 1.0, we can tune the estimator
to have a very low error; however, setting the o values for one o may produce
reduced performance at other os.

5 Bias of Estimators

Using the Gaussian stripe model in Section 4, we can determine an analytical
model of the estimated peak offset § for a small, real offset, §. Our analysis
assumes first-order approximations:

e =14z
log(l+z) ==z

So:

fn) = (14 e 2%

We can now determine the form of & for each peak estimator. For the Gaus-
sian estimator:

1 log(f(—1)) —log(f(1))

21log(f(—=1)) +log(f(1)) — 2log(f(0))

1 log(e =7 (1 %)) logle =7 (14 %))
2 log(67#(1 - )+ log(eiﬁ(l + %)) — 2log(1)
1 log(1 — %)flog(l-i—%)

§2log(67#) +log(1 — %) +log(1 + %)
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Hence, the Gaussian estimator has the ideal form for small §. For the Linear
estimator:

s_ _fW) - f(-1)
2(£(0) = F(=1))
e =T+ ) —e (1 5)
201 =7 (1 )

2(1 —e 207)
1) e 57
o2 (1 —e 27)

We skip the derivations for the other cases and summarize their results:

Estimator|Local Estimate|Estimator|Local Estimate
T

. : T 2,2
Gaussian |6 CoM3 2 e
(1+2e 252 )

1 X A
3 T 242 . -5z 5
(1—e 207) (14+2e 202 42e 202)
-1 -1 . .
Parabolic %% CoM7 {zr_g e 2101_+4e 2:,296 27
(1—e 2%) (142e 207 42 202 42e 247)
-1 o
BR2 3—2% BR4 (27_2 e 2o -|:2l2g

(14e 207 —¢ 27 ¢ 247)

From these results, we see that the Parabolic operator gives one half the
estimate of the Linear operator. When o = 1.0 (as is approximately our case),
the estimators are now:

Estimator |Gauss|CoM3|{CoM5|CoMT7|Linear|Parabolic| BR2 | BR4
Local Estimate| 1.00 | 0.55 | 0.926 | 0.990 | 1.540 | 0.776 [1.406|1.206

However, in light of the results from Section 4, we use the a estimator bias
to change the overall bias according to the algorithm. When o = 1.0 (as approx-
imately in our case), the resulting ¢ is:

Estimator|Gauss|CoM3|CoMb5|CoM?7|Linear |Parabolic| BR2 | BR4
1) 1.006 | 1.016 [ 1.006 | 1.008 | 1.406 0.836 |1.336(1.176

Hence, all but the Linear and BR2 estimators are reasonably unbiased.
Overall, this noise-free theoretical and empirical analysis suggests that the Lin-
ear, and BR2 estimators are not particularly good. However, given typical sen-
sor substructure, pixel spatial integration and cross-talk, non-gaussian stripe



formation and non-linear sensor transfer functions, errors of less than 5% seem
unlikely in any case. Hence, the Gauss, CoM5, CoM7, Parabolic and BR4
estimators still seem like good candidates.

6 Errors in the Presence of Noise

In line with the experiments of Blais and Rioux[2], we investigated how error in
the stripe data affected the estimated stripe position. These experiments were
conducted by generating stripe data with a known, but randomly chosen stripe
offset about an exact pixel position, and then corrupting the observed stripe
intensity with noise. The main controlled variable was the stripe width. Uniform
noise was added (following the model of Blais and Rioux). Point measurements
were generated by:

(n—5)2

f(n,6,0.8) = e =7+ fe

where:

0 € U[-0.5,+0.5] is the stripe position.

n € {-3,-2,-1,0,1,2, 3} are the measured pixel positions.

e € U[0, 1] is the noise variable.

o is the stripe width parameter (range 0.8 to 1.8).

B was the magnitude of the noise, and was considered for § = 0.0, 0.1,
0.25, which bounded our observed noise level (ie. § < 0.1).

We measured both RMS error (y/+ S7(8; — 4;)2) and maximum deviation

(maz | 6 — é; |) as a function of o for N = 10,000 samples. Figures 4, 5 and
6 show the RMS error for § = 0.0,0.1,0.25 respectively. Figures 7, 8 and 9
show the same for the maximum error. Immediately, we see that the CoM3
and CoM5 estimators are problematic. What is surprising is the error of the
CoMY7T estimator in the presence of noise at low stripe widths. However, this is
understandable as, when the stripe width is low, the stripe intensities fall quickly
at non-central pixels, causing the noise to more quickly dominate the signal and
have a greater effect.

To compare the algorithms, we also summed the RMS error for 0 = 0.8 — 1.8
(by 0.05) for the three values of f.

B |Gaussian|CoM3|CoM5|CoM7|Linear|Parabolic| BR2|BR4
0.00] 0.00 3.71 | 1.36 | 0.31 | 0.87 0.49 0.39]0.24
0.10| 1.07 3.90 | 1.86 | 1.32 | 1.36 1.23 (0.93]0.77
0.25| 2.49 4.25 | 2.67 | 2.63 | 2.62 2.61 2.12(1.86

From this, we can see good performance over a range of ¢ and 8 for the BR2
and BR4 estimators. This is also clear in Figures 5 and 6, however, the Gaus-
sian estimator has obvious benefits as the noise level or stripe width decreases.
It is also interesting that the figures show to what extent the choice of estimator
is linked to the specific stripe width and noise level. For our stripe system, we
have observed:



RMSError. Noise=0.0

Error x 10-3
I com 3
com5
220.00 — com7 T
linear ~
200.00 — — parabolic ~
{72
180.00 — —bra™ T T
gauss
160.00 [— —
140.00 — —
120.00 [— —
100.00 [— —
80.00 — —
60.00 — —
40.00 — —
20.00 — —
0.00 — —
| | | | | Sigma

Fig. 4. RMS Error Versus o For The Estimators, Noise = 0.0 (Algorithms are listed
large to small at maximum o.)



RMSError. Noise=0.1
ErrorxlO'3

240,00 [~ 1 “Jcom3
2000  _—— jom5
220.00
210.00
200.00
190.00
180.00
170.00
160.00
150.00
140.00
130.00
120.00
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00

parabolic ™
s T
e
baT ~

20.00 — | \ \ \ \ i Sigma
0.80 1.00 1.20 1.40 1.60

Fig. 5. RMS Error Versus o For The Estimators, Noise = 0.1 (Algorithms are listed
large to small at maximum o.)



RMSError. Noise=0.25
ErrorxlO'3

250.00 — I —]com3

240.00 —

230.00 —

220.00 — —
210.00 —
200.00 —
190.00 —
180.00 —
170.00 —
160.00 —
150.00 —
140.00 —
130.00 —
120.00 —
110.00 —
100.00 —

90.00 —

80.00 —

7000 - & -
! ! ! ! !
0.80 1.00 1.20 1.40 1.60

Sigma

Fig. 6. RMS Error Versus o For The Estimators, Noise = 0.25 (Algorithms are listed
large to small at maximum o.)



Max Error. Noise=0.0
Error x 10‘3

\ com3
400.00 [~ e

s00- 7 dwmTT
360.00 [~
340.00 —
320.00 —
300.00 —
280.00 —
260.00 —
240.00 —
220.00 —
200.00
180.00 [~
160.00 [—
140.00 — i
120.00 |~ |
100.00
80.00
60.00
40.00
20.00
0.00

|
Q
o
3
J

| parabolic

brz- T T
4= — -
—gauss

Sigma

Fig. 7. Max Error Versus o For The Estimators, Noise = 0.0 (Algorithms are listed
large to small at maximum o.)



Max Error. Noise=0.1
ErrorxlO'3

I com 3
440.00 — Rl —

4000~  —  —Hcomb5

400.00 —

parabolic
“leom7T T
—br2m T 7
|braT T

380.00 —
360.00 —
340.00 —
320.00 —
300.00 —
280.00 —
260.00 —
240.00 —
220.00 —
200.00 —
180.00 —
160.00 —
140.00 —

12000 - —
10000 - . - -

80.00 — -~ —
\ \ \ \ \
0.80 1.00 1.20 1.40 1.60

Sigma

Fig. 8. Max Error Versus o For The Estimators, Noise = 0.1 (Algorithms are listed
large to small at maximum o.)



Max Error. Noise=0.25

Error x 103
\ linear

850.00 — T
parabolic ™~

800.00 — s
br2 """

750.00 — —
com5

700.00 — com 7

' bra

650.00 — _

600.00 — _

550.00 — _

500.00 — _

450.00 — _

400.00 — _

350.00 — _

300.00 — _

250.00 — _

20000 - _

| ‘ ! : ‘ Sigma

0.80 1.00 1.20 1.40 1.60

Fig. 9. Max Error Versus o For The Estimators, Noise = 0.25 (Algorithms are listed
large to small at maximum o.)



target| mean stripe [stripe|background
color |peak intensity| o range
white 201 1.69 13-15
grey 165 1.31 11-12
black 60 1.22 10-12

Hence, for our striper, the noise seems to be about 2-3 quanta, or about 1-5%
of the peak intensity. We think that the increase in ¢ as the intensity increases is
explained by the gamma compression of the camera flattening the stripe peak.

7 Algorithm Behavior on Sensor Saturation

No algorithm should produce wildly unreasonable estimates of the peak position
when the sensor is saturated. When saturation occurs, the measured intensity
values at the peak and nearby pixels are usually at some limiting value (e.g 255).
Moreover, because of the effects of saturation on the physical sensor, adjacent
pixels whose true signal is below saturation may also be affected or become
saturated. Hence, use of these adjacent pixels may also not be possible.

The Gaussian, Linear and Parabolic algorithms given in Section 3 have a
definite problem in this situation, resulting in a division by zero. We propose that
these algorithms can be modified to use the midpoint of the saturated region:

if overflow_occurred
{

peak_position = last_overflowed_pixel - overflow_length/2 + 0.5
}

else use_normal_algorithm

The other algorithms do not actually perform too badly, provided the region
of saturation is only 1 - 3 pixels. We tested the behavior of the algorithms by
an experiment where the pixel values were generated using the formula given
in Section 4. Then, whenever the intensity value was greater than 0.5, it was
set to 0.5 (i.e. the saturation limit). This limit allowed a maximum of three
consecutive saturated pixels. The algorithms were applied at all subpixel offsets
from -0.5 to 0.5, and the deviation of the estimated subpixel offset away from
the true offset were recorded. Figure 10 shows the deviations for the Gauss and
the BR4 algorithms.

The maximum deviations for the algorithms are:

Algorithm |Gaussian|CoM3|CoM5|CoMT7|Linear|Parabolic| BR2 | BR4
Max Deviation| 0.320 |0.255|0.059{0.049|0.320| 0.320 |(0.175|0.071

Some improvement might be possible by a function of the non-saturated pix-
els surrounding the saturated region, but the utility of these algorithms depends
on how the sensor responds when saturated.
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8 Empirical Testing

We tested all algorithms in the laser stripe range sensor described in Section 2.
The experiments used three different test objects. These were a cube, a trapezoid
with its top surface at an angle of 10° to the horizontal, and an equilateral prism
(see Figure 11). In all cases, the object was oriented so that all range values along
the stripe were equal. The test objects were aligned so that their surface normals
lay in the X — Z plane. The coordinate system, the relative positioning of the
cameras and the direction of motion of the micro-stepper are clarified in Figure 2.

T l 50 /
S0z /(
jm_/ FSUDJE'

+—— S0mm —= |"——50]:|:|I|1—"
Fig. 11. Detail of experimental objects

The experiments obtained a series of range images comprising 100 range
stripes each. A single data point was chosen from each stripe, such that all the
data points chosen lay along a line parallel to the z-axis. Secondly, the stripes
were taken with a very small micro-stepper movement (0.2mm for the prism and
0.3mm for trapezoid and the cube), thereby leading to high data density. Also,
the depth quantization was kept small (0.03mm), so that the estimation errors
would be of larger magnitude than the quantization errors.

For each surface, each algorithm was used to detect the stripe peak, and then
the depth calculated from each camera was noted and their average computed.
Having collected the data, a linear least-squares fit (z = a + i)"r) was computed
for each set of data points. The slope of this fitted line was computed, and the
minimum and maximum values of the errors were recorded. The variance of the
errors was also computed. The comparative statistics are shown below.

Surface Error(mm)

Algorithm a b Min. Max. |Variance
Gaussian [49.7680| 0.000112-0.12762(0.09815| 0.00249
CoM - 3 pt|49.6466| 0.000006(-0.06152|0.08812| 0.00122
CoM - 5 pt|49.7025| 0.000130(-0.10121{0.09972| 0.00156
Flat Surface|CoM - 7 pt{49.6239| 0.000036|-0.09555|0.09658| 0.00156
Linear |49.7878| 0.000090(-0.07676|0.08499| 0.00120
Parabolic |49.7397( 0.000297|-0.14026|0.14496| 0.00271
BR - 2nd |49.6804(-0.000171|-0.21498|0.11769| 0.00323
BR - 4th |49.6808|-0.000411|-0.13912|0.16080| 0.00343




Surface Error(mm)
Algorithm a b Min. Max. |Variance
Gaussian |57.2598(-0.05306{-0.24558(0.38329| 0.02463
CoM - 3 pt|57.7386|-0.05443|-0.45631|0.56070| 0.05423
CoM - 5 pt|57.6771|-0.05466|-0.37467|0.31389| 0.03110
10° slope, |{CoM - 7 pt|57.6287|-0.05478(-0.29864|0.34434| 0.02416
left to right| Linear |57.6665|-0.05391|-0.30376|0.31999| 0.01737
Parabolic |57.7211|-0.05436|-0.23738(0.37868| 0.01899
BR - 2nd [57.8916(-0.05389(-0.27106(0.28737| 0.01836
BR - 4th [57.8261-0.05382|-0.28686|0.33492| 0.02110
Gaussian |{51.3929| 0.05424(-0.31441(0.51424| 0.03381
CoM - 3 pt|51.8246| 0.05257|-0.43193|0.47276| 0.04573
CoM - 5 pt|51.7356| 0.05321|-0.34414|0.41777| 0.03457
10° slope, |CoM - 7 pt|{51.6648| 0.05277(-0.32581|0.42064| 0.03128
right to left| Linear |51.7305| 0.05263|-0.35943{0.40299| 0.03645
Parabolic |51.7699| 0.05281|-0.35278(0.41456| 0.03496
BR - 2nd (50.9346| 0.05460(-0.33865|0.48187| 0.03299
BR - 4th [50.9251| 0.05439(-0.30189|0.47461| 0.03184

Surface Error(mm)
Algorithm a b Min. Max. |Variance
Gaussian |70.2352(-0.34806(-0.43505(|0.45969| 0.04737
CoM - 3 pt|70.3217|-0.34726|-0.42918|0.51835| 0.05024
CoM - 5 pt|70.3418|-0.34816|-0.37187|0.55610| 0.04146
60° slope, |CoM - 7 pt|70.1715|-0.34771|-0.39819|0.51866| 0.04106
left to right| Linear |70.2851(-0.34810(-0.43443|0.42978| 0.04897
Parabolic |70.3154(-0.34841|-0.39460(0.50010| 0.04764
BR - 2nd |70.1493|-0.34781|-0.46431(0.51234| 0.05624
BR - 4th |70.1202|-0.34813(-0.47256|0.47195| 0.04401
Gaussian [23.5725( 0.34834(-0.34344[0.44277| 0.03918
CoM - 3 pt{23.5071| 0.34925(-0.33353|0.41938| 0.03397
CoM - 5 pt|23.5518| 0.34852(-0.31148(0.35788| 0.03213
60° slope, |CoM - 7 pt|23.3997| 0.34865|-0.40910{0.48459| 0.03624
right to left| Linear [23.5029| 0.34894|-0.38680(0.47643| 0.03994
Parabolic (23.5249| 0.34873|-0.39773(0.44770| 0.03675
BR - 2nd (23.5494| 0.34841(-0.31710|0.46174| 0.03628
BR - 4th (23.5244| 0.34870(-0.34116(0.52795| 0.02985

The measured values for a are not particularly relevant. The values of b are
of interest, because they specify the slope of the surface as measured by the
algorithms used. The true value of bis 0 in the case of the cube, £0.0538 in the
case of the trapezoid, and £0.3464 for the prism. These values were derived by
careful, physical measurements of the objects, but are still subject to the usual
measurement errors. However, they provide us with a basis for comparing the
accuracies of the different peak-picking methods.

The tabulated results are better illustrated by the comparative graphs shown
in Figure 12 - Figure 14. The graphs are the plots of the variation of the residuals
from the line of best fit applied to the measured data. The plots have each been
offset by a different amount so that they are appear together on one graph. The
scale on the Y-axis is the same for all the data sets. The maximum absolute
variation of the plots from the line of best fit is about 0.5mm.

Figure 12 shows the variation across the surface of the cube. The CoM3
and BR2 algorithms appear to show the least amount of perturbation, followed
closely by the plots derived from the Linear and BR4 methods.

The results with the trapezoid (see Figure 13) clearly show systematic errors
in the imaging system, particularly with all the CoM algorithms. These are
caused by the aliasing of the image of the peak creeping from one pixel to the
next, crossing the inter-pixel gap. We estimate this gap is itself almost as wide
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Fig. 12. Comparative depth residuals across a flat surface. The data is separated for
clarity.



10 Degree Slope Residual Comparison
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Fig. 13. Comparative depth residuals across a 10°, left-to-right slope. The data is
separated for clarity.



as a pixel. The non-uniform response across a pixel response is also a source of
the observed periodic effect (see e.g. [1]).

60 Degr ee Slope Residual Comparison
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Fig. 14. Comparative depth residuals across a 60°, left-to-right slope. The data is
separated for clarity.

The performance of all the algorithms deteriorates dramatically in the case
of the prism (see Figure 14). The variations are more pronounced and more
frequent than in the previous two examples. This is because the acute angle of
the object, which is very close to the angle of the camera axis to the horizontal,
causes the stripe to move across the imaging sensors pixels more quickly.

The aliasing gives a periodic structure to the estimators. Some portion of
this periodic, and systematic error could probably be reduced by modeling the
effect as a function of local surface slope and uncorrected estimated subpixel
position. In the case of our sensor, the errors observed here are symptomatic



of the sensor structure and dominate most of the theoretical results discussed
above. We have investigated using subpixel algorithms that fit an observed stripe
profile to an empirically derived real stripe profile; however, the stripe profiles
that we observed varied from pixel to pixel with little systematic character, and
we concluded that modeling each pixel’s response individually was unprofitable
for our application.

9 Conclusions

The empirical results show that the CoM3 algorithm has poor performance. The
other methods display performance within the same range probably because of
factors such as sensor structure, inter-pixel gaps, cross-talk, and integration of
the sensor response over the width of the pixel. The Linear and BR2 methods
have been shown to possess high bias (Section 5). When we consider the errors
produced, the sum of the RMS errors are highest for the CoM3 and CoM$5
algorithms. They are joined by the Parabolic algorithm when we consider the
maximum errors. This leaves us with only the Gaussian, CoM7 and BR4
algorithms as suitable candidates.

In the case of algorithms like the CoM7 and BR4, which rely on a large
number of points around the peak, we observe that specular reflections and
transparency may cause problems since the outlying pixels have a substantial
effect on the computation of the location of the peak. Also, in the case where the
object has holes in it, causing internal reflections and mutual illumination, the
weighted average method of the CoM algorithms will deliver a skewed estimate
of the peak position. That is, when random noise levels are low, estimators using
a small number of ponts will have advantages in avoiding effects arising from the
structure of the sensed object.

We can see good performance over a range of o and § for the BR4 estimator.
This is also clear in Figure 5; however, the Gaussian estimator has obvious
benefits as the noise level or stripe width decreases. It is also interesting that
the figures show to what extent the choice of estimator is linked to the specific
stripe width and noise level. For our striper, the noise seems to be about 2-3
quanta, or about 1-5% of the peak intensity. Note that in all cases we assumed
that the intensity levels were below the saturation level of the sensor.

When comparing the speeds of the algorithms, The Gaussian is the slowest
by about a factor of 2 over the Linear algorithm, which is the fastest in our
implementation. However, the peak detection sub-process takes up only a small
percentage of the total range image acquisition and peak detection time, so the
speed of the algorithms is not a factor in their comparison.

In addition to these results, we have not seen published before a bias analysis
(cf. Section 5) and a bias factor on the estimator (cf. Section 4). Finally, the
aliasing effect observed in Section 8 does not seem to have been reported before
in conjunction with subpixel range sensors.

These results apply to sampled and digitized signals, whereas some algo-
rithms, namely the center-of-mass algorithm, can be applied directly to the



video signal[3, 6]. Real-time digitized stripe detection and subpixel location can
be achieved by scanning for the peak as the digitized signal is acquired. Both
approaches have been implemented (elsewhere) in hardware and thus remove
computational expense as a consideration, because the subpixel calculations are
fast enough to be completed in the time before the next pixel is acquired, and
one has to wait for the complete video scan anyway, when using standard video
equipment.
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