
A Comparison of Algorithms for Subpixel PeakDete
tionR. B. Fisher and D. K. NaiduDept. of Arti�
ial Intelligen
e, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, S
otland, United KingdomAbstra
t. This paper 
ompares the suitability and eÆ
a
y of �ve al-gorithms for determining the peak position of a line or light stripe tosubpixel a

ura
y. The algorithms are 
ompared in terms of a

ura
y,robustness and 
omputational speed. In addition to empiri
al testing,a theoreti
al 
omparison is also presented to provide a framework foranalysis of the empiri
al results.1 Introdu
tionIt is often ne
essary to make measurements whi
h are outwith the pre
ision ofa visual measurement system whi
h relies on lo
ational a

ura
y to the near-est pixel. For example, in an imaging system whi
h relies on a

ura
ies to thenearest pixel while translating from 2-D 
amera 
oordinates to 3-D world 
oor-dinates, the a

ura
y of the estimated 3-D 
oordinates of a point in spa
e willbe limited by the image resolution. If a large spatial volume is proje
ted ontothe imaging surfa
e, ea
h single pixel on the imaging surfa
e will re
ord infor-mation from a range of positions. In our range sensor (working volume 20
m ona side) and ea
h pixel images about 1 mm2 of the s
ene. This limited resolutionis not good enough for pre
ision roboti
 image analysis. Therefore, algorithmsthat estimate feature positions to subpixel a

ura
y by interpolating the sensorresponse fun
tion (e.g.[4, 3, 5℄) are useful. This paper 
ompares �ve algorithmsfor determining the peak image position of a image line or stripe to subpixela

ura
y.To determine the stripe to subpixel a

ura
y, the image of the stripe widthmust be observed over more than one pixel. Here, we assume that the spread ofintensity values a
ross the width of the stripe is not simply random, but 
onformsto some kind of distribution and this pixel spread is exploited in the design ofthe subpixel interpolation algorithms. Some spread is almost always the 
asebe
ause although it is possible opti
ally to fo
us the stripe to less than a singlepixel width, the operative response of individual sensor elements often leads to ameasurement that is several pixels wide. If we did obtain an image of the stripewhi
h was only a pixel wide, it would be impossible to determine where the peakof the stripe was lo
ated within the pixel be
ause we would have data from onlyone pixel with whi
h to interpolate. An example of a typi
al intensity responseversus position is shown in Figure 1.



Fig. 1. Typi
al intensity values from 
ontiguous pixels2 An Example Subpixel Stripe-Based Range SensorAn example of where subpixel stripe dete
tion methods are useful is in ourlaser stripe based triangulation sensor, whi
h is used to a
quire range images ofobje
ts (see Figure 2). The target obje
t is pla
ed on a platform mounted ona linear mi
ro-stepper whi
h is a
tivated under software 
ontrol. The platformmoves in small in
rements under a stationary laser stripe, and at ea
h forwardstep of the platform a pair of digitized images of the laser stripe on the obje
tis a
quired using two 
ameras lo
ated on either side of the obje
t. These imagesare then pro
essed in software to derive a sli
e of range values of the obje
t.Ea
h su

essive step produ
es a fresh sli
e and these sli
es are a

umulated toprovide a 
omplete range image of the obje
t.The digitized image from ea
h 
amera is pro
essed to determine the positionof the stripe to subpixel pre
ision. Be
ause of the 
amera and stripe pla
ement,the stripe is viewed in the image as a nearly verti
al 
urve, the shape of whi
his determined by the shape of the obje
t on whi
h the stripe impinges. Sin
ethe 
urve is verti
al, the s
anning of the raster image is performed from left toright so as to pro
ess pixel values a
ross the width of the per
eived stripe. They-
oordinate of the pixel is determined by the verti
al distan
e of the s
an linefrom the top of the image. The x-
oordinate is determined by the lo
ation ofthe pixel along a parti
ular s
an line. Therefore, when we refer to the subpixelposition of the peak of the stripe, we are dis
ussing the x-
oordinate of the pixel.On
e the peak of the stripe has been dete
ted, the image 
oordinates of thepeak are used to determine the 3D, real-world 
oordinates of the point by usingthe known proje
tive transform between the 
amera model and the real world in
onjun
tion with the known 3D equation of the stripe plane. Greater a

ura
y indetermining the peak position in 2D will automati
ally result in a more a

uratedetermination of the lo
ation of the stripe in 3D 
oordinates, whi
h in turn willprodu
e more a

urate estimates of obje
t dimensions and lo
ation.3 Des
ription of AlgorithmsAll subpixel algorithms that we 
ould lo
ate in the literature plus a new one(Gaussian) are analyzed below.



Fig. 2. S
hemati
 of mi
ro-stepper set-upIn the analyses below, x is the pixel position of the observed peak sensorreading with value f(x). f(x�1) and f(x+1) are the values of the adja
ent pixels,et
. The true peak is at x+ Æ and we will estimate Æ by Æ̂. The 
al
ulations useintensity values that have had the ba
kground image intensity value subtra
ted.3.1 Gaussian approximationThis algorithm uses the three highest, 
ontiguous intensity values around theobserved peak of the stripe and assumes that the observed peak shape �ts aGaussian pro�le. This assumption is approximately true as the light in
ident onthe s
ene is known to be nearly Gaussian distributed. The real distribution, of
ourse, will not be Gaussian, be
ause ea
h pixel integrates light over its �eldof view, the physi
al sensor pads of the solid-state 
ameras we use have a gapbetween them, the sensor pads have internal stru
ture that a�e
ts their sensi-tivity, and not all sensor pads are equally sensitive. None the less, while we donot know the exa
t form of the distribution, we assume that the 
omposition ofall these e�e
ts 
an be modeled by a Gaussian distribution. The subpixel o�set(Æ̂) of the peak is given by :Æ̂ = 12 ln (f(x� 1))� ln (f(x+ 1))ln (f(x� 1))� 2 ln (f(x)) + ln (f(x+ 1))



As the f() are usually integers in the range 0-255, the log 
al
ulation 
an beperformed by table lookup. We have not found any previous referen
es to thisform of peak dete
tor in the literature.3.2 Center of MassThe 
enter-of-mass algorithm also assumes that the spread of intensity valuesa
ross the stripe 
onforms to a Gaussian distribution. Thus, the lo
ation ofthe peak 
an be 
omputed by a simple weighted-average method. The subpixello
ation of the peak is given by :Æ̂ = f(x+ 1)� f(x� 1)f(x� 1) + f(x) + f(x+ 1)The above equation des
ribes the method using only three points. However,we have 
ompared the same algorithm using 3, 5 and 7 points (denoted CoM3,CoM5 and CoM7) to 
ompute the 
enter of mass. The extension of the algo-rithm for the latter two 
ases is:Æ̂ = 2f(x+ 2) + f(x+ 1)� f(x� 1)� 2f(x� 2)f(x� 2) + f(x� 1) + f(x) + f(x+ 1) + f(x+ 2)for the CoM5 algorithm and for the CoM7 algorithm:Æ̂ = 3f(x+ 3) + 2f(x+ 2) + f(x+ 1)� f(x� 1)� 2f(x� 2)� 3f(x� 3)f(x� 3) + f(x� 2) + f(x� 1) + f(x) + f(x+ 1) + f(x+ 2) + f(x+ 3)Algorithms to use all points along the raster s
an also exist (e.g. as used in [6℄).3.3 Linear InterpolationThis method assumes that a simple, linear relationship de�nes the spread ofintensity values before and after the peak. Thus, if the three highest intensityvalues are identi�ed as before, then :If f(x+1) > f(x-1) Æ̂ = 12 (f(x + 1)� f(x� 1))(f(x)� f(x� 1))else Æ̂ = 12 (f(x + 1)� f(x� 1))(f(x)� f(x+ 1))3.4 Paraboli
 EstimatorA 
ontinuous version of the peak �nder is derivable from the Taylor series ex-pansion of the signal intensity near the peak. If the peak is at f(x + Æ) and weobserve the signal at f(x), then we have:



f 0(x + Æ) = 0 = f 0(x) + Æf 00(x) +O(Æ2)Hen
e, negle
ting the higher order terms,Æ := � f 0(x)f 00(x)We 
an estimate the derivatives dis
retely, resulting in:Æ̂ = 12 f(x� 1)� f(x+ 1)(f(x+ 1)� 2f(x) + f(x� 1))This estimator is also that found by �tting a paraboli
 (i.e. se
ond-order) fun
-tion to the points f(x� 1), f(x) and f(x+1). In the experiments below, we 
allthis the paraboli
 estimator.3.5 Blais and Rioux Dete
torsBlais and Rioux[2℄ introdu
ed fourth and eighth order linear �lters:g4(x) = f(x� 2) + f(x� 1)� f(x+ 1)� f(x+ 2)g8(x) = f(x� 4) + f(x� 3) + f(x� 2) + f(x� 1)�f(x+ 1)� f(x+ 2)� f(x+ 3)� f(x+ 4)to whi
h we also add a se
ond order �lter:g2(x) = f(x� 1)� f(x+ 1)These operators a
t like a form of numeri
al derivative operator. The peak po-sition is estimated as above by:̂Æ = g(x)g(x)� g(x+ 1)The results of Blais and Rioux showed that the 4th order operator had bet-ter performan
e than the 8th order operator over the stripe widths that we areinterested in here, so we only analyze it (
alled BR4 below) and the simpli�ed2nd order operator (
alled BR2 below). The 8th order operator has better per-forman
e for stripe widths with Gaussian width parameter larger than 2 pixels.Note that this operator is only applied in the given form for f(x+1) > f(x�1).If f(x+ 1) < f(x� 1), then:Æ = g(x� 1)g(x� 1)� g(x) � 1



4 Maximum Error of EstimatorsAssuming that the observed stripe has Gaussian form and the true peak po-sition is near to an observed pixel, we determine the relationship between theestimated and true peak positions (i.e. o�sets from that pixel), for ea
h of thepeak dete
tors. Assume that the 
ontinuous stripe is modeled by:f(n) = e� (n�Æ)22�2where � 12 � Æ � 12 is the true peak position and f is sampled at n = -2, -1, 0, 1,2, .. . We ignore the problems of pixels integrating their inputs over their spatialextent, as well as any shaping fun
tions the 
amera and digitizer may apply.We might ask what is the maximum deviation j Æ � Æ̂ j over the range � 12 �Æ � 12 for ea
h estimator. We generated sampled stripes for values of Æ overthis interval and 
al
ulated the estimated Æ̂. For three values of � the maximumerrors are: � Gaussian CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR40.5 0.0 0.026 0.023 0.023 0.087 0.169 0.009 0.0151.0 0.0 0.223 0.042 0.003 0.043 0.047 0.034 0.0181.5 0.0 0.350 0.178 0.060 0.067 0.021 0.019 0.014Figure 3(left) shows the error versus Æ for the CoM7 estimator for � = 1:0.
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-400.00 -200.00 -0.00 200.00 400.00Fig. 3. Error versus Æ For Unbiased (left) and Biased (right) COM7 EstimatorBy weighting the estimator (Æ̂0 = �estimator Æ̂) we 
an, for a given �, redu
ethe maximum error by spreading the error a
ross the full range. Figure 3(right)shows the error for the resulting CoM7 estimator when � = 1:006. This shows



that the maximum error has been redu
ed by almost a fa
tor of 10. By 
hoosingan appropriate value of � for ea
h algorithm and the expe
ted value of �, we 
anminimize the maximum error. Here, we 
hoose the � that minimizes the errorfor stripe width � = 1:0 pixel, and examine the maximum error for the samethree real stripe widths:� Gaussian CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR40.5 0.0 0.380 0.041 0.021 0.103 0.156 0.026 0.0231.0 0.0 0.005 0.002 0.000 0.030 0.029 0.024 0.0131.5 0.0 0.239 0.150 0.057 0.049 0.034 0.022 0.011� 1.0 1.85 1.093 1.006 0.93 1.08 0.95 0.975This shows that, in at least the 
ase of � = 1:0, we 
an tune the estimatorto have a very low error; however, setting the � values for one � may produ
eredu
ed performan
e at other �s.5 Bias of EstimatorsUsing the Gaussian stripe model in Se
tion 4, we 
an determine an analyti
almodel of the estimated peak o�set Æ̂ for a small, real o�set, Æ. Our analysisassumes �rst-order approximations: ex := 1 + xlog(1 + x) := xSo: f(n) := (1 + nÆ�2 )e� n22�2We 
an now determine the form of Æ̂ for ea
h peak estimator. For the Gaus-sian estimator:Æ̂ = 12 log(f(�1))� log(f(1))log(f(�1)) + log(f(1))� 2log(f(0)):= 12 log(e� 12�2 (1� Æ�2 ))� log(e� 12�2 (1 + Æ�2 ))log(e� 12�2 (1� Æ�2 )) + log(e� 12�2 (1 + Æ�2 ))� 2log(1)= 12 log(1� Æ�2 )� log(1 + Æ�2 )2log(e� 12�2 ) + log(1� Æ�2 ) + log(1 + Æ�2 ):= 12 � Æ�2 � Æ�22(� 12�2 )� Æ�2 + Æ�2= 12 �2 Æ�2� 1�2= Æ



Hen
e, theGaussian estimator has the ideal form for small Æ. For the Linearestimator: Æ̂ = f(1)� f(�1)2(f(0)� f(�1)):= e� 12�2 (1 + Æ�2 )� e� 12�2 (1� Æ�2 )2(1� e� 12�2 (1� Æ�2 )):= e� 12�2 (2 Æ�2 )2(1� e� 12�2 )= Æ�2 e� 12�2(1� e� 12�2 )We skip the derivations for the other 
ases and summarize their results:Estimator Lo
al Estimate Estimator Lo
al EstimateGaussian Æ CoM3 2Æ�2 e� 12�2(1+2e� 42�2 )Linear Æ�2 e� 12�2(1�e� 12�2 ) CoM5 2Æ�2 e� 12�2 +4e� 42�2(1+2e� 42�2 +2e� 42�2 )Paraboli
 Æ2�2 e� 12�2(1�e� 12�2 ) CoM7 2Æ�2 e� 12�2 +4e� 42�2 +9e� 92�2(1+2e� 12�2 +2e� 42�2 +2e� 92�2 )BR2 2Æ�2 e� 12�2(1�e� 42�2 ) BR4 2Æ�2 e� 12�2 +2e� 42�2(1+e� 12�2 �e� 42�2 �e� 92�2 )From these results, we see that the Paraboli
 operator gives one half theestimate of the Linear operator. When � = 1:0 (as is approximately our 
ase),the estimators are now:Estimator Gauss CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR4Lo
al Estimate 1:00Æ 0:55Æ 0:92Æ 0:99Æ 1:54Æ 0:77Æ 1:40Æ 1:20ÆHowever, in light of the results from Se
tion 4, we use the � estimator biasto 
hange the overall bias a

ording to the algorithm. When � = 1:0 (as approx-imately in our 
ase), the resulting Æ̂ is:Estimator Gauss CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR4Æ̂ 1:00Æ 1:01Æ 1:00Æ 1:00Æ 1:40Æ 0:83Æ 1:33Æ 1:17ÆHen
e, all but the Linear and BR2 estimators are reasonably unbiased.Overall, this noise-free theoreti
al and empiri
al analysis suggests that the Lin-ear, and BR2 estimators are not parti
ularly good. However, given typi
al sen-sor substru
ture, pixel spatial integration and 
ross-talk, non-gaussian stripe



formation and non-linear sensor transfer fun
tions, errors of less than 5% seemunlikely in any 
ase. Hen
e, the Gauss, CoM5, CoM7, Paraboli
 and BR4estimators still seem like good 
andidates.6 Errors in the Presen
e of NoiseIn line with the experiments of Blais and Rioux[2℄, we investigated how error inthe stripe data a�e
ted the estimated stripe position. These experiments were
ondu
ted by generating stripe data with a known, but randomly 
hosen stripeo�set about an exa
t pixel position, and then 
orrupting the observed stripeintensity with noise. The main 
ontrolled variable was the stripe width. Uniformnoise was added (following the model of Blais and Rioux). Point measurementswere generated by: f(n; Æ; �; �) = e� (n�Æ)22�2 + ��where:Æ 2 U [�0:5;+0:5℄ is the stripe position.n 2 f�3;�2;�1; 0; 1; 2; 3g are the measured pixel positions.� 2 U [0; 1℄ is the noise variable.� is the stripe width parameter (range 0.8 to 1.8).� was the magnitude of the noise, and was 
onsidered for � = 0.0, 0.1,0.25, whi
h bounded our observed noise level (ie. � < 0:1).We measured both RMS error (q 1N P(Æi � Æ̂i)2) and maximum deviation(max j Æi � Æ̂i j) as a fun
tion of � for N = 10; 000 samples. Figures 4, 5 and6 show the RMS error for � = 0:0; 0:1; 0:25 respe
tively. Figures 7, 8 and 9show the same for the maximum error. Immediately, we see that the CoM3and CoM5 estimators are problemati
. What is surprising is the error of theCoM7 estimator in the presen
e of noise at low stripe widths. However, this isunderstandable as, when the stripe width is low, the stripe intensities fall qui
klyat non-
entral pixels, 
ausing the noise to more qui
kly dominate the signal andhave a greater e�e
t.To 
ompare the algorithms, we also summed the RMS error for � = 0:8�1:8(by 0.05) for the three values of �.� Gaussian CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR40.00 0.00 3.71 1.36 0.31 0.87 0.49 0.39 0.240.10 1.07 3.90 1.86 1.32 1.36 1.23 0.93 0.770.25 2.49 4.25 2.67 2.63 2.62 2.61 2.12 1.86From this, we 
an see good performan
e over a range of � and � for the BR2and BR4 estimators. This is also 
lear in Figures 5 and 6, however, the Gaus-sian estimator has obvious bene�ts as the noise level or stripe width de
reases.It is also interesting that the �gures show to what extent the 
hoi
e of estimatoris linked to the spe
i�
 stripe width and noise level. For our stripe system, wehave observed:
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RMS Error. Noise = 0.1
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RMS Error. Noise = 0.25
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Max Error. Noise = 0.0

com 3

com 5

com 7

linear

parabolic

br2

br4

gauss

Error x 10-3

Sigma

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

0.80 1.00 1.20 1.40 1.60Fig. 7. Max Error Versus � For The Estimators, Noise = 0.0 (Algorithms are listedlarge to small at maximum �.)



Max Error. Noise = 0.1
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Max Error. Noise = 0.25
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target mean stripe stripe ba
kground
olor peak intensity � rangewhite 201 1.69 13-15grey 165 1.31 11-12bla
k 60 1.22 10-12Hen
e, for our striper, the noise seems to be about 2-3 quanta, or about 1-5%of the peak intensity. We think that the in
rease in � as the intensity in
reases isexplained by the gamma 
ompression of the 
amera 
attening the stripe peak.7 Algorithm Behavior on Sensor SaturationNo algorithm should produ
e wildly unreasonable estimates of the peak positionwhen the sensor is saturated. When saturation o

urs, the measured intensityvalues at the peak and nearby pixels are usually at some limiting value (e.g 255).Moreover, be
ause of the e�e
ts of saturation on the physi
al sensor, adja
entpixels whose true signal is below saturation may also be a�e
ted or be
omesaturated. Hen
e, use of these adja
ent pixels may also not be possible.The Gaussian, Linear and Paraboli
 algorithms given in Se
tion 3 have ade�nite problem in this situation, resulting in a division by zero. We propose thatthese algorithms 
an be modi�ed to use the midpoint of the saturated region:if overflow_o

urred{ peak_position = last_overflowed_pixel - overflow_length/2 + 0.5}else use_normal_algorithmThe other algorithms do not a
tually perform too badly, provided the regionof saturation is only 1 - 3 pixels. We tested the behavior of the algorithms byan experiment where the pixel values were generated using the formula givenin Se
tion 4. Then, whenever the intensity value was greater than 0.5, it wasset to 0.5 (i.e. the saturation limit). This limit allowed a maximum of three
onse
utive saturated pixels. The algorithms were applied at all subpixel o�setsfrom -0.5 to 0.5, and the deviation of the estimated subpixel o�set away fromthe true o�set were re
orded. Figure 10 shows the deviations for the Gauss andthe BR4 algorithms.The maximum deviations for the algorithms are:Algorithm Gaussian CoM3 CoM5 CoM7 Linear Paraboli
 BR2 BR4Max Deviation 0.320 0.255 0.059 0.049 0.320 0.320 0.175 0.071Some improvement might be possible by a fun
tion of the non-saturated pix-els surrounding the saturated region, but the utility of these algorithms dependson how the sensor responds when saturated.



Saturated Data Offset Effects
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8 Empiri
al TestingWe tested all algorithms in the laser stripe range sensor des
ribed in Se
tion 2.The experiments used three di�erent test obje
ts. These were a 
ube, a trapezoidwith its top surfa
e at an angle of 10Æ to the horizontal, and an equilateral prism(see Figure 11). In all 
ases, the obje
t was oriented so that all range values alongthe stripe were equal. The test obje
ts were aligned so that their surfa
e normalslay in the X � Z plane. The 
oordinate system, the relative positioning of the
ameras and the dire
tion of motion of the mi
ro-stepper are 
lari�ed in Figure 2.

Fig. 11. Detail of experimental obje
tsThe experiments obtained a series of range images 
omprising 100 rangestripes ea
h. A single data point was 
hosen from ea
h stripe, su
h that all thedata points 
hosen lay along a line parallel to the x-axis. Se
ondly, the stripeswere taken with a very small mi
ro-stepper movement (0.2mm for the prism and0.3mm for trapezoid and the 
ube), thereby leading to high data density. Also,the depth quantization was kept small (0.03mm), so that the estimation errorswould be of larger magnitude than the quantization errors.For ea
h surfa
e, ea
h algorithm was used to dete
t the stripe peak, and thenthe depth 
al
ulated from ea
h 
amera was noted and their average 
omputed.Having 
olle
ted the data, a linear least-squares �t (z = â + b̂x) was 
omputedfor ea
h set of data points. The slope of this �tted line was 
omputed, and theminimum and maximum values of the errors were re
orded. The varian
e of theerrors was also 
omputed. The 
omparative statisti
s are shown below.Surfa
e Error(mm)Algorithm â b̂ Min. Max. Varian
eGaussian 49.7680 0.000112 -0.12762 0.09815 0.00249CoM - 3 pt 49.6466 0.000006 -0.06152 0.08812 0.00122CoM - 5 pt 49.7025 0.000130 -0.10121 0.09972 0.00156Flat Surfa
e CoM - 7 pt 49.6239 0.000036 -0.09555 0.09658 0.00156Linear 49.7878 0.000090 -0.07676 0.08499 0.00120Paraboli
 49.7397 0.000297 -0.14026 0.14496 0.00271BR - 2nd 49.6804 -0.000171 -0.21498 0.11769 0.00323BR - 4th 49.6808 -0.000411 -0.13912 0.16080 0.00343



Surfa
e Error(mm)Algorithm â b̂ Min. Max. Varian
eGaussian 57.2598 -0.05306 -0.24558 0.38329 0.02463CoM - 3 pt 57.7386 -0.05443 -0.45631 0.56070 0.05423CoM - 5 pt 57.6771 -0.05466 -0.37467 0.31389 0.0311010Æ slope, CoM - 7 pt 57.6287 -0.05478 -0.29864 0.34434 0.02416left to right Linear 57.6665 -0.05391 -0.30376 0.31999 0.01737Paraboli
 57.7211 -0.05436 -0.23738 0.37868 0.01899BR - 2nd 57.8916 -0.05389 -0.27106 0.28737 0.01836BR - 4th 57.8261 -0.05382 -0.28686 0.33492 0.02110Gaussian 51.3929 0.05424 -0.31441 0.51424 0.03381CoM - 3 pt 51.8246 0.05257 -0.43193 0.47276 0.04573CoM - 5 pt 51.7356 0.05321 -0.34414 0.41777 0.0345710Æ slope, CoM - 7 pt 51.6648 0.05277 -0.32581 0.42064 0.03128right to left Linear 51.7305 0.05263 -0.35943 0.40299 0.03645Paraboli
 51.7699 0.05281 -0.35278 0.41456 0.03496BR - 2nd 50.9346 0.05460 -0.33865 0.48187 0.03299BR - 4th 50.9251 0.05439 -0.30189 0.47461 0.03184Surfa
e Error(mm)Algorithm â b̂ Min. Max. Varian
eGaussian 70.2352 -0.34806 -0.43505 0.45969 0.04737CoM - 3 pt 70.3217 -0.34726 -0.42918 0.51835 0.05024CoM - 5 pt 70.3418 -0.34816 -0.37187 0.55610 0.0414660Æ slope, CoM - 7 pt 70.1715 -0.34771 -0.39819 0.51866 0.04106left to right Linear 70.2851 -0.34810 -0.43443 0.42978 0.04897Paraboli
 70.3154 -0.34841 -0.39460 0.50010 0.04764BR - 2nd 70.1493 -0.34781 -0.46431 0.51234 0.05624BR - 4th 70.1202 -0.34813 -0.47256 0.47195 0.04401Gaussian 23.5725 0.34834 -0.34344 0.44277 0.03918CoM - 3 pt 23.5071 0.34925 -0.33353 0.41938 0.03397CoM - 5 pt 23.5518 0.34852 -0.31148 0.35788 0.0321360Æ slope, CoM - 7 pt 23.3997 0.34865 -0.40910 0.48459 0.03624right to left Linear 23.5029 0.34894 -0.38680 0.47643 0.03994Paraboli
 23.5249 0.34873 -0.39773 0.44770 0.03675BR - 2nd 23.5494 0.34841 -0.31710 0.46174 0.03628BR - 4th 23.5244 0.34870 -0.34116 0.52795 0.02985The measured values for â are not parti
ularly relevant. The values of b̂ areof interest, be
ause they spe
ify the slope of the surfa
e as measured by thealgorithms used. The true value of b̂ is 0 in the 
ase of the 
ube, �0.0538 in the
ase of the trapezoid, and �0.3464 for the prism. These values were derived by
areful, physi
al measurements of the obje
ts, but are still subje
t to the usualmeasurement errors. However, they provide us with a basis for 
omparing thea

ura
ies of the di�erent peak-pi
king methods.The tabulated results are better illustrated by the 
omparative graphs shownin Figure 12 - Figure 14. The graphs are the plots of the variation of the residualsfrom the line of best �t applied to the measured data. The plots have ea
h beeno�set by a di�erent amount so that they are appear together on one graph. Thes
ale on the Y-axis is the same for all the data sets. The maximum absolutevariation of the plots from the line of best �t is about 0.5mm.Figure 12 shows the variation a
ross the surfa
e of the 
ube. The CoM3and BR2 algorithms appear to show the least amount of perturbation, followed
losely by the plots derived from the Linear and BR4 methods.The results with the trapezoid (see Figure 13) 
learly show systemati
 errorsin the imaging system, parti
ularly with all the CoM algorithms. These are
aused by the aliasing of the image of the peak 
reeping from one pixel to thenext, 
rossing the inter-pixel gap. We estimate this gap is itself almost as wide



Flat Surface Residual Comparison

Gaussian

CoM3

CoM5

CoM7

Linear

Parabolic

BR2

BR4

Fig. 12. Comparative depth residuals a
ross a 
at surfa
e. The data is separated for
larity.



10 Degree Slope Residual Comparison
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Fig. 13. Comparative depth residuals a
ross a 10Æ, left-to-right slope. The data isseparated for 
larity.



as a pixel. The non-uniform response a
ross a pixel response is also a sour
e ofthe observed periodi
 e�e
t (see e.g. [1℄).
60 Degree Slope Residual Comparison
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Fig. 14. Comparative depth residuals a
ross a 60Æ, left-to-right slope. The data isseparated for 
larity.The performan
e of all the algorithms deteriorates dramati
ally in the 
aseof the prism (see Figure 14). The variations are more pronoun
ed and morefrequent than in the previous two examples. This is be
ause the a
ute angle ofthe obje
t, whi
h is very 
lose to the angle of the 
amera axis to the horizontal,
auses the stripe to move a
ross the imaging sensors pixels more qui
kly.The aliasing gives a periodi
 stru
ture to the estimators. Some portion ofthis periodi
, and systemati
 error 
ould probably be redu
ed by modeling thee�e
t as a fun
tion of lo
al surfa
e slope and un
orre
ted estimated subpixelposition. In the 
ase of our sensor, the errors observed here are symptomati




of the sensor stru
ture and dominate most of the theoreti
al results dis
ussedabove. We have investigated using subpixel algorithms that �t an observed stripepro�le to an empiri
ally derived real stripe pro�le; however, the stripe pro�lesthat we observed varied from pixel to pixel with little systemati
 
hara
ter, andwe 
on
luded that modeling ea
h pixel's response individually was unpro�tablefor our appli
ation.9 Con
lusionsThe empiri
al results show that theCoM3 algorithm has poor performan
e. Theother methods display performan
e within the same range probably be
ause offa
tors su
h as sensor stru
ture, inter-pixel gaps, 
ross-talk, and integration ofthe sensor response over the width of the pixel. The Linear and BR2 methodshave been shown to possess high bias (Se
tion 5). When we 
onsider the errorsprodu
ed, the sum of the RMS errors are highest for the CoM3 and CoM5algorithms. They are joined by the Paraboli
 algorithm when we 
onsider themaximum errors. This leaves us with only the Gaussian, CoM7 and BR4algorithms as suitable 
andidates.In the 
ase of algorithms like the CoM7 and BR4, whi
h rely on a largenumber of points around the peak, we observe that spe
ular re
e
tions andtransparen
y may 
ause problems sin
e the outlying pixels have a substantiale�e
t on the 
omputation of the lo
ation of the peak. Also, in the 
ase where theobje
t has holes in it, 
ausing internal re
e
tions and mutual illumination, theweighted average method of the CoM algorithms will deliver a skewed estimateof the peak position. That is, when random noise levels are low, estimators usinga small number of ponts will have advantages in avoiding e�e
ts arising from thestru
ture of the sensed obje
t.We 
an see good performan
e over a range of � and � for the BR4 estimator.This is also 
lear in Figure 5; however, the Gaussian estimator has obviousbene�ts as the noise level or stripe width de
reases. It is also interesting thatthe �gures show to what extent the 
hoi
e of estimator is linked to the spe
i�
stripe width and noise level. For our striper, the noise seems to be about 2-3quanta, or about 1-5% of the peak intensity. Note that in all 
ases we assumedthat the intensity levels were below the saturation level of the sensor.When 
omparing the speeds of the algorithms, The Gaussian is the slowestby about a fa
tor of 2 over the Linear algorithm, whi
h is the fastest in ourimplementation. However, the peak dete
tion sub-pro
ess takes up only a smallper
entage of the total range image a
quisition and peak dete
tion time, so thespeed of the algorithms is not a fa
tor in their 
omparison.In addition to these results, we have not seen published before a bias analysis(
f. Se
tion 5) and a bias fa
tor on the estimator (
f. Se
tion 4). Finally, thealiasing e�e
t observed in Se
tion 8 does not seem to have been reported beforein 
onjun
tion with subpixel range sensors.These results apply to sampled and digitized signals, whereas some algo-rithms, namely the 
enter-of-mass algorithm, 
an be applied dire
tly to the



video signal[3, 6℄. Real-time digitized stripe dete
tion and subpixel lo
ation 
anbe a
hieved by s
anning for the peak as the digitized signal is a
quired. Bothapproa
hes have been implemented (elsewhere) in hardware and thus remove
omputational expense as a 
onsideration, be
ause the subpixel 
al
ulations arefast enough to be 
ompleted in the time before the next pixel is a
quired, andone has to wait for the 
omplete video s
an anyway, when using standard videoequipment.10 A
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