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Summary. The recently developed technique of Iterative Closest Point (ICP)
matching has been used for a number of 3D-to-3D and 2D-to-2D point matching
applications, and has been further developed in several useful ways, as described
below. Central to these applications is the notion of rigid shape matching. This pa-
per extends the concept to projective point matching, in which shapes are related
by a projective transform rather than a Euclidean transform. With this extended
technique, we show that directly registering 2D Augmented Reality (AR) overlays
via a projective transform has greater registration stability than the more usual
technique of estimating the 3D position of the overlay and then applying pinhole
projection, which can produce noticeable frame-rate jitter of the graphical objects.
Moreover, the technique does not rely on explicit feature point correspondence and
tracking. We then further extend the technique to directly register 3D shapes pro-
jectively by using mutually constrained 2D projective mappings. These two new
techniques enhance the repertoire of methods for producing high-detail, stable aug-
mentation of built scenes.
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1 Introduction

One of the fundamental operations in an Augmented Reality (AR) system is
the projection of the graphical objects onto a video sequence. The traditional
method for this projection is to analyze the video sequence to deduce the 3D
scene position of graphical object and then to project the graphical object into
the video sequence using a standard camera model [1,2,12]. This approach is
commonly used in architectural AR because of the straightforward 3D scene
analysis. While this 3D-to-2D approach is technically correct, our experience
of working with 3D scenes suggests that estimating the 6 degrees of freedom
of the graphical object in 3D space can be slightly unstable. This causes the
graphics objects to have a frame-rate jitter, which can certainly be observed
in many AR applications. An alternative is to map directly from the graphical
space to the image space, which is the approach being presented in this paper.

The recently developed technique of Iterative Closest Point (ICP) match-
ing [3] has been used for a number of 3D-t0-3D and 2D-to-2D point match-
ing applications, and has been further developed in several useful ways, as
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described below. Central to these applications is the notion of rigid shape
matching. This paper extends the concept to projective point matching, in
which shapes are related by a projective rather than a Euclidean transform.

With this extended technique, we then show that directly registering 2D
Augmented Reality (AR) overlays via a projective transform has greater reg-
istration stability than the more usual technique of estimating the 3D position
of the overlay and then applying pinhole projection. By using the PICP tech-
nique, transformations can be estimated without using explicit feature point
correspondences. We then further extend the technique to directly register 3D
shapes projectively by using mutually constrained 2D projective mappings.

This method can be used in AR applications requiring accurate composit-
ing, such as in special effects in video post-production, or live entertainment
overlay where viewer opinion is important. Architectural applications include
museum enhancement, emergency service route directions, building mainte-
nance plan overlay, etc.

Smith et al [11] have also explored direct image mapping to improve
graphical object registration using scene constraints such as parallel lines and
coplanarity of tracked features, Euclidean bundle adjustment, and estimating
parameters over the whole image sequence using supplied camera projection
matrices. In addition, they also explored added connected 3D structures (a
rectangular solid), by tracking the vanishing points of three sets of paral-
lel lines to define an affine systems and then estimate the camera matrices,
subject again to constraints such as parallelness and coplanarity.

Kutalakos and Vallino [8] demonstrated direct, but affine, mapping of 3D
objects using four accurately tracked non-coplanar control points to deter-
mine the mapping of the remainder of the 3D object.

The research presented here extends this previous work by using per-
spective projection, avoiding dependence on accurate tracking of individual
points or features, working with curved shapes as well as linear boundaries
and working with multiple constrained projections.

1.1 The Rigid Iterative Closest Point Algorithm

ICP [3] is an iterative alignment algorithm that works in three phases: 1)
establish correspondence between pairs of features in the two structures that
are to be aligned based on proximity, 2) estimate the rigid transformation
that best maps the first member of the pair onto the second and then 3)
apply that transformation to all features in the first structure. These three
steps are then reapplied until convergence is concluded. Although simple, the
algorithm works quite effectively when given a good initial estimate.

The basic algorithm has been previously extended in a number of ways:
1) correspondence between a point and a tangent plane to overcome the
lack of an exact correspondence between the two sets [5], 2) robustifying the
algorithm to the influence of outliers and features lacking correspondences
[14,9], 3) using a weighted least-square error metric [6], and 4) matching
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between features using a metric trading off distance and feature similarity
(based local shape invariances) [10]. All of these approaches assume a rigid
Euclidean transformation between the corresponding features, whereas the
method presented here uses projective correspondence.

2 The Projective Iterative Closest Point Algorithm

Unlike the Euclidean case, the structures being matched don’t necessarily
have the same shape, because of projective distortion. However, as we are
working with full projective geometry, it is still possible that the shapes
can have an exact match. Thus, it is necessary to define a distance measure
between projective points, so that we can find the ‘closest’ points. We also
need a way of estimating the homography between the set of paired ‘closest’
points. These are the main differences between the normal Euclidean ICP
algorithm and that presented here.

2.1 Projective Distance Estimation

Because a point in projective space can be represented by an infinite set of
homogeneous coordinates, the normal Euclidean distance could be an unsuit-
able distance metric. We define a distance metric d,() between two 2D points
with homogeneous representations p; = (z1,y1,21)" and ps = (z2,y2, 29)" as:

D1 - D2
)

Ap(pr:p2) = o5 (ST

This is the angle between the points, when considered as 3D vectors. d,() is
a true metric (identity, commutativity, triangle inequality - not proved here).

2.2 Projective Transform Estimation

Let {p1,p2,...pn} and {qi1,q2,...q,} be two sets of paired homogeneous
points linked by a projective transform. The 2D projective transform T can
be represented with a 3 x 3 matrix having an arbitrary scaling, and thus 8
degrees of freedom. If n = 4, then T can be solved for exactly. Here, we
expect that n will be much bigger than 4 and so use the direct linear method
[7] to estimate T such that:

q; = Tp;
Let
t11 t12 113
T = | 121 t22 t23
t31 t32 133
Define:

t = (t11,t12, 113, to1.t22, tag, t31, t3n, t33)’
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Normalize vectors so p; = (Pix, Diy, 1) and similarly for q;. Construct the
2n X 9 matrix A:

A(27’ - ]-7 :) = (plzapzya ]-7 07 07 07 —GizPix, *szpzy, 7(]21)
A(2Z :) = (07 0: 07pi:n7piy: 17 —QiyPixy —GiyPiy; _qiy)

The solution vector % is the eigenvector of A’ A with smallest eigenvalue.

2.3 PICP Algorithm

Using the results from the previous subsections, we define the Projective
ICP algorithm (PICP) as follows (adapted from [10]). Let S be a set of N,
coplanar 2D points {s1,...,sn,} and M be the corresponding 2D model.
Let dp(s, m) be the projective distance between point s € S and m € M.
Let CP(s, M) be the ‘closest’ point in M to the scene point s, using the
projective distance defined in Section 2.1.

1. Let Tl be an initial estimate of the homography.
2. Repeat for k = 1..knax or until convergence:
(a) Compute the set of correspondences C = Ullil {(ss,CP(TIF(s;), M))}.
(b) Compute the new homography T!* between point pairs in C using
the method of Section 2.2.

It is possible for the ICP algorithm to diverge if the initial transformation
estimate is not close enough to the correct alignment. This problem also arises
in the PICP algorithm, which can lead to very distorted transformations. This
behavior was observed in the experiments presented below, when the initial
transformation estimate left the registration features close to a distinctly
different part of the scene.

3 Planar Structure Registration Using PICP for
Augmented Reality

Using the theory developed in Section 2, we look at directly projecting planar
graphical structures from the graphical space to the image space. In the
next section, we present results for 3D graphical objects composed of planar
substructures.

Assume that we are trying to map a planar curve S = {e(\)}, A € [0..1]
(represented homogeneously) onto an image plane using the homography T,
that is, drawing Te(A). We need to estimate T.

Assume that we have identified corresponding structures in the image,
and have a set of points P = {p;},i € [1..n] that describe that structure.
For example, this might be the boundary of the object as located by an edge
detector. Using the theory in Section 2, we want to estimate the T that best
satisfies p; = Te();) for the corresponding projectively closest point pairs
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{(pi, (X))} This in turn requires finding the corresponding point pairs. As
we are working in the PICP framework, this search reduces to finding the
closest pairs between {(T*~'e();),p;)} at the k' iteration of the PICP
algorithm, where T/*~1 is the k — 1°* estimate of the homography.

As ); specifies a continuous curve, finding the point in P closest to each
TIF=1e();) can be quite time-consuming. Fortunately, the homography is
invertible, so instead we search for the pairs {((T*~')"'p;, ¢(A\;))} and then
invert the estimated homography to get T,

Table 1. Average, standard deviation and maximum deviation of the average
boundary distance between the estimated and true graphic object rectangles for
the PICP, 3D and PICPe (using Euclidean distance for the closest point) algo-
rithms at 4 pixel Gaussian noise standard deviations.

Noise PICP 3D PICPe

mean std max|{mean std max|mean std max
0] 0.35 0.04 0.42]|0.99 0.45 2.03| 0.33 0.03 0.40
101 0.35 0.04 0.49|0.90 0.35 2.34| 0.33 0.04 0.44
20/ 0.38 0.07 0.70(1.03 0.38 2.90| 0.33 0.07 0.67
30[ 0.43 0.11 0.86|1.33 0.44 3.29| 0.37 0.10 0.80

3.1 Evaluation

We investigated the PICP approach’s stability compared with two alterna-
tives: 1) estimating the 3D transform and then projecting and 2) using the
Euclidean distance rather than the projective distance in the portion of the
PICP algorithm that finds the closest point. The motivation for the second
alternative is that we are attempting to stabilize the graphics in the im-
age plane, so perhaps using image plane distances might be better than the
projective distance.

The test graphical object is a rectangle of dimensions 0.5 by 1, projected
into a sequence of 20 views with a moving camera. Real structures like this
simulation include a picture on a gallery wall, a notice or advertising board,
or a building side. The image background has intensity 20 and the rectangle
has intensity 100. Gaussian noise of varying standard deviation is added at
each pixel.

Ten instances of the image with different noise were generated at each
view, giving a total of 200 samples at each noise level. The Canny edge
detector found the edge points used for registering edges of the rectangle.

The 3D transformation used in alternative method 1 is estimated by: 1)
estimating the corners of the rectangle from the image edges and 2) searching
for the 3D points along the lines of sight through the corners that best fit the
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model rectangle. Better 3D performance in this experiment could probably
be achieved by estimating the corner positions better.

The experiments recorded two measures of stability: 1) the distance of
the estimated graphical object origin from the known true origin and 2) an
estimate of the average distance between the true and estimated rectangle’s
boundary. The former assesses the stability of a given point and the latter
assesses the stability of overall shape matching and registration.

The PICP algorithm was allowed to run for up to 50 iterations, or termi-
nate early if the cumulative projective distance between the registered edge
points and corresponding model rectangle points differed between iterations
by less than a threshold value (0.004). On average, the PICP algorithm re-
quired 15 iterations (range 4 32).

Table 1 shows the average boundary distances and the results for the
origin distances are similar. It is clear that the boundary alignment algorithms
are much more accurate (comparing means) and stable (comparing standard
deviations and maximum errors) than the 3D approach at all noise levels.
Between the two boundary alignment algorithms, it appears that the using
Euclidean distance instead of the projective distance in the feature matching
stage produces slightly lower average error.

c)

Fig. 1. Snapshot of the video transfer onto a curved boundary. a) One frame of the
original sequence, b) one frame of the transfer sequence, ¢) cropped eye from the
transfer sequence, whose boundary is mapped onto the template boundary, and d)
corresponding frame from result sequence.

This experiment required approximately 2 seconds per iteration with
about 200-230 edge points on a 270 Mhz Sun workstation and unoptimized
Matlab code. This suggests the possibility of overlay at around 10 frames per
second on a 1 Ghz PC, and real-time video with optimized C/C++ code.
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To demonstrate the performance on a real video sequence, observe the ani-
mated GIF at URL: http://www.dai.ed.ac.uk/homes/rbf/PICP/picp.htm.
This shows the transfer of a video sequence (88 frames) of an eye blinking
onto an office interior sequence containing a template with a curved boundary.
The source eye was manually edited to select the eye window with shape a
scaled version of the tracked template. The PICP algorithm was then used to
register the shapes for transfer of the winking eye into the tracking sequence.
Figure 1 shows a single frame from the animated sequence.

A second interior sequence can be see from the same URL, which shows
the augmentation of a corridor scene with navigation instructions, such as
might be presented to an emergency service person on a future head-mounted
AR display. In this case, the overlay lies in the same projective plane as the
registration features, which were matched to the interior edges of the O, but
did not use any of the registration features. Figure 2 shows one frame of the
result sequence (11 frames) and the overlay plane. Note that the transfer still
is stable even though perspective distortion is now appearing.

ED

b)

Fig. 2. Snapshot of the transfer onto a corridor scene: a) One frame of the result
sequence and b) the transfer overlay, including the registration features.

4 3D Structure Registration Using Constrained PICP

If the graphical object to be projected contains 3D structure, then one can
use the normal approach of estimating the full 3D transformation and then
applying image projection using a camera model. As both intrinsic and ex-
trinsic camera model estimation can have instabilities, then the graphical
object might jitter around the video object.

One can alternatively apply an extension to the method of Section 3 if
the 3D object consists of connected planar segments (e.g. a polyhedral or
triangulated model). For example, the planar models could be different faces
of an object or walls of a building.
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The problem with applying the method of Section 3 directly to the in-
dividual planar segments is the individually estimated homographies might
cause the shared edges of the graphical objects to no longer align when pro-
jected. Hence, this section looks at how to estimate the individual surface
homographies subject to the constraint that shared model vertices are coin-
cident in the projected image (which also guarantees that the shared edges
are coincident).

Formally, let M1 = {e1(A1)} and M2 = {e2(X2)}, Ai € [0..1] be two
planar curves (represented homogeneously) mapped by the homographies
T; and T, into a common image plane containing image feature points
S] = {p]],p]27.. -p]n1} and 52 = {pg],p227.. .anQ}. (See Figure 3) We
assume that the image feature points have already been segmented into sets
corresponding to the appropriate graphical object, by some process not con-
sidered here. Some feature points of S; and Sy will be shared; these are the
vertices and curves common to both sets.

Fig. 3. Projection of 2 non-coplaner curves ¢;(\) via homographies T; into a com-
mon image mapping shared point a to a’ and b to b’.

Suppose that ¢; (A1x) and e2(Aa2x ), k = 1..K, map to the same image point.
For example, these are the vertices at the end of a shared line segment.

Then, the problem can be formulated as: Find the T; and T5 that min-
imizes the mapping distance (using d,()) of {e1(A1)} and {e2(A2)} onto Sy
and S5 respectively such that

ueTier (Ag) = Taca(Aor)

i are new unknown variables for the difference in homogeneous scaling.
To solve the problem, we eliminate the p, to form six new scalar equalities
as follows. Let T} be the j*® row of homography 7. Then isolating py in the
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above constraints produces:

N T'iQCQ()\Qk)

Me = —
T‘llcl ()\1]@)

for shared points k£ = 1..K and homogeneous coordinates j = 1,2,3. One of
7 =1,2,3 can be derived from the other two so we just use 7 = 1, 2. Equating
these for u; and simplifying gives the constraints:

Cir(T1, Ta) = [(Thea(Aar))(T] er(Max)) — (T3 T ea(Aar)) (T 1 (Arr)))?

The goal is to estimate Ty and Ty that minimizes

ni n2
E(T,,T;) = Z dp(Ty ' pri, M) + Z dyp(To ™' pai, M>)
i=1

i=1

subject to Cji(T1,To) =0for k=1.K and j =1,2.
We solve this minimization using Werghi’s technique [13] for multiply
constrained minimization. Define a cost function

F(p,T1,T2) = E(T1,T2) +p Z Cir(Ty, Ta)
k=1..K;j=1,2

Then we:

1. Compute initial estimates of T, and T, independently using the
PICP method of Section 3.

2. Set p to a small value (1.0).

3. Recompute correspondences between closest model and data edge points,
as needed for computing E().

4. Minimize F() using a standard numerical method with T; " =" and T,
as the initial estimate to get Tl["] and Tg[t]

5. Increase p (50%) and return to step 3 until the desired degree of constraint
is achieved. In this case, we want Tie; (A1) and Taea(Aa;), i = 1,2 to lie
within 0.1 pixel.

If more than two planar segments are in the model, the method generalizes
by adding extra constraints for each shared point.

4.1 Evaluation

To evaluate the constrained projection method, we show first some perfor-
mance results using synthetic images, and then an example with a real image.

The synthetic results used two constrained semicircles linked perpendic-
ularly as seen in Figure 4a. The individual semicircle edges are registered
to the image edges shown in Figure 4b, and then constrained to share the
same straight edge. The resulting constrained mapping projects the model
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edges onto the image (Figure 4c). This problem was constrained in about 15
minutes using Matlab on a 270 Mhz Sun.

Regenerating this image with different image noise (¢ = 10) 5 times each
over a tracking sequence with 10 positions gave an mean average boundary
distance error of 0.53 pixels, with standard deviation 0.087 and maximum
average error of (.71 pixels. Thus, the process is stable below the level of
integer pixel edge data to image noise.

\ \\\\

Fig. 4. Test images for 3D registration, showing: a) the raw image, b) the edges
used for image capture c) the two registered semicircle models projected onto the
raw image.

We also applied the constraint method to a real image, namely for tracking
a real apple wedge somewhat similar to the synthetic example. Figure 5 shows
a) one raw image, b) the edges from that image, c) the apple model fitted to
both sides of the slice and d) the corresponding frame from result sequence
with the model projected onto the image.

To demonstrate the performance on a real video sequence, observe the ani-
mated GIF at URL: http://www.dai.ed.ac.uk/homes/rbf/PICP/picp.htm.
Here, the matched edges are not as reliably and stably found, nor does the
apple have the spherical wedge as in the synthetic example. Thus, the track-
ing is reasonable but not as stable; however, the constraint is always satisfied.
Because of the optimization step, the computation took about 10 minutes per
image (again in Matlab on a 270 Mhz Sun). This technique is easily applicable
to architectural structures because of the many connected planes.

5 Conclusions

This paper has introduced the PICP registration algorithm that acts in pro-
jective, rather than Euclidean space. One of the key advantages of the algo-
rithm is that it does not require explicit feature point correspondences. With
this algorithm, we showed that it can be used for more stable registration
of augmented reality graphics on top of video, by directly registering to the
image edges rather than via a 3D pose estimation. Further, we extended the
single plane projection method to incorporate multiple constrained planes,
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)

Fig. 5. Snapshot of the video transfer onto a curved boundary. a) One frame (13)
of the original sequence (60 frames), b) the edges that are being fit by the two
instances of the model, ¢) the transfer model and d) the corresponding frame from
result sequence.

thus allowing simultaneous registration of 3D structures. Both of the tech-
niques presented here (projective point alignment and constraints in align-
ment) have much potential in AR applications, particularly in man-made
environments because of their many individual and joined planar structures.
The constraint linkage approach could potentially be used in more general
AR applications (such as ensuring objects lie on a groundplane or road), or
where the projected object has independently registerable subcomponents,
but the PICP approach is limited to applications where the projection ma-
trix can be directly estimated from the point correspondences. Note that the
corresponding points need not be real features, but could be defined by e.g.
local texture distributions.

If the registered feature is matched to an occluding contour, then the ap-
proach will fail as the transformation requires exact correspondences. How-
ever, if the scene has some other features, such as internal markings, that can
be used for registration, then estimating the homography might be possible.
If contours are ambiguous, thus producing alternative correspondences, then
higher level processing would be needed to resolve the ambiguity. This is a
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common failing of ICP-like algorithms, which depend on being initially close
enough to a solution that correct convergence happens.

The iterative method demonstrated here has some similarity to bundle ad-
justment [7]. Bundle adjustment only optimizes the transformation, whereas
the algorithm presented here also optimizes the point correspondences. Bun-
dle adjustment can optimize over the whole image sequence, which was not
done here. This could be incorporated here as well, at a computational cost.

Because of the independent frame transformation estimation, the graphics
can still have some residual jitter in each frame. This could be smoothed, e.g.
by Kalman filtering; however, raw video also jitters due to capture electron-
ics instability and human jitter during capture. Thus, the projected graphics
needs to be able to track the actual video, rather than an idealized version.
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