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Abstract

The advance of scene understanding methods based on machine learning relies on
the availability of large ground truth datasets, which are essential for their training and
evaluation. Construction of such datasets with imagery from real sensor data however
typically requires much manual annotation of semantic regions in the data, delivered
by substantial human labour. To speed up this process, we propose a framework
for semantic annotation of scenes captured by moving camera(s), e.g., mounted on
a vehicle or robot. It makes use of an available 3D model of the traversed scene to
project segmented 3D objects into each camera frame to obtain an initial annotation
of the associated 2D image, which is followed by manual refinement by the user. The
refined annotation can be transferred to the next consecutive frame using optical flow
estimation. We have evaluated the efficiency of the proposed framework during the
production of a labelled outdoor dataset. The analysis of annotation times shows that
up to 43% less effort is required on average, and the consistency of the labelling is also
improved.

1 Introduction

Annotation of Ground Truth (GT) data is now an important task in research. This can be
attributed to machine learning becoming a mainstream approach to solving a wide range
of problems, especially in machine perception and sensing. The popularity of deep neural
networks resulted in the development of efficient platforms for their design, training and
evaluation, ultimately reducing the original problem into searching for a sufficient number
of samples required to tune the network parameters and structure.

In the case of computer vision, the aim is to develop methods that work on data
captured by real sensors, e.g., to detect pedestrians from a stereo camera mounted on a
car. Supervised training of a deep network for this task typically requires 10–100 k sample
GT images with annotated objects of interest. Researchers have reduced this problem by
synthesizing images from virtual models, where a perfect GT can be also rendered. Real
sensors however produce a wide range of artefacts (noise, distortion, etc.) that are still
difficult to model in a virtual camera; hence, a number of real images are still required to
fine-tune the network to make it work in practice.

Visual data can be semantically annotated in several ways. The ideal description of
the observed 3D scene as humans understand it would be a hierarchical segmentation of
the scene typically into regions of adjacent matter, as associated with individual objects,
groups of objects or object parts, each associated with a semantic label or category. In
practice, the extent of the hierarchy is limited in depth (semantic resolution [13]), details
(spatial resolution [3]) or space (2D/3D).
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(a) Image tag (b) Landmark point (c) Bounding box (d) Individual pixels

Figure 1: Types of 2D image annotation. Image from Fish4Knowledge dataset [2].

A 2D view of the scene from a camera captures a snapshot of the same 3D hierarchy,
derived by projection from the geometry and the structure of the scene. The corresponding
2D digital image can be annotated at different levels or scales. Depending on the task,
researchers choose from a range of labels spanning from individual pixel-wise labelling to
whole image categorization, including parametric image regions delineated by rectangular
or polyhedral bounding boxes, landmarks localized with points or circles, etc. Figure 1
shows some examples.

Purely manual methods to produce the annotations require users to enter the labels
exactly, independently for all samples, with the total time proportional to typical “unit”
sample annotation time. The average unit time can be decreased by providing efficient
tools and interfaces to the annotators [15]. These can include algorithms to interactively
refine the input to match the data, i.e., when rectangles or several strokes or clicks are used
to initialize a segmentation model [17]. Alternatively, an algorithm can provide an initial
annotation to be verified and refined by the annotator, as is the case of [12] and this paper.
The underlying idea is to exploit the correlation of the samples, i.e., when the same scene
or objects are observed from multiple views, allowing one to reduce the tedious repetition
of independent manual annotations. This category of “smart” annotation methods can be
described as semi-automatic; there is also a relation to semi-supervised learning [14].

Automation can however introduce some bias in the resulting ground truth. It will
likely guide the annotator to what is preferred by the method’s data model (i.e., match
detected image edges), different from what the manual result might be. The bias can be
both negative, e.g., when the used edge is not the actual boundary of the object, or positive,
e.g., by automatically discovering an object or part that would otherwise be overlooked by
the annotator. The aim of annotation research is to propose approaches where the benefits
and efficiency improvements outweigh the potential negative bias. In our approach, we
derive a good 2D initialization of smaller objects and parts from their 3D representation
and apply associated semantic labels. This is particularly useful with a large set of classes,
when the correct label cannot be easily identified from the 2D appearance.

We have developed an annotation tool (https://github.com/rtylecek/rosemat)
that reads the input from ROS bagfile archives and uses the contained metadata to asso-
ciate image streams with an external 3D model of the scene. This allows us to generate
initial pixel-wise semantic annotations. Annotations can be manually refined using a se-
mantic paintbrush, and the refined result can be transferred to consecutive frames using
optical flow. In this way, we eliminate much of the labour normally spent on repeated
labelling of slightly changing views (from video rate data as the camera moves) of the
same scene.
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In particular, we highlight the following advantages over existing approaches:

• It handles the point cloud representation preferred for natural outdoor scenes (mesh
not needed).

• It provides an interface for efficient 2D refinement of annotations (does not rely on
a good 3D model).

• It supports frame-to-frame transfer of annotations in video using optical flow.

• Integration with the ROS platform reduces the data preparation time for robotic
applications.

2 Related Work

This section briefly reviews several strategies for segmentation acceleration in 2D before
turning to 3D scenes, where works similar to ours are discussed in more detail.

2.1 2D Images

The basic case of image annotation is assigning one or more semantic labels to a sin-
gle image, i.e., categorization or tagging (Figure 1a). ImageNet [4] was among the first
efforts to construct a large dataset from images harvested from the web, followed by a
manual cleaning stage. Since then, researchers developed several ways to facilitate the
image labelling process at a large scale. This includes both labelling of the whole image
and labelling all pixels. For example, Deng et al. [5] exploited the correlation, hierarchy
and sparsity of the multi-label distribution to reduce human labour six-fold. Annotations
of multiple similar images can be simplified when the dataset is clustered based on a visual
similarity measure, allowing the user to link labels to clusters instead of going individually
through all images [2]. In the same spirit, Giordano et al. [7] propagated annotation of a
seed image to other images based on similarity in visual feature space. Di Salvo et al. [19]
showed that it is possible to exploit annotations of the same data by multiple users, even
when the individual inputs can be incorrect, e.g., originating from web sources and games.

The emergence of data-hungry deep networks increased the pressure to produce anno-
tations at a large scale. The idea of Yu et al. [25] was to accelerate annotation by putting
human annotators and automatic classifiers in a loop, ultimately leaving only the difficult
cases to humans. While this approach is useful in the machine learning context, we cannot
consider the result a true ground truth since some labels were not produced or at least
verified by humans, as suggested by the reported 90% statistical accuracy.

The standard tool for image annotation of objects with a polygonal outline is La-
belMe [18], used to create the database of the same name. Its web interface was among
the first to enable the public to collaborate on the production of such datasets.

2.2 3D Scenes

Similar options are available as shown in Figure 2. A recent tool that leverages the con-
nection between 2D and 3D was used to produce an indoor dataset [12]. It uses data from
a moving depth sensor to build a 3D mesh representation of the scene. A Markov Random
Field (MRF) is used to segment the mesh automatically into regions, which the user iter-
atively merges or splits to separate individual object instances. Additional automation is
provided to recognize objects similar to a given template, e.g., allowing one to set the class
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(a) Model tag (b) Landmark point (c) Bounding box (d) Individual points

Figure 2: Types of 3D model annotation. Point cloud from 3DRMS dataset [20].

to label all chairs simultaneously. The final annotated 3D model can be then projected
to 2D, followed by alignment of object and image contours to compensate for camera cal-
ibration errors. In most stages, this approach relies heavily on an accurate representation
of the scene with a mesh. This works well in indoor office settings, but does not transfer
easily to outdoor and natural scenes, where objects such as trees have irregular shapes,
fuzzy contours and non-uniform texture. Semantic paint [23] uses a similar framework,
but during the capture, it allows users to interactively point to objects and voice the class
they should obtain.

A point cloud representation seems more appropriate for outdoor scenes, as it can
capture irregular natural surfaces better than overly complex meshes, e.g., grass, leaves,
stems, branches, etc. The Semantic3D.net dataset [10] contains annotated point clouds
of mostly urban scenes that also feature vegetation. Manual segmentation of the laser-
scanned point cloud was performed via a set of polygonal regions marked in different
cross-sections to isolate object instances. For some scenes, the annotation in 3D was
facilitated by iteratively fitting a simple box model to several selected points, which gave
a subset of points that get the same semantic label.

2.3 3D to 2D Label Transfer

The goal is to transfer labels from annotated 3D models to 2D images, which essentially
amounts to projection, given camera poses and intrinsic calibration. In real conditions, er-
rors arise from inaccurate pose estimation and point cloud sparsity, potentially resulting in
misalignment and see-through artefacts. This was addressed by Xie et al. [24] by building
a CRF jointly over all 3D points and corresponding 2D pixels, to encourage neighbourhood
consistency. Specifically, in urban scenes, they detect curbs and folds to include additional
geometric constraints. Alternatively, the input camera poses can be locally optimized to
improve colour consistency between 3D points and their 2D projections [22].

2.4 2D to 2D Label Transfer

Depending on the frame rate and velocity of the moving camera, consecutive video frames
usually show similar views of the scene. At the same time, the corresponding semantic
annotation changes only at object boundaries that have moved. With the estimated image
motion, the annotation can be propagated to the next view, which can be useful in cases
where 3D projection is not accurate and more manual adjustments were needed. For this
purpose, we adopt the idea of non-parametric label transfer [11] using estimated optical
flow. Alternatively, super-pixel segmentation could be used to establish the correspondence
and transfer as in [9], but our experiments with images of natural scenes suggest that
super-pixel boundaries often do not align with the actual object boundaries.

In this paper, we focus on outdoor scenes of natural environments, which lack salient
features that can be accurately localized (like corners). We introduce a point cloud pro-

4

Semantic3D.net


  

Input
Point Cloud

3D Map 
Editor

Semantic
Point Cloud

Sketch Map

Ground and objects

ROS bagfile

Image streams
Camera poses

Calibration

Camera 
extrinsic

and intrinsic
parameters

Image Annotations

Indexed bitmaps

2D Image
Annotation Tool

3D-2D 
projection

2D flow
transfer

Manual 
refinement

Figure 3: Semantic annotation workflow. In the first stage, the acquired point cloud
representing the scene geometry is enriched with semantic information using the 3D Map
Editor (upper red box). Label transfer from the user-supplied sketch map starts the
process. In the second stage, the captured image streams are loaded in the 2D Image
Annotation Tool, where each frame annotation is pixel-wise initialized either from the
projected 3D model or transferred from the previous frame using optical flow. The user
interface then allows for manual correction of the semantic image map (lower red box).

jection technique that can deal with the artefacts usually arising from the sparse nature
of the point cloud, like holes.

From the above review, we can see that there has been little work on 2D image labelling
from 3D point cloud labels, and here, we introduce a 3D labelling process based on transfer
from a manually-created 3D sketch map. To the best of our knowledge, the 2D optical flow
label propagation has not been used so far in the context of semantic annotation tools.
These are methods that we promote in this paper.

3 Proposed Pipeline

Primarily, we employ a process where the time-consuming task of human annotation of
image sequences can be facilitated by projection of an annotated 3D geometry (semantic
point cloud) into images given the camera poses. The subsequent key observation we
exploit is that we can estimate the image motion by optical flow and use it to transfer
labels between consecutive frames. For this purpose, we present a workflow described in
the sections below following the schematic overview in Figure 3.
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3.1 Input Data Capture

3.1.1 Camera Calibration

Assume the general case of a rig with Nc cameras mounted on a robot moving in the scene,
which can be applied to most multi-view datasets. Each of the cameras c = 0, . . . , Nc has to
be calibrated to get intrinsic parameters Kc ∈ R3×3, lens distortion parameters Uc ∈ R4

of the radial-tangential distortion model and Te ∈ R4×4 extrinsic calibration of the rig
(fixed), i.e., transforms Tc,0 of the cameras relative to the first (front) camera. These can
be obtained with established calibration toolboxes such as Kalibr [6].

3.1.2 Imagery

The primary inputs are streams of colour images Ict captured by camera c at time
t ∈ (t0, tmax).

3.1.3 Point Cloud

Dense and accurate point clouds can be obtained with a stationary laser scanner, such
as the Leica ScanStation, which was used in the experiments reported below. Scans
from multiple locations to cover all surfaces with measurements are merged to obtain a
single point cloud X = {X1, . . . , Xi, . . . , XNx} in the global coordinates, with coordinates
Xi ∈ R3 of NX points.

3.1.4 Camera Poses

The 6 DOF robot pose Tt = [Rt | Ct] can be measured with a tracking device in a global
reference coordinate system of the scene, e.g., laser tracker for translation Ct ∈ R3×1 and
IMU for rotation Rt ∈ R3×3. The robot pose estimate Tt is relative to a certain reference
point on the robot base. Additionally, a relative transform Tr,0 between the robot base and
the camera rig has to be estimated, i.e., the reference to the first (front) camera. It can
be either physically measured or computed similarly to eye-to-hand calibration, e.g., using
calibration targets fixed to the robot base and visible in the front camera. The chain of
relative poses (in the form Tac = Tab Tbc) allows us to calculate global poses of all cameras
and their projection matrices.

Alternatively, Structure-from-Motion (SfM) algorithms such as [21] can be used to
estimate camera poses and the point cloud of the scene jointly. In this case, the registration
step is necessary to transform poses to global coordinates. The sparse SfM reconstruction
can be manually registered, e.g., using CloudCompare [8].

3.2 Semantic Point Cloud

Our goal is to help the user specify a 3D semantic model of the scene. Ultimately, this
means a semantic label li ∈ L is assigned to each point Xi in the captured point cloud X .

The label set L is defined by the user in a two-level hierarchy, where the first level
general classes can have the second level specific subclasses. In practice, they are listed in
a configuration file as general-specific label pairs, as shown in Figure 4.

3.2.1 Point Cloud Segmentation

With millions of points in a typical input set X , clustering and segmentation of the unor-
ganized point cloud into objects and regions is the first necessary step to allow the user
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Figure 4: Sample annotated image. The captured image (top left) and its semantic map
(bottom left) with colour-coded semantic classes (right). The black region at the bottom
masks the capture system. The labels X-Y at the right form a hierarchy, where X is the
top base class and Y the subclass.

to specify the scene semantics.
We exploit the usual outdoor scene structure to sequentially split the input point cloud

X into three parts, as seen in Figure 5:

1. Ground : the horizontal terrain with different types of surfaces, e.g., grass or pave-
ment,

2. Objects: semantically meaningful parts of the scene, e.g., trees or bushes,

3. Background : the part of the scene outside of the region of interest.

The segmentation is obtained by sequentially splitting the input point cloud. First, the
perimeter of the region of interest is manually specified, and outlying Background points
are cropped out. The remaining foreground part is processed with the segmentation
method [26], which takes into account the continuity of the ground surface. It assumes
that the vertical axis of the point cloud (Z) matches the gravity direction. Finally, Objects
are identified as connected components of the remaining point cloud above the Ground.
This process is implemented in CloudCompare [8] software, where the results after each
step are inspected and manually fixed as needed, e.g., to split intersecting objects and
object parts.
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(a) Input (b) Background

(c) Ground (d) Objects

Figure 5: Segmentation of a point cloud. The input (a) is split into three parts: the
Background (b) is ignored points; Ground (c) is the flat terrain; and Objects (d) lie above
the ground.

3.2.2 Initialization of 3D Map Geometry

The 3D Map Editor (described in Section 4.1) is employed to manually produce a sketch
3D description of the scene. The schematic 3D map M = (G,S) consists of a free-form
ground surface mesh G and a set of primitive shapes S = {si} representing map objects
and parts. Each shape si ∈ R9 is attributed with a location, orientation and dimensions
(9 DOF).

The 3D map is initialized from the segmented point cloud (background part excluded):

• Object shapes S are initialized as bounding boxes around object cloud segments
similar to [24].

• Ground mesh G is initialized using Delaunay Triangulation (DT) of the ground
segment. Vertices of the DT are uniformly sampled from ground points.

Both parts are then manually adjusted, e.g., to prevent overlaps of the object bounding
boxes, and the shape can be also changed to a sphere, cylinder or cone. Figure 6(a) shows
how the resulting 3D map can look.

3.2.3 Assignment of Semantic Labels

A semantic label is manually assigned to every object shape si and every ground mesh face
gi using the editor. Where required, the vertices of the ground surface mesh are moved or
added to match boundaries between different surface types.

Point cloud semantic labels li can then be determined from the 3D map M . First,
object bounding shapes si are used to label points inside of them. The shapes are sorted
by their volume, and the assignment starts with the largest shape. In this way, point label
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(a) 2D view

(b) 3D view

Figure 6: User interface of the 3D Map Editor with mesh of terrain and objects. Blue
markers are control points of the terrain mesh.
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li is set according to the smallest bounding shape si the point falls into, allowing us to
describe object parts.

The remaining ground points get the label of the surface mesh face gi onto which
they vertically project, i.e., using only coordinates in the XY plane. Figure 14 shows an
example of the resulting semantic point cloud.

3.3 Semantic Image Annotations

The next step is to annotate 2D images in the video stream(s). The previously pro-
duced semantic point cloud is loaded into the 2D Image Annotation Tool (described in
Section 4.2) together with the recorded image streams, camera calibration and poses.

3.3.1 Projection of Point Cloud to Image Frames

Using the camera poses, the points can be projected onto the rectified images captured by
camera c at time τ by transforming the point cloud. We can form a chain of the extrinsic
camera rig calibration (Section 3.1) to transform Tc,0, Tr,0 to obtain the global pose with:

T̂c(τ) = T̂c,0 T̂r,0 T̂ (τ), (1)

where T (τ) = interp(Tt, Tt′) is the pose of the robot linearly interpolated from the two

closest consecutive tracked pose measurements such that t ≤ τ ≤ t′ and T̂ =

[
RT CT

0 1

]
is the 4 × 4 transformation matrix. The associated projection matrix Pc(τ) = KcTc(τ) is
then used to project the point cloud X to the image plane, i.e., the point Xi projects to
x̃i = Pc(τ)X̃i in homogeneous coordinates, where x̃i = λi[xi 1] and λi is the depth.

Annotation aj ∈ L of the pixel j at image coordinates xj is initialized from the label
li of the point that projects to the pixel and that has the minimum depth λj of all such
visible points.

Figure 7b shows that see-through artefacts (holes) can be observed when points are
too close to the camera and the point cloud is not dense enough; then neighbouring 3D
points project to pixels far from each other. A possible solution is to increase the point
size, e.g., replace points with splats as in [22], but this can make objects grow out of their
actual boundary. Instead, we fill the holes between the projected 2D points using their
Delaunay Triangulation (DT), as shown in Figure 7c. Any DT face with similar depth λj
at all three vertices and at least two vertices having the same label aj is filled with that
label.

3.3.2 Transfer of Annotation to the Next Frame

The image labels aj can be transferred from the current frame to the next one using
the correspondences from optical flow [16]. We use the implementation from https:

//github.com/suhangpro/epicflow with the default parameters to obtain a flow image
Ft,t′ = {fj}: Given two consecutive images Ict, Ict′ , we calculate for each pixel xj ∈ |Ict′ |
in the next frame a motion vector fj pointing to the pixel xk = xj + fj in the previous
frame, xk ∈ |Ict|. Using this correspondence, the annotations are transferred by setting
correspondingly aj to ak. The obtained labels are approximately correct under rotation
changes, but usually need further adjustments when translation changes the perspective.
One could ask, why not just repeat the 3D point cloud to the 2D label transfer process as
described in Section 3.3.1 instead of the optical flow transfer proposed here? This could
be done, but it would lead to the loss of the user-refined boundaries; hence, the use of the
2D label transfer actually results in faster human labelling, as seen in Section 5.
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(a) Undistorted colour image It for current frame (b) Projected point cloud labels AP

(c) Projected point cloud labels A∗
P , holes filled (d) Final labels A after manual adjustment

(e) Difference of projected A∗
P to final A labels (f) Final annotation A with image overlay

Figure 7: Annotation initialized from the projected semantic point cloud. Difference:
Black colour indicates unchanged labels; red colour indicates manually-refined boundaries;
blue colour indicates uninitialized background. The background was partially changed to
sky and building labels by the annotator.
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3.3.3 Manual Adjustments of Labels in the Editor

The editing capabilities of the image annotation tool (Section 4.1) are then used to refine
the projected semantic map to match the corresponding image and final labelling, as shown
in Figure 7d. Label correction is often needed at the edges of semantic regions.

4 Components and User Interface

Our implementation is based on Robot Operating System (ROS) standards and uses sev-
eral publicly available modules with a user interface. ROS is a popular framework to
manage and run components required for robot control and machine perception. It defines
also standards for data exchange, which are useful to record data streams from multiple
sensors simultaneously, e.g., images from colour and depth cameras, their poses, along
with metadata like timestamps and coordinate system references. These can be stored in
an archive called a rosbag.

There are only a few annotation tools available for the ROS platform. The multimedia
stream annotator1 allows only manual video annotation with bounding boxes. Some other
tools can be used to attach string tags to the recorded timeline.

This section describes the modules implementing the functions mentioned in Section 3.
There is a separate user interface for the 3D Map Editor, which produces the semantic
point cloud used by the second 2D interface for image stream annotation.

4.1 3D Semantic Map Editor

The user interface of the 3D Map Editor allows us to draw a sketch map of the scene,
where the 2.5D geometry of terrain and standalone objects has shape and semantic labels
assigned as in Figure 6.

The top orthogonal 2D view is shown in Figure 6a. The annotator has the following
editing options:

• Insert or remove vertices of the ground mesh (control points),

• Move a selected vertex (location X, Y),

• Adjust the elevation (Z ) of a selected vertex or face,

• Insert objects of primitive shapes (spheres, cubes, cylinders, cones),

• Change dimensions of the shapes (diameters DX, DY, DZ)
and orientation (rotation angles RX, RY, RZ),

• Assign a semantic label from the list to a selected face of the ground mesh or object.

The 3D view mode shown in Figure 6b allows arbitrary rotation of the map, but the
points or objects cannot be moved or inserted. The 3D Map Editor can process point
clouds to support the workflow given in Section 3.2:

• Import a segmented point cloud and initialize objects from its components,

• Export a semantic point cloud with labels corresponding to the current 3D map.

1https://github.com/dsgou/annotator
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4.2 2D Image Semantic Annotation Tool

The 2D Image Annotation Tool we have created allows to load an ROS bagfile with
multiple image streams together with camera calibration and the semantic 3D model from
a point cloud, which can be projected into the images. The workspace (i.e., calibration +
3D model + bagfile) can be saved in a configuration file (YAML) and loaded later.

The drawing interface shown in Figure 8 has the following functionality:

• Switch between multiple camera topics and image frames,

• Transparently overlay semantic labels on the original image with adjustable opacity
(Figure 7f),

• Initialize the frame from 3D projection (Figure 7c),

• Translate and rotate the current semantic map in the image frame,

• Automatically refine annotation boundaries to align with contours of the original
image (super-pixel boundaries [1]),

• Draw user-selected semantic labels with a brush of adjustable size (Figure 7d),

• Draw region boundaries and fill the semantic or image region,

• Transfer labels to the next frame (Figure 9e),

• Export annotations and overlays with the option of label set reduction (top classes
only or custom).

The 3D camera pose associated with the current frame (translation and rotation) can
be also manually adjusted to better fit the projection of the semantically-labelled point
cloud to the image (Section 3.3.1).

The typical annotation of a sequence will start with the 3D projection initialization
of the first frame, aligned to the image, followed by the manual refinement. The result is
then propagated to the next frame using optical flow and refined again. When the view
changes too much, e.g., after rotation or some frames are skipped, the frame can be again
initialized from 3D. This process is repeated until the end of the sequence is reached. The
annotations are immediately available in the workspace folder as indexed bitmaps (PNG)
with an embedded colour map (palette).

5 Results and Evaluation

The proposed framework was used to annotate the dataset presented in Appendix A,
which formed the ground truth for a public challenge. We have performed several experi-
ments to evaluate how useful the framework is to reduce annotation time while maintaining
the quality of the annotation.

We have compared frame annotation initialized in three different ways:

1. Empty annotation (all manual annotation),

2. Projection of the 3D semantic model to the image (3D-2D projection),

3. Transferring labels from the previous frame using calculated optical flow (2D flow
transfer).

We have measured consistency, accuracy and time to quantify the comparison.
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Figure 8: User interface of the developed 2D Image Annotation Tool. The image shows
transparent semantic class labels overlaying the original image.

5.1 3D-2D Projection

We asked a group of three users to annotate a set of 10 non-consecutive frames inde-
pendently, both manually and with the initialization from the semantically-labelled 3D
model. Multiple annotations allowed us to calculate the variance between individual an-
notators. It was calculated as the mean pixel-wise label variation δa normalized over all
annotator pairs and image area in:

δa =
1

|I| |U × U |
∑

(u,v)∈U×U

∑
j∈I

[
auj 6= avj

]
, (2)

where U is the set of annotators, auj is the pixel j label annotated by user u and [·] is the
Iverson bracket.

The results are shown in Figure 10, where the following types of inconsistencies can
be observed:

• Segmentation inaccurate: variation of object boundaries.

• Under-segmentation: objects or a part missing.

• Semantic class mismatch: different labels assigned to objects or parts.

The visual comparison of label variance δa in Figure 10c shows that the initialization
with the projected 3D model can help in the last case, i.e., force the correct semantic
label. The projection however does not provide good boundaries due to the dynamic nature
of the scene, e.g., branches moving in the wind, both at the time when the point cloud
scans were captured and when the images were captured. This still forces the user to refine
most of the boundaries manually. The measured pixel-wise consistency improvement of δa
by 1% on average is not large. The benefit of projection initialization however becomes
apparent if we instead consider the number of object instances, which would otherwise
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(a) Color image It (b) Color image It−1

(c) Manual annotation AM (d) Optical flow Ft,t−1

(e) Transferred annotation AF (f) Difference of AF an AC
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Figure 9: Evaluation of annotation transfer using optical flow. (a) Undistorted colour image It
for the current frame. (b) Undistorted colour image It−1 for the previous frame. (c) Manual
annotation AM of the current frame t. (d) Optical flow of the current to the previous frame
t→ t−1, the direction is shown with hue and magnitude, as well as saturation (white = no motion
with respect to the camera). (e) Annotation AF transferred from the previous frame. (f) Difference
of transferred AF and copied AC annotation: black indicates correct labels; green colour indicates
semantic contour movements compensated by the optical flow; red colour indicates pixels that were
not changed, but should be; blue indicates pixels that were changed, but should not be or flow
points outside of the previous image. (g) Mean pixel-wise difference of manual annotation to two
initializations from previous frame and using optical flow transfer. The quantitative analysis of
the mean difference shows that 43% of contours can be automatically moved.
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Table 1: Comparison of manual annotation and annotation initialized using the proposed
pipeline. The effort is given as mean annotation time per frame, based on the number of
sample frames given in the last column.

Method Manual 3D-2D Proj. 2D Flow Trans. Frames

Random annotation (effort) 42 min 40 min 562
Multi-user variation (consistency) 7.5% pixels 6.5% pixels 30

Consecutive sequence (effort) 20 min 11 min 180
Refinement needed (area) 3.7% pixels 2.1% pixels 50

have to be manually corrected. This is usually done by a supervisor during a second pass
through the sequence to check the quality of the first annotator’s work. Our initialization
with the correct labels reduces the number of corrections required by the supervisor and in
turn also the overall annotation time.

5.2 2D Flow Transfer

We annotated a sequence of 50 consecutive frames AM manually. Optical flow was cal-
culated for all pairs of consecutive frames and used to transfer the labels to each frame
from its predecessor frame. To evaluate the accuracy of the transfer, we compared the
flow transferred labels AF with the labels simply copied over from the previous frame AC ,
as shown in Figure 9. For both cases, the difference from the manual annotation was
calculated, i.e., |AF −AM | and |AC −AM |, and shown together in Figure 9g.

In the typical scenario when the motion was limited by a high frame rate and the
low velocity of the moving cameras to approximately 20 pixels in the image, the results
suggested that the estimated optical flow was accurate enough to adjust the moved bound-
aries of objects in the image. The pixel-wise measure showed over 40% improvement on
average, but if we consider the usual variation of the boundaries due to human factors as
in Figure 10b, the actual need to manually refine the boundaries would be even lower.

The observed annotation statistics are summarized in Table 1. The top block shows
the results from the experiment based on the use of the 3D semantically-labelled point
cloud, where 562 random frames were labelled each by a single user. The subset of the
images manually annotated without any initialization required 42 min per frame, but only
40 min each after projective initialization. Additionally, 10 frames were labelled by three
people each, with 7.5% pixel variation in the fully-manual case reduced to 6.5% in the
projected case.

The bottom block compares labelling of 180 consecutive frames completed manually (20
min each) versus refining the transferred labels (11 min each). A subset of 50 frames (one
sequence) was annotated using initialization with a copy of the previous frame annotation,
which needed manual refinement of 3.7% pixels to compensate the motion of the camera.
The needed refinement was reduced to 2.1% when optical flow was used to transfer the
labels from the previous frame.

In addition to the reduction of labour measured pixel-wise, we see that the annotation
time per frame was reduced by 5% in the case of initialization by 3D-2D projection and by
45% in the case of consecutive frame transfer. The run-time of dense optical flow estimation
using [16] was typically 1 min per frame, which can be computed in parallel while users
are annotating the previous frame.
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Left: without initialization (manual) Right: initialized from the 3D point cloud

(a) Final single-user annotations Au

(b) Multiple-user annotation shown in colour channels

(c) Variance δa of labels from multiple annotators

1 2 3 4 5 6 7 8 9 10 11
Image frame

0.02

0.04

0.06

0.08

0.1

0.12

a

Mean pixel variation

Manual = 0.075
Projection init = 0.065

(d) Quantitative comparison of variance in the two different initializations

Figure 10: Evaluation of annotation consistency. (a) Final single-user annotations Au. Observe
the differences between two different users and initializations: round topiary bushes get the wrong
label (light cyan); round topiary bushes get the correct label (dark cyan). (b) Annotations of
three users combined as RGB colour channels; grey shades imply a consistent label, colour user
variation. (c) Variance of labels from multiple annotators shown with brightness (white = max.
δa). Results (d) show that the average variance is reduced by 1% pixel-wise when annotation is
initialized from the projection, e.g., the round topiary bushes become consistent (yellow discs in
(c), left, are not present on the right).
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6 Conclusions

We have presented a framework for semantic pixel-wise annotation of images. It is designed
in particular for data captured by a moving robot. The implemented annotation workflow
is based on two publicly available components2. First, the 3D Map Editor allows us to
define semantic labels for a point cloud of the scene. Second, the 2D Image Annotation
Tool can load the image streams from a bagfile along with camera calibration and poses.
Annotation of a given frame is then initialized using projection of the point cloud and
manually refined by the user. The refined annotation can then be transferred to the
consecutive frames using estimated optical flow.

This pipeline was used to produce annotations for an outdoor dataset of a garden
presented in Appendix A. As a part of this effort, we have evaluated its efficiency, where
improvements to the consistency of the semantic labels and the reduced annotation time
were found.

The accuracy of the projection is however limited by a static projection model. In
the future, we would like to improve the projection part to better adapt to the dynamics
of the scene by matching the statically-projected contours to the currently-visible moved
contours, e.g., in the case of branches moving in the wind. The projection and label transfer
could be also done simultaneously and the result fused for the new frame, i.e., the part
that could not be transferred from the previous frame would be initialized from projection.
This would be particularly useful after rotation of the camera when new objects or parts
enter the view.
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Abbreviations

The following abbreviations are used in this manuscript:

GT Ground Truth
DT Delaunay Triangulation
ROS Robot Operating System
MRF Markov Random Field
CRF Conditional Random Field
WVGA Wide Video Graphics Array
YAML Yet Another Markup Language

A 3DRMS2017 Garden Dataset

We present an overview of the dataset captured for a challenge organized as a part of
a workshop 3D Reconstruction Meets Semantics (3DRMS) [20]. The dataset is publicly
available from https://gitlab.inf.ed.ac.uk/3DRMS/Challenge2017.

2https://github.com/rtylecek/rosemat
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Figure 11: Trajectories of the captured scenarios for the 3D Reconstruction Meets Seman-
tics (3DRMS) Challenge 2017 dataset: training (yellow) and test (purple) sequences.

The dataset for the the 3DRMS challenge was collected in a test garden at Wageningen
University Research Campus, Netherlands, which was built specifically for experimentation
in robotic gardening.

Four scenarios of a robot driving around different parts of the garden (Figure 11) were
used: around hedge (17), boxwood row (57), boxwood slope (23) and around garden

(124). The numbers in brackets indicate the sequence length in frames.

A.1 Calibrated Images

Image streams from four cameras (0, 1, 2, 3) were provided. Figure 12 shows that these are
mounted in a pairwise setup; the pair 0–1 is oriented to the front and the pair 2–3 to the
right side of the robot vehicle. The resolution of the images is 752 x 480 (WVGA); Cameras
0 and 2 are colour, while Cameras 1 and 3 are greyscale (but sharper). All images were
undistorted with the intrinsic camera parameters. The calibration was performed with
the Kalibr toolbox, https://github.com/ethz-asl/kalibr).

The camera poses were estimated with [21] and manually aligned to the coordinate
system of the laser point cloud.
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Figure 12: Pentagonal camera rig mounted on the robot (left). The first four cameras
were included in the challenge data (right), green colour indicates their fields of view.

A.2 Semantic Image Annotations

The set of classes we distinguish in the images contains nine labels (colour code in brack-
ets):

• Grass (light green)

• Ground (brown)

• Pavement (grey)

• Hedge (ochre)

• Topiary (cyan)

• Rose (red)

• Obstacle (blue)

• Tree (dark green)

• Background (black)

Pixel-wise annotations (Figure 13) were produced for frames in Cameras 0 and 2. They
were initialized from the projection of the semantic model and manually refined. In the
3DRMS dataset, the selected frames were not consecutive, so optical flow transfer could
not be used in this case. The flow transfer was however used for additional annotation of
the data from the same scene, which will be published in the future.

A.3 Semantic Point Cloud

The geometry of the scene was acquired by a Leica ScanStation P15, with an accuracy of
3 mm at 40 m. Its native output merged from 20 individual scans was subsampled with a
spatial filter to achieve a minimal distance between two points of 10 mm, which becomes
the effective accuracy of the GT. For some dynamic parts, like leaves and branches, the
accuracy can be further reduced due to movement by the wind, etc.

Semantic labels were assigned to the points with multiple 3D bounding boxes drawn
around individual components of the point cloud belonging to the garden objects or terrain.
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Figure 13: Undistorted image from Camera 0 (left) and its semantic annotation (right).

Figure 14: The captured point cloud of the garden (left) is labelled in the 3D editor to
produce a semantic point cloud with colour-coded class labels (right).
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