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Abstract

This paper summarizes a series of recent research re-
sults made at Edinburgh University based applying domain
knowledge of standard shapes and relationships to solve or
improve architectural reconstruction problems. The prob-
lems considered are how to enforce known relationships
when data £tting, how to extract features even in very noisy
data, how to get better shape parameter estimates and how
to infer data about unseen features.

1. Introduction

Traditional processes for reconstructing buildings from
3D datasets have been initially data (e.g. triangulated mod-
els) and parametric surface (e.g. quadric surface) driven.
These approaches have been successful, but have resulted
in reconstructions that have ‘frozen-in’ errors. Typical er-
rors are surfaces at incorrect relative positions or artifacts
arising from noisy or missing data.

For several years our research group at Edinburgh Uni-
versity has been exploring ‘knowledge-based’ techniques to
help overcome these and other problems. The underlying
theme behind this set of techniques is the exploitation of
general and speci£c architectural knowledge. The process
is not “model-based” reconstruction as then there would be
no point to building the models - this would not be “reverse
engineering”. On the other hand, the knowledge is not ar-
bitrary, because the buildings that humans usually construct
are not arbitrary: their shapes follow standard conventions
arising from tradition, utility or engineering design. This is
a “knowledge-based” approach.

We argue that exploiting this extra knowledge al-
lows improved architectural reconstruction. This pa-
per presents several different examples of the general
approach, summarizing results from the full publica-
tions, which are cited within and can be found at:
http://www.dai.ed.ac.uk/homes/rbf/
publications.html.

One of the assumptions underlying the work summarized

here is that the architectural reconstruction process need not
be fully automated. Computers are good at data analysis
and £tting; humans are good at recognizing and classifying
patterns. Thus, we work in a cooperative problem solving
paradigm, where a human might hypothesize that a given
relationship holds (e.g. two walls are potentially parallel)
and the computer can either help verify the relationship (e.g.
calculate the probability that they are parallel) or compute
some parameter that results from the relationship (e.g. the
separation between the walls).

From these general ideas, we have been exploring tech-
niques to improve architectural reconstruction from 3D
point data sets. These main themes are explored in the sec-
tions that follow:

1. There are many constraints on feature relationships in
buildings. Exploiting these constraints improves the
recovery of models.

2. General shape knowledge can allow recovery even
when data is very noisy, sparse or incomplete.

3. Complete data acquisition can be impossible in prac-
tice, but inference of much occluded or otherwise
missing data is possible.

4. Many of these recovery problems require discov-
ery of shape and position parameters that satisfy the
knowledge-derived constraints. Evolutionary search
methods can be used to do this search effectively.

2. Constrained building reconstruction

Buildings have standard feature relations

One of the cornerstones of the recent research in our lab-
oratory has been constrained recovery of 3D shapes from
3D point cloud data. There has been much previous re-
search on curved surface shape estimation, based either on
the Euclidean distance [5] or variants of the algebraic dis-
tance [21]. Given the shape bias arising from the algebraic
distance, researchers have also developed a general quadric



surface extension to the algebraic distance using a gradi-
ent based weighting [47] or a shape speci£c approximation
[27]. These £tting approaches were for single surfaces. In
our case, we have used a constrained algebraic distance ap-
proach that applies shape speci£c constraints on all of the
individual surfaces. Within the same framework, we also
simultaneously apply constraints that encode standard fea-
ture relationships such as alignment of surfaces, colinearity
of features, etc. This constrained reverse engineering tech-
nique has been applied to both industrial parts and architec-
tural scenes.

Figure 1. (top) Noisy incomplete data for a
doorway, (bottom) the £tted parametric model
and selected data.

The key issue is how to incorporate shape and design
constraints into shape £tting of 3D data. Our current ap-
proach is to formulate shape £tting as constrained least-

squares problem. If:

• ~p speci£es the parameter vector for feature shapes and
positions

• H is the least squares shape error matrix

• Ci(~p) are constraints over the parameters

• λi are penalty costs

and then minimize:

~pT
H~p+

∑

i

λiCi(~p)

The £rst term is a least squares £tting term that ensures that
model surfaces lie close to the image data. The second term
encodes the penalties for constraint violations. The linear
least squares error term can also be a non-linear Euclidean
distance (or other) error term. Minimizing this error is gen-
erally a non-convex problem, so we initialize ~p to be the
standard least-square solution and λi = 0 and then apply
numerical optimization methods. We then incrementally
enforce the constraints by increasing penalty costs λi and
re-minimizing until the constraints are satis£ed to the de-
sired tolerances. The gradual increase ensures that the solu-
tion stays near the least-square solution and also helps avoid
local minima. Experiments show that solutions initialized
from different randomly perturbed starting points converge
to a small cluster of nearby solutions.

While we have only experimented with constraint func-
tions C() that use the square of the error in the constraint,
one could also use a gated function that produces zero error
if the constrained relationship is within a given tolerance.
A gated form would be particularly appropriate for archi-
tecture, as buildings always deviate somewhat from their
design, either through construction variations, subsequent
modi£cation or subsidence. If a gated form were used, our
gradient based optimization method would need to be mod-
i£ed as there is a discontinuity at the tolerance point. One
possible approach is to use the evolutionary methods men-
tioned in Section 6. Then the constraint can be simply ig-
nored in the evaluation function if the speci£ed tolerance is
satis£ed.

We have applied the constrained shape £tting method to
architectural scenes [7, 8], where many standard architec-
tural relationships are present, such as near perpendicularity
of walls and ¤oors, coplanarity of ¤oors inside and outside
rooms, etc. We also considered constraints between non-
adjacent surfaces as well as connectivity constraints. We
satis£ed the constraints effectively using a numerical opti-
mization process instead of an equation-solving approach
[40], using the data projection method of [29]. While these
buildings only have constrained planar surfaces, we have
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Figure 2. Semantic net encoding typical ar-
chitectural relationships.

also developed techniques for constraints involving quadric
and freeform surfaces [49, 50].

The constraints that are applied in a reconstruction can
arise from two processes. The easiest is by a reconstruc-
tion engineer specifying the constraints. More interest-
ingly, constraints could be hypothesized automatically. At
a purely data-driven level, one could apply statistical tests
to validate hypothesized relationships (e.g. perpendicular-
ity of surfaces, as in [2]). We have investigated using higher
level architectural knowledge to supplement the local fea-
ture relationships [8, 7]. The knowledge is encoded in a
semantic net, see Figure 2. The reconstruction process at-
tempts to label scene surface and edge features as instances
of the given building parts whenever the data feature re-
lationships satisfy the model relationships. Assignment of
labels uses a search algorithm tolerant to shape and position
errors. Once data features are labeled, the ideal constraints
relating the features in the semantic net are used to constrain
the feature positions during reconstruction.

3. Knowledge-based shape improvement

Feature shapes allow local improvements

As we know that we are recovering buildings with large
planar surfaces, we can recover better models by enforcing
surface ¤atness through displacing triangle vertices onto the
nearest plane [8, 7]. Figure 9 shows some ripples near the
lower windows in the original triangulation that have been
¤attened. The data for this example was acquired by an ex-
pensive range sensor, but some of our other examples [7]
have used sparser 3D triangulated point sets obtained from
structure-and-motion recovery from video sequences. Fig-
ure 3 shows some surfaces before and after ¤attening. No-

Figure 3. (top) Raw triangulated model. (Bot-
tom) Flattened model.

tice that ¤attening does not occur everywhere, but instead
tries to improve only the coplanar features, so that the win-
dows, door and bicycle are preserved. Due to the sparseness
of the 3D triangulated data features, we needed a differ-
ent segmentation process to assign vertices to planar surface
patches. After that, constrained surface adjustment and £t-
ting proceeded in the same way as the part shape recovery.
The use of structure-and-motion data would probably not
be so useful in the other techniques presented in this paper
as that data tends to be quite sparse and much noisier than
range sensor data.

Many recent part model and building representation sys-
tems are based on triangulation models [41], often recov-
ered from raw range data. These models work well with
smooth surfaces, but tend to round off surface crease edges
or introduce artifacts on them. We have extended [28] the
“marching triangle” surface triangulation and multiple sur-
face fusion algorithm [23, 24] to seed triangulation [10] at
previously-located fold edges (using RANSAC [19]). This
preserves the shape discontinuity at the fold edges while
also allowing the accurate “decimated” triangulation of the
marching triangle algorithm. Figure 4 shows part of an ar-
chitectural scene without and with fold edge preservation.
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4. Knowledge-based feature extraction in noisy
data

Figure 4. Building fragment without and with
fold edge preservation.

Particularly dif£cult problems for data-driven recovery
processes are outliers, low resolution and noisy data on re-
¤ective surfaces. When we have knowledge of either the
speci£c buildings or of general design relationships that
hold in a particular domain, then we can exploit this knowl-
edge in the shape recovery process.

Buildings have simple edge relations

Figure 5 (top) shows sets of potential fold edges ex-
tracted from a triangulated mesh. Knowing that most build-
ings have edges aligned perpendicularly allows us to extract
the three principal directions in the architecture. This infor-
mation allows the edges and the linking surfaces to be rec-
ti£ed to full orthogonality. Figure 5 (bottom) shows the hy-

pothesized principal directions extracted from the full edge
set.

Buildings have standardized structures

We have recently applied a parametric model approach
to architectural feature recovery, in this case using noisy
and fragmentary 3D point cloud data [17]. While one could
use constrained feature space search methods (e.g. [1, 20]),
here we use a constrained optimization method in which the
constraints are built into the optimization process (e.g. [5]),
to £t parametric shape models (e.g. [6, 12, 42]). While con-
straints are not well exploited [48], and often features are
extracted independently (e.g. [3]), here we simultaneously
£t, establish point-to-feature correspondences and estimate
parameters. Using similar optimization methods as above,
we extract the position and shape of a parametric model that
best £ts the data fragments, as well as effectively segment-
ing the data by assigning appropriate 3D points to the £tted
model surfaces. Figure 1 shows an example doorway £t,
where the doorway has 6 positional and 3 shape degrees of
freedom.

5. Inference of unobservables

Constructing complete models usually requires multiple
scans of a scene. Because of the desire to reduce acqui-
sition costs by minimizing the number of scans while still
maintaining complete coverage, researchers have developed
view planning algorithms. From our experience with laser-
based range sensors, we realized that view planning had
to include a surface quality measure [31], quantifying how
close the observation angle was to the surface normal at
each surface point.

When we applied the view planning approach to even
simple scenes [39] (see Figure 6), we found that approxi-
mately 110 views with a typical 60 degree aperture sensor
were needed to observe every part of the scene. About an-
other 100-200 were needed to observe every surface point
with high accuracy. This number of scans is clearly not fea-
sible (unless a wide £eld of view panoramic sensor is used
[26]). The main cause of the need for so many scans is oc-
clusion, where closer parts of the scene hide more distant
parts. To obtain the missing parts, we need to position the
scanner at many additional places to acquire increasingly
smaller unscanned portions of the data. While there has
been much previous work on view planning (e.g. [35, 46]),
that work dealt with simple nearly convex objects, and so
did not encounter the problems arising from having many
occlusions. Since this occlusion problem arises with even
very simple scenes, there probably is no “scanning” based
solution to the problem.
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Figure 5. Top) extracted fold edges, bot-
tom) hypothesized orthogonal principal di-
rections.

Standard shapes allow recovery of unob-
servable shape and texture

We have been investigating knowledge-based hypotheti-
cal reconstruction of unobserved surfaces [14, 45]. There is
work on recognizing objects from range data, considering
occlusions [33], but here we are attempting to recover from
them. The key to reconstruction is the knowledge that the
shape of the unobserved surface is usually the same as the
observed portion of a surface [22, 30]. This allows us to
project surfaces into occluded areas. As many simple sur-
faces have in£nite extent, this requires also an estimate of
the unobserved boundary [9]. We have applied this recov-
ery process to planar and cylindrical surfaces, an example
of which appears in Figure 7.

As well as occluded forward facing structures, we have
also investigated hypothesizing the back-facing sides of
columns [32]. Figure 8 (top) shows a subset of a trian-
gulated scan of the prayer hall of the Edinburgh Central
Mosque. The model is formed from the fusion of 11 cylin-
drical scans, each with about 12 million 3D points, but still
many portions of the model are incomplete. Here, we see
some columns that are missing part or all of 1, or 3 sides.
The close up in Figure 8 (mid) shows some partial columns
with most of 3 sides, plus some holes and Figure 8 (bottom)
shows the extended columns.

Given the recovery of the surface shape, we have also
been investigating [44] recovery of the surface appearance

Figure 6. Simple test scene with two interior
occluding objects.

[16]. In this case we exploit consistency of the appearance
- namely either constant re¤ectance or repeating texture.

6. Evolutionary structure recovery

Parameter space search to £nd solutions

Reconstructing models from multiple 3D point datasets
requires registration of the point sets. Most registration al-
gorithms are variants of the Iterated Closest Point (ICP) al-
gorithm, which searches for the best corresponding points
between the datasets from which the registering pose can be
estimated. Our recent work [38] on pose space search has
shown that one can obtain equally good registration results
while avoiding local incorrect minima, from which the ICP
algorithm suffers greatly (e.g. [4, 11] and many improve-
ments). Additionally, ICP requires good initial estimates in
order to have correct convergence, whereas our pose-space
search methods allow convergence from any starting point.

Besides using classical optimization techniques, we have
been exploring using evolutionary methods for surface £t-
ting and 3D shape recovery [36, 37]. The key concept to
the evolutionary approach is search of the shape and po-
sition space: rather than initially £nding surface and volu-
metric features directly from the data and then manipulating
their positions, our evolutionary approach starts with the in-
dividual surface shapes (initialized by coarser segmentation
processes) and manipulates their shape descriptions and po-
sitions to minimize the £tting error of all data points. In
other words, the algorithm searches the space of numeri-
cal part descriptions, rather than the space of model-to-data
correspondences.

The advantages of evolutionary methods are: 1) Eu-
clidean and robust error metrics are easily incorporated into
the evaluation criteria and 2) initializing the optimization
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Figure 7. Original range image of scene with
occluding chair back (top) and reconstructed
wall (bottom).

is not a big problem with the use of multiple “chromo-
somes” as the initial starting points. The main disadvan-
tage is the larger computational cost that arises in param-
eter space search instead of parametric surface growing in
data space, either in 2D [3] or 3D [18], or for triangulated
3D surfaces [25]. However, since reconstruction is usually a
one-time process, the extra cost (e.g. a few hours rather than
a few minutes) is not a problem. Simpler reconstructions
with about 20 constraints required about 30 minutes com-
putation on a 200 Mhz Sun workstation, which is probably
equivalent to about 5 minutes on a current PC. As the num-
ber of parameters grows, the computation time will grow,
in part from the additional terms in the evaluation function,
but also minima will be harder to £nd. On the other hand,
the minimization always starts with good feature position
estimates coming from the least square feature £tting, so
the parameter vector is always close to the optimal. Hence,
progress can be more rapid. Further, this approach is an
“anytime” algorithm, meaning it can be stopped at any time
with a feasible, if suboptimal, solution.

7. Discussion and the Future

This paper is largely a summary of recent research re-
sults at Edinburgh University. Many of the techniques de-
scribed here heve been applied to industrial part reverse en-
gineering as well as building reconstruction. Our research
in that direction as been in¤uenced by the excellent research
at the Univ. of Utah [43] and Univ. of Cardiff [2]. We have
also been much in¤uenced by the intensity image-based ar-
chitectural reconstruction at Berkeley [13] and Cambridge
University [15], the video sequence analysis of Pollefeys
[34] and the range image analysis at the EC Joint Research
Centre at Ispra [41].

What these projects have in common is an appreciation
of the role of intent in the design of structures, and how this
intent is expressed in relationships that can be exploited in
the reconstruction process.

While this paper is more of a summary paper, in addition
to the commonalities with the approaches mentioned above,
the paper also points to several other pieces of research not
in common with the others, namely: the practical impossi-
bility of complete scene scanning, occluded shape hypoth-
esising, beauti£cation by constrained triangulation ¤atten-
ing, triangulation with fold edge preservation and higher
level reconstruction by using structures parameterized at the
object level rather than the feature level.

One of the issues that has arisen in the course of this
research is the fragility of the reconstruction process. If re-
construction requires several stages, then: 1) the process
can fail at an early stage or 2) the process can succeed, but
its outputs will have results that are affected by the data
errors. These ‘perturbed’ results then become effectively
locked and affect the subsequent processes. We are explor-
ing how to overcome the second effect and how to also re-
duce the failures from the £rst stage by looking at a one-step
reconstruction process that does dataset registration, assigns
point data to features, extracts feature shape parameters and
accounts for standard surface shapes and constraints. Ob-
viously this is an ambitious exploration. Optimistically, we
think that the evolutionary search methods discussed above
coupled with careful choices of representations will enable
us to explore and achieve this goal.

We are also continuing the exploration of the knowledge-
directed recovery of missing data. Many individual cases
can still be investigated, but the interesting ones that we
are currently exploring are 1) hypothesizing the back sides
of objects based on ideas of symmetry and local space re-
lationships and 2) recovery of unscanned 3D shape from
alignment with color photographs of the unscanned areas.

6



Figure 8. (top) Partial model of mosque. (mid-
dle) Close-up showing incomplete columns.
(bottom) Close-up showing completed
columns.
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Figure 9. Constrained recovery of an architec-
tural scene. Top) Original VRML object with
surface ripples most easily seen at lower left.
Bottom) Flattened and constrained surfaces
with fewer artifacts.
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