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Abstract. This paper investigates the visual classification of the 10
skin lesions most commonly encountered in a clinical setting (includ-
ing melanoma (MEL) and melanocytic nevi (ML)), unlike the majority
of previous research that focuses solely on melanoma versus melanocytic
nevi classification. Two families of architectures are explored: 1) semi-
learned hierarchical classifiers and 2) deep net classifiers. Although many
applications have benefited by switching to a deep net architecture, here
there is little accuracy benefit: hierarchical KNN classifier 78.1%, flat
deep net 78.7% and refined hierarchical deep net 80.1% (all 5 fold cross-
validated). The classifiers have comparable or higher accuracy than the
five previous research results that have used the Edinburgh DERMOFIT
10 lesion class dataset. More importantly, from a clinical perspective,
the proposed hierarchical KNN approach produces: 1) 99.5% separation
of melanoma from melanocytic nevi (76 MEL & 331 ML samples), 2)
100% separation of melanoma from seborrheic keratosis (SK) (76 MEL
& 256 SK samples), and 3) 90.6% separation of basal cell carcinoma
(BCC) plus squamous cell carcinoma (SCC) from seborrheic keratosis
(SK) (327 BCC/SCC & 256 SK samples). Moreover, combining classes
BCC/SCC & ML/SK to give a modified 8 class hierarchical KNN clas-
sifier gives a considerably improved 87.1% accuracy. On the other hand,
the deepnet binary cancer/non-cancer classifier had better performance
(0.913) than the KNN classifier (0.874). In conclusion, there is not much
difference between the two familes of approaches, and that performance
is approaching clinically useful rates.

Keywords: skin cancer · melanoma · RGB image analysis.

1 Introduction

The incidence of most types of skin cancer is rising in fair skinned people. The
causes of the increase are not certain, but it is hypothesized that increased ultra-
violet exposure and increasing population ages are the main causes. Irrespective
of the cause, skin cancer rates are increasing, as is awareness of skin cancer.
This increased awareness has also led to increased reporting rates. In addition
to the health risks associated with cancer, a second consequence is the increasing
medical cost: more people are visiting their primary medical care practitioner
with suspicious lesions, and are then forwarded onto dermatology specialists.
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As many, perhaps a majority, of the referrals are for normal, but unusual look-
ing, lesions, this leads to a considerable expense. Eliminating these unnecessary
referrals is a good goal, along with improving outcomes.

A second issue is that there are different types of skin cancer, in part arising
from different cell types in the skin. Most people are familiar with melanoma, a
dangerous cancer, but it is considerably less common than, for example, basal
cell carcinoma. Because of the rarity of melanoma, a primary care practitioner
might only encounter one of these every 5-10 years, leading to the risk of over
or under referring people onto a specialist. Hence, it is good to have tools that
can help discriminate between different skin cancer types.

A third issue is the priority of referrals, which might be routine or urgent.
Melanoma and squamous cell carcinoma metasticize and are capable of spreading
quickly, and thus need to be treated urgently. Other types of skin cancer grow
more slowly, and may not even need treatment. Moreover, there are many normal
lesion types that may look unusual at times. This also motivates the need for
discrimination between the types of cancer and other lesions.

This motivates the research presented here, which classifies the 10 lesion
types most commonly encountered by a general practice doctor. Because of the
healthcare costs arising from false positives, and the health and potentially life
costs of incorrect decisions, even small improvements in performance can result
in considerable cost reduction and health increases.

The research presented here uses standard RGB camera data. There is an-
other research stream based on dermoscopy [6], which is a device typically using
contact or polarized light. This device can give better results than RGB im-
age data, but has been typically limited to melanoma versus melanocytic nevus
(mole) discrimination. Here, we focus on 10 types of lesion instead of 2, so use
RGB images.

This paper presents two approachs to recognizing the 10 classes. The first
more traditional approach is based on a combination of generic and hand-crafted
features, feature selection from a large pool of potential features, and a hier-
archical decision tree using a K-nearest neighbor classifier. A second deepnet
approach is also presented for comparison. The cross-validated hierarchical 10
class accuracy (78.1%) and the cross-validated deepnet with refinement accuracy
(80.1%) are comparable to the best previous performances. The key contri-
butions of the paper are: 1) a hierarchical decision tree structure and
associated features best suited for discrimination at each level, 2) a
deepnet architecture with BCC/SCC and ML/SK refinement that has
2% better performance, 3) improved classification accuracy (87.1% for
8 merged classes as compared to 78.1% for 10 classes), 4) a malignant
melanoma versus benign nevi classification accuracy of 99.5%, 5) a ma-
lignant melanoma versus seborrheic keratosis classification accuracy of
100%, and 6) a clinically relevant BCC/SCC versus seborrheic kerato-
sis classification accuracy of 90.6%.
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2 Background

There is a long history of research into automated diagnosis of skin cancer, in
part because skin cancer is the most common cancer [1]. A second factor is
the lesions appear on the skin, thus making them amenable to visual analy-
sis. The most commonly investigated issues are 1) the discrimination between
melanoma (the most serious form of skin cancer) and melanocytic nevi (the
most-commonly confused benign lesion) and 2) the segmentation of the bound-
ary between normal and lesion skin (typically because the boundary shape is one
factor commonly used for human and machine diagnosis). The most commonly
used imaging modalities are color and dermoscopy (a contact sensor) images. A
general review of this research can be found in [11, 13, 14].

A recent breakthrough is the Stanford deep neural network [5], trained using
over 129K clinical images (including those used here), and covering over 2000
skin diseases. Their experiments considered four situations: 1) classification of a
lesion into one of 3 classes (malignant, benign and non-neoplastic (which is not
considered in the work presented here)), 2) refined classification into 9 classes (5
of which correspond to the classes considered here), 3) keratinocyte carcinomas
(classes BCC and SCC here) versus benign seborrheic keratoses (class SK here)
and 4) malignant melanoma (class (MEL) versus melanocytic nevi (class ML). In
case 1, their deep net achieved 0.721 accuracy as compared to the dermatologist
accuracy of approximately 0.658. In case 2, the deep net achieved 0.554 accuracy
as compared to the dermatologist accuracy of 0.542. In cases 3 and 4, accuracy
values are not explicitly presented, but from the sensitivy/specificity curves, one
can estimate approximately 0.92 accuracy for the deepnet approach, with the
dermatologists performing somewhat worse.

One important issue raised in [11] is the absence of quality public benchmark
datasets, especially covering more than the classification of melanoma versus
melanocytic nevi. From 2013, the Edinburgh Dermofit Image Library [2] (1300
lesions in 10 classes, validated by two clinical dermatologists and one pathologist
- more details in Section 3) has been available. It was part of the training data
for the research of Esteva et al described above, and is the core dataset for the
research results described below.

The first result was by Ballerini et al [2] which investigated the automated
classification of 5 lesion classes (AK, BCC, ML, SCC, SK - see Section II for
labels), and achieved 3-fold cross-validated accuracy of 0.939 on malignant versus
benign, and 0.743 over 960 lesions from the 5 classes. A 2 level hierarchical
classifier was used. Following that work, Di Leo [4] extended the lesion analysis
to cover all 10 lesion classes in the dataset of 1300 lesions. That research resulted
in an accuracy of 0.885 on malignant versus benign and 0.67 over all lesions from
the 10 classes.

More recently, Kawahara et al [9] developed a deep net to classify the 10 le-
sion classes over the same 1300 images. The algorithm used a logistic regression
classifier applied to a set of features extracted from the final convolutional layers
of a pre-trained deep network. Multiple sizes of image were input to enhance
scale invariance, and each image was normalized relative to its mean RGB value
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to enhance invariance to skin tone. As well as substantially improving the 10
lesion accuracy, the proposed method did not require segmented lesions (which
was required by the approach proposed here). Follow-on research by Kawahara
and Hamarneh [10] developed a dual tract deep network with the image at 2
resolutions through the two paths, which were then combined at the end. Using
auxiliary loss functions and data augmentation, the resulting 10-class perfor-
mance was 0.795, which was stated as an improvement on the methods of [9],
although the new methodology used less training data and so the initial baseline
was lower. A key benefit of the multi-scale approach was the ability to exploit
image properties that appear at both scales. As with the original research, the
proposed method did not require segmented lesions.

3 Edinburgh DERMOFIT Dataset

The dataset used in the experiments presented in this paper was the Edinburgh
DERMOFIT Dataset3 [2]. The images were acquired using a Canon EOS 350D
SLR camera. Lighting was controlled using a ring flash and all images were
captured at the same distance (approximately 50 cm) with a pixel resolution of
about 0.03 mm. Image sizes are typically 400x400 centered on the cropped lesions
plus about an equal width and height of normal skin. The images used here are
all RGB, although the dataset also contains some registered depth images. The
ground truth used for the experiments is based on agreed classifications by two
dermatologists and a pathologist. This dataset has been used by other groups
[4, 5, 9, 10], as discussed above.

The dataset contains 1300 lesions from the 10 classes of lesions most com-
monly presented to consultants. The first 5 classes are cancerous or pre-cancerous:
actinic keratosis (AK): 45 examples, basal cell carcinoma (BCC): 239, squamous
cell carcinoma (SCC): 88, intraepithelial carcinoma (IEC): 78, and melanoma
(MEL): 76. The other five classes are benign, but commonly encountered: melanocytic
nevus / mole (ML): 331 examples, seborrheic keratosis (SK): 257, pyogenic gran-
uloma (PYO): 24, haemangioma (VASC): 96, and dermatofibroma (DF): 65.

4 Hierarchical Classifier Methodology

The process uses RGB images, from which a set of 2500+ features are extracted.
The key steps in the feature extraction are: 1) specular highlight removal, 2)
lesion segmentation, 3) feature extraction, 4) feature selection, 5) hierarchical
decision tree classification. Because some lesions had specular regions, the com-
bination of the ring-flash and camera locations results in specular highlights.
These were identified ([2], section 5.2) using thresholds on the saturation and
intensity. Highlight pixels were not used in the feature calculations.

Lesion segmentation used a binary region-based active contour approach, us-
ing statistics based on the lesion and normal skin regions. Morphological opening

3 homepages.inf.ed.ac.uk/rbf/DERMOFIT/datasets.htm
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was applied afterwards to slightly improve the boundaries. Details can be found
in [12]. This produced a segmentation mask which covers the lesion.

4.1 Feature calculation

The majority of the 2551 features are calculated from generalized co-occurence
texture matrices. More details of the features are given in section 4.2 of [2]. The
texture features are described by “XY FUNC DIST QUANT”, where X,Y ∈ {
R, G, B }, { L, a, b } or { H, S, V } gives the co-occurring color channels from
the lesion, DIST is the co-occurring pixel separation, (5,10, ... 30), QUANT
is the number of gray levels ∈ {64, 128, 256}. The co-occurence matrices are
computed at 4 orientations and then averaged. From each matrix, 12 summary
scalar features are extracted, including FUNC ∈ { Contrast, ClusterShade, Cor-
relation, Energy, MaxProbability, Variance }, as described in [7]. As well as using
these features directly, the difference (l-s : lesion-normal skin) and ratio (l/s :
lesion/normal skin) features were computed.

After these features were calculated, a z-normalization process was applied,
where the mean and standard deviation were estimated from the inner 90% of
the values. Features above or below the 95th or 5th percentile were truncated.
Some of the top features selected (see next section) for use by the decision tree
are listed in Table 1.

Because there is much correlation between the color channels, and the dif-
ferent feature scales and quantizations, a feature reduction method was applied.
The feature calculation process described above resulted in 17079 features. These
features were cross-correlated over the 1300 lesions. The features were then se-
quentially examined. Any feature whose absolute correlation was greater than
0.99 with a previously selected feature was removed. This reduced the potential
feature set to 2489. Some additional lesion-specific features (for each of R, G, B)
were added to give 2551 features (also normalized):

– Ratio of mean lesion periphery to lesion center color
– Ratio of mean lesion color to non-lesion color
– Std dev of lesion color
– Ratio of lesion color std dev to non-lesion color std dev
– Ratio of mean lesion color to lesion color std dev
– Six gray-level moment invariants
– Given a unit sum normalized histogram of lesion pixel intensities Hl and

normal skin pixel intensities Hn, use features mean(Hl.−Hn), std(Hl.−Hn),
mean(Hl./Hn), std(Hl./Hn), Hl. − Hn and Hl./Hn. The latter 2 features
are histograms and the Bhattacharyya distance is used.

4.2 Feature and parameter selection

From the 2551 initial features, greedy Forward Sequential Feature Selection
(en.wikipedia... .org/wiki/Feature_selection) is used to select an effec-
tive subset of features for each of the 9 tests shown in Figure 1. This stage
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Table 1. Overview of top selected features. See text body for details.

68 GB Correlation d10 L64 222 HH ClusterShade d5 L128
245 HH Energy d5 L256 267 HH Correlation d30 L256
272 aa Contrast d5 L64 523 ns SS Correlation d15 L64
622 ns bb Homogeneity d10 L64 630 ns bb Correlation d5 L128
832 l-s SS Dissimilarity d5 L64 834 l-s HH Variance d5 L64
950 l-s aa Autocorrelation d5 L64 959 l-s La Variance d5 L64

1467 l/s HH ClusterShade d25 L256 1536 l/s La Variance d5 L64
1556 l/s aa Contrast d15 L64 1824 so sigma Im G s3 n4
2303 M-m lo sigma Re R s1 G s1 2422 sigma Im G s1
2433 l-s mu Re G s1 2441 l/s mu Re G s1
2503 G mean(l) / std(l) 2526 R std(hist(l) ./ hist(s))

results in 2-7 features selected for each test. Table 2 lists the number of features
selected and the top 2 for each of the tests. The full set of features used can be
seen at: homepages.inf.ed.ac.uk/rbf/... DERMOFIT/SCusedfeatures.htm.
We tersely describe in Table 1 the top features of the tests. The tests use a
K-Nearest Neighbor classifier with a Euclidean distance measure

∑
r(xr − nr)2

where xr is the rth property of the test sample and nr is from a neighbor sample.
Also included in the parameter optimization stage was the selection of the

optimal value K value to use in the K-Nearest Neighbor algorithm. The K values
reported for the different tests reported in Table 2 were found by considering
odd values of K from 3 to 19. The best performing K was selected over multiple
cross-validted trials, but generally there was only 1-3% variation in the results
for K in 7-19. Performance evaluation, and parameter and feature selection used
5-fold cross validation (using the Matlab cvpartition function), with 1 of the
5 subsets as an independent test set. The splits kept the lesion classes balanced.

4.3 Hierarchical Decision tree

The lesion classification uses a hierarchical decision tree, where a different K-NN
is trained for each decision node. Other classifiers (e.g. Random Forest or multi-
class SVM) or decision node algorithms (e.g. SVM) could be investigated, but we
chose a K-NN because of the intuition that there was much in-class variety and
so data-driven classification might perform better. Several varieties of deepnet
based classification are presented in the next section.

The choice of branching in the tree is motivated partly by clinical needs (i.e.
cancer versus non-cancer) and partly by classifier performance (i.e. the lower
levels are chosen based on experimental exploration of performance). Figure 1
shows the selected decision tree. Exploration (based on experience rather than
a full systematic seaarch) of different cancer subtree structures showed that the
PYO/VASC branch was most effectively isolated first, with then a two way split
between IEC, MEL and DF versus the rest. These two initial decisions could be
performed almost perfectly, thus reducing the decision task to smaller decisions
(and without propogating errors).



Classification of Ten Skin Lesion Classes: Hierarchical KNN versus Deep Net 7

Table 2. Top 2 features for each of the key K-NN decisions in the decision tree and
cross-validated performance on ground-truthed data.

Test K Num of Feat 1 Feat 2 Accuracy
features

used

PYO/VASC vs rest 11 5 2503 834 0.974
MEL/IEC/DF vs rest 13 2 2433 2441 1.000
MEL vs IEC/DF 19 3 959 832 0.831
AK/BCC/SCC vs ML/SK 17 9 222 1536 0.916
AK vs BCC/SCC 17 4 2422 272 0.876
PYO vs VASC 15 3 523 622 0.852
IEC vs DF 15 7 630 1467 0.888
BCC vs SCC 15 7 245 1556 0.814
ML vs SK 11 7 950 267 0.850
MEL vs ML 9 2 2303 1824 0.995
MEL vs SK 3 1 2433 1.000
BCC/SCC vs SK 11 5 68 2526 0.906

While a general classification is valuable, from a clinical perspective several
more focussed binary decisions are important, namely melanoma (MEL) versus
melanocytic nevi (ML), melanoma (MEL) versus seborrheic keratosis (SK), and
basal cell carcinoma (BCC) plus squamous cell carcinoma (SCC) versus sebor-
rheic keratosis (SK). We implemented these binary decisions each with a single
test, after again doing feature selection, also as reported in Table 2.

5 Decision Tree Experiment Results

Evaluation of the classification performance using the decision tree presented
above used leave-one out cross-validation. The confusion matrix in Figure 4
summarizes the performance for the detailed classification results over the 10
classes. The mean accuracy over all lesions (micro-average - averaging over all
lesions) was 0.781 and the accuracy over all classes (macro-average - averaging
over the performance for each class) was 0.705. Mean sensitivity is 0.705 and
mean specificity is 0.972 (when averaging the sensitivities and specificities of each
class over all 10 classes). A comparison of the results with previous researchers
is seen in Table 3 .

The new 10 class results are comparable those of [9, 10] and considerably
better than the others. Combining classes BCC/SCC & ML/SK to give an 8 class
decision produces considerably better results. “Kawahara and Hamarneh [10]
repeated the experiments from Kawahara et al [9], but changed the experimental
setup to use half the training images, and omitted data augmentation in order to
focus on the effect of including multi-resolution images.” (private communication
from authors).

The confusion matrix for the final classification is shown in Table 4. There
are three significant observations: 1) The AK lesion class, which has the worst
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Fig. 1. Decision tree for lesion classification, also giving example images of the 10
lesion types. The numbers given at the decision boxes are the test data accuracies over
the relevant classes (i.e. ignoring other classes that also go down that tree path. The
numbers at the leaves of the tree are the final test accuracies over the whole dataset.

performance, is mainly confused with the BCC and SCC classes. Visual inspec-
tion of the AK lesions shows that many of the lesions look a little like BCC
and SCC lesions. 2) Many of the misclassifications are between the ML and SK
classes. Neither of these are cancerous, so confusion between the classes has no
real consequences. 3) Many of the other misclassifications are between the BCC
and SCC classes. Both are cancers, but SCC needs more urgent treatment.

Merging BCC/SCC and ML/SK into 2 classes (and using the same tree)
improves the classification rate to 0.871 (i.e. over an 8 class decision problem.).

To compare with the third experiment of Esteva et al [5] (keratinocyte carci-
nomas (classes BCC and SCC here) versus benign seborrheic keratoses (class SK
here)), we explored a KNN classifier with features selected from the same pool
of features. Best accuracy of 0.906 was achieved with K=9 and top features 168
and 186 over 5-fold cross-validation using the set of 327 BCC+SCC and 257 SK
lesions. This is comparable to the accuracy (0.92) estimated from Esteva et al’s
sensitivy/specificity curves. To compare with the fourth experiment of Esteva
et al [5] (malignant melanoma (class (MEL) versus benign nevi (class ML)), we
again explored a KNN classifier with features selected from the same pool of
features. Accuracy of 0.995 (compared to their 0.92) was achieved with K=9
and only 2 features 2303 and 1824. over 5-fold cross-validation using the set of
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Table 3. 10 class performance comparison with previous research.

Lesion Class
(Micro) (Macro)

Paper Accuracy Accuracy

Ballerini et al [2] 0.743∗ 0.592
Di Leo et al [4] 0.67 -
Esteva et al [5] > 0.554+ -
Kawahara et al [9] 0.818x -
Kawahara et al [10] 0.795 -
New algorithm 0.781 0.705
New algorithm (BCC/SCC

& ML/SK merged) 0.871 0.736
*: The results of Ballerini et al consider only 5 classes (AK, BCC, ML, SCC, SK).
+: The results of Esteva et al cover 9 classes, 5 of which roughly correspond to those
considered in this paper. x: 0.818 was reported in [9] but 0.795 was reported and
compared to in the later publication [10].

Table 4. Confusion Matrix: Row label is true, Column label is classification. Micro-
average = 0.781. Macro-average accuracy = 0.705.

AK BC ML SC SK ME DF VA PY IE TOT ACC

AK 10 20 1 11 3 0 0 0 0 0 45 0.22
BCC 2 208 7 17 5 0 0 0 0 0 239 0.87
ML 2 10 280 0 39 0 0 0 0 0 331 0.85
SCC 0 34 0 46 8 0 0 0 0 0 88 0.52
SK 2 21 27 5 202 0 0 0 0 0 257 0.79
MEL 0 0 0 0 0 54 7 2 0 13 76 0.71
DF 0 0 0 0 0 4 54 3 0 4 65 0.83
VASC 0 0 0 0 0 6 1 82 3 5 97 0.85
PYO 0 0 0 0 0 2 0 7 14 1 24 0.58
IEC 0 0 0 0 0 5 5 1 2 65 78 0.83

331 ML and 76 MEL lesions. This compares to an accuracy of 0.92 estimated
from Esteva et al’s sensitivy/specificity curves [5]. Similarly, the clinically im-
portant discrimination between malignant melanoma (MEL) versus seborrheic
keratosis (SK) (256 SK + 76 MEL samples) in this dataset gave perfect 5-fold
cross-valided clssification using K=3 and 1 feature (2433). This high performance
suggests that the dataset should be enlarged; however, melanoma is actually a
rather uncommon cancer compared to, for example, BCC.

6 Deep Net Classifier Methodology

Given the general success of deepnets in classification image tasks, we inves-
tigated three variations of a classifier based on the Resnet-50 architecture [8]
pretrained on the ImageNet dataset and then tuned on the skin lesion samples
in the same 5-fold cross-validation manner. The variations were:
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1. A standard deepnet with 10 output classes, where the class with the highest
activation level is selected.

2. A hierarchy of classifiers with the same structure as the decision tree pre-
sented above, except where each classification node is replaced with a Resnet-
50 classifier.

3. A standard deepnet with 10 output classes, with a refinement stage. If the
top two activation levels for a lesion from the standard deepnet were either
{BCC, SCC} or {ML, SK}, then the lesion went to an additional binary
Resnet-50 trained to discriminate the two classes.

Preprocessing of the segmented images: 1) produced standard 224*224 im-
ages, and 2) rescaled the RGB values of the whole image to give the background
normal skin a standard value (computed by mean across the whole dataset).
Data augmentation was by flipping, translation and rotation as there was no
preferred orientation in the lesion images. Further augmentations such as color
transformations, cropping and affine deformations as proposed by [15] could be
added, which improved their melanoma classification accuracy by about 1% on
the ISIC Challenge 2017 dataset. Training performance optimization used a grid
search over the network hyperparameters. As deepnets are known to train dif-
ferently even with the same data, the main result is an average over multiple (7)
trainings. This is configuration 1) below.

Several other configurations were investigated using the same general deep-
net: 2) The decision tree structure from Section 5, except each decision node is
replaced by a 2 class deep net. 2x) For comparison, we list the performance of the
decision tree from Section 5. 3) If the deepnet selected one of BCC, SCC, ML,
or SK and the activtion level was less than 0.88, then the lesion was re-classified
using a 2 class BCC/SCC or ML/SK deep net. 4) A classifier for 8 classes, where
the cancerous classes SCC/BCC were merged, and the benign classes ML/SK
were merged. 4x) For comparison, the performance of the 8 class decision tree
from Section 5. 5) A deepnet producing only a two-class cancer / not cancer de-
cision 5x) A two-class cancer / not cancer decision using the same KNN (K=17,
10 features) methods used in the decision tree. The resulting performances are:

Case Algorithm Accuracy
1 Flat Resnet-50 0.787 ±1.0
2 Decision tree with Resnet-50 nodes 0.742
2x 10 class decision tree from Section 5 0.781
3 Flat Resnet-50 with BCC/SCC and ML/SK refinement 0.801
4 8 class deep net with BCC/SCC and ML/SK merged 0.855±0.4
4x 8 class decision tree from Section 5 0.871
5 Resnet-50 2 class cancer vs non-cancer 0.913±0.71
5x KNN based 2 class cancer vs non-cancer 0.874±0.01

The results show that there is not much difference in cross-validated per-
formance between the basic decision tree (0.781) and basic deepnet (0.787).
Given the variability of deepnet training and cross-validation, there is probably
no statistical significance between these. Interestingly, the reproduction of the
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decision tree with deepnets replacing the KNN classifiers produced distinctly
worse performance (0.742 vs 0.781). It is unclear why. It is clear that apply-
ing the refinement based on easily confused classes gives better 10-class results
(0.801 vs 0.787), but still not as good as combining the BCC/SCC and ML/SK
(0.871 vs 0.801). The 8-class deepnet performed worse than the 8-class decision
tree (0.855 vs 0.871). Possibly the binary cancer/non-cancer classifier performed
better when using the deepnet.

7 Discussion

The approaches presented in this paper have achieved good performance on the
10 lesion type classification task and even better performance on the modified 8
class and binary problems. These lesions are those most commonly encountered
in a clinical context, so there is a clear potential for medical use. Of interest
is the fact that this was achieved using traditional features (and is thus more
‘explainable’) as well as using a deep learning algorithm.

Although the demonstrated performance is good, and generally better than
dermatologist performance [5], there are still limitations. In particular, the BCC
versus SCC, and ML versus SK portions of the classification tree have the low-
est performance. Another poorly performing decision is AK versus other cancers
(although the performance rate looks good, the large imbalance between the
classes masks the poor AK identification - a class with few samples). We hy-
pothesize that part of the difficulties arise because of the small dataset size,
particularly for classes AK, DF, IEC, and PYO. When the K-NN classifier is
used, it is necessary to have enough samples to have a good set of neighbors. This
can also affect the other classes, because some lesion types may have difference
appearance subclasses (e.g. BCC).

Another complication related to the dataset size is the correctness of the
ground-truth for the lesion classes. Although 2 clinical dermatologists and a
pathologist concur on the lesion diagnosis for the 1300 lesions in the dataset, gen-
erating that consistent dataset also showed up many differences of opinion about
the diagnoses. It is probable that there are some lesions that were incorrectly
labeled by all three professionals (the real world is not tidy), although, since
one of the three was a pathologist, the dataset is probably reasonably correctly
labeled. Again, having additional correctly labeled samples would help overcome
outlying mis-labeled samples, given the nearest neighbor classifier structure.

Another limitation arises from the fact that the images in this dataset are all
acquired under carefully controlled lighting and capture conditions. By contrast,
the images used by Esteva et al [5] came from many sources, which is probably
one of the reasons their performance is so much lower. In order to make the
solution found here be practically usable, it must work with different cameras
and under different lighting conditions. This is a direction for future research.
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