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tive ICP and Stabilizing Ar
hite
turalAugmented Reality OverlaysRobert B. FisherUniversity of Edinburgh and Trinity College DublinSummary. The re
ently developed te
hnique of Iterative Closest Point (ICP)mat
hing has been used for a number of 3D-to-3D and 2D-to-2D point mat
hingappli
ations, and has been further developed in several useful ways, as des
ribedbelow. Central to these appli
ations is the notion of rigid shape mat
hing. This pa-per extends the 
on
ept to proje
tive point mat
hing, in whi
h shapes are relatedby a proje
tive transform rather than a Eu
lidean transform. With this extendedte
hnique, we show that dire
tly registering 2D Augmented Reality (AR) overlaysvia a proje
tive transform has greater registration stability than the more usualte
hnique of estimating the 3D position of the overlay and then applying pinholeproje
tion, whi
h 
an produ
e noti
eable frame-rate jitter of the graphi
al obje
ts.Moreover, the te
hnique does not rely on expli
it feature point 
orresponden
e andtra
king. We then further extend the te
hnique to dire
tly register 3D shapes pro-je
tively by using mutually 
onstrained 2D proje
tive mappings. These two newte
hniques enhan
e the repertoire of methods for produ
ing high-detail, stable aug-mentation of built s
enes.Keywords: Augmented Reality stabilization, Iterative Closest Point1 Introdu
tionOne of the fundamental operations in an Augmented Reality (AR) system isthe proje
tion of the graphi
al obje
ts onto a video sequen
e. The traditionalmethod for this proje
tion is to analyze the video sequen
e to dedu
e the 3Ds
ene position of graphi
al obje
t and then to proje
t the graphi
al obje
t intothe video sequen
e using a standard 
amera model [1,2,12℄. This approa
h is
ommonly used in ar
hite
tural AR be
ause of the straightforward 3D s
eneanalysis. While this 3D-to-2D approa
h is te
hni
ally 
orre
t, our experien
eof working with 3D s
enes suggests that estimating the 6 degrees of freedomof the graphi
al obje
t in 3D spa
e 
an be slightly unstable. This 
auses thegraphi
s obje
ts to have a frame-rate jitter, whi
h 
an 
ertainly be observedin many AR appli
ations. An alternative is to map dire
tly from the graphi
alspa
e to the image spa
e, whi
h is the approa
h being presented in this paper.The re
ently developed te
hnique of Iterative Closest Point (ICP) mat
h-ing [3℄ has been used for a number of 3D-to-3D and 2D-to-2D point mat
h-ing appli
ations, and has been further developed in several useful ways, as



2 Robert B. Fisherdes
ribed below. Central to these appli
ations is the notion of rigid shapemat
hing. This paper extends the 
on
ept to proje
tive point mat
hing, inwhi
h shapes are related by a proje
tive rather than a Eu
lidean transform.With this extended te
hnique, we then show that dire
tly registering 2DAugmented Reality (AR) overlays via a proje
tive transform has greater reg-istration stability than the more usual te
hnique of estimating the 3D positionof the overlay and then applying pinhole proje
tion. By using the PICP te
h-nique, transformations 
an be estimated without using expli
it feature point
orresponden
es. We then further extend the te
hnique to dire
tly register 3Dshapes proje
tively by using mutually 
onstrained 2D proje
tive mappings.This method 
an be used in AR appli
ations requiring a

urate 
omposit-ing, su
h as in spe
ial e�e
ts in video post-produ
tion, or live entertainmentoverlay where viewer opinion is important. Ar
hite
tural appli
ations in
ludemuseum enhan
ement, emergen
y servi
e route dire
tions, building mainte-nan
e plan overlay, et
.Smith et al [11℄ have also explored dire
t image mapping to improvegraphi
al obje
t registration using s
ene 
onstraints su
h as parallel lines and
oplanarity of tra
ked features, Eu
lidean bundle adjustment, and estimatingparameters over the whole image sequen
e using supplied 
amera proje
tionmatri
es. In addition, they also explored added 
onne
ted 3D stru
tures (are
tangular solid), by tra
king the vanishing points of three sets of paral-lel lines to de�ne an aÆne systems and then estimate the 
amera matri
es,subje
t again to 
onstraints su
h as parallelness and 
oplanarity.Kutalakos and Vallino [8℄ demonstrated dire
t, but aÆne, mapping of 3Dobje
ts using four a

urately tra
ked non-
oplanar 
ontrol points to deter-mine the mapping of the remainder of the 3D obje
t.The resear
h presented here extends this previous work by using per-spe
tive proje
tion, avoiding dependen
e on a

urate tra
king of individualpoints or features, working with 
urved shapes as well as linear boundariesand working with multiple 
onstrained proje
tions.1.1 The Rigid Iterative Closest Point AlgorithmICP [3℄ is an iterative alignment algorithm that works in three phases: 1)establish 
orresponden
e between pairs of features in the two stru
tures thatare to be aligned based on proximity, 2) estimate the rigid transformationthat best maps the �rst member of the pair onto the se
ond and then 3)apply that transformation to all features in the �rst stru
ture. These threesteps are then reapplied until 
onvergen
e is 
on
luded. Although simple, thealgorithm works quite e�e
tively when given a good initial estimate.The basi
 algorithm has been previously extended in a number of ways:1) 
orresponden
e between a point and a tangent plane to over
ome thela
k of an exa
t 
orresponden
e between the two sets [5℄, 2) robustifying thealgorithm to the in
uen
e of outliers and features la
king 
orresponden
es[14,9℄, 3) using a weighted least-square error metri
 [6℄, and 4) mat
hing



PICP & Stabilizing AR Overlays 3between features using a metri
 trading o� distan
e and feature similarity(based lo
al shape invarian
es) [10℄. All of these approa
hes assume a rigidEu
lidean transformation between the 
orresponding features, whereas themethod presented here uses proje
tive 
orresponden
e.2 The Proje
tive Iterative Closest Point AlgorithmUnlike the Eu
lidean 
ase, the stru
tures being mat
hed don't ne
essarilyhave the same shape, be
ause of proje
tive distortion. However, as we areworking with full proje
tive geometry, it is still possible that the shapes
an have an exa
t mat
h. Thus, it is ne
essary to de�ne a distan
e measurebetween proje
tive points, so that we 
an �nd the `
losest' points. We alsoneed a way of estimating the homography between the set of paired `
losest'points. These are the main di�eren
es between the normal Eu
lidean ICPalgorithm and that presented here.2.1 Proje
tive Distan
e EstimationBe
ause a point in proje
tive spa
e 
an be represented by an in�nite set ofhomogeneous 
oordinates, the normal Eu
lidean distan
e 
ould be an unsuit-able distan
e metri
. We de�ne a distan
e metri
 dp() between two 2D pointswith homogeneous representations p1 = (x1; y1; z1)0 and p2 = (x2; y2; z2)0 as:dp(p1;p2) = 
os�1( p1 � p2jj p1 jj jj p2 jj )This is the angle between the points, when 
onsidered as 3D ve
tors. dp() isa true metri
 (identity, 
ommutativity, triangle inequality - not proved here).2.2 Proje
tive Transform EstimationLet fp1;p2; : : :png and fq1; q2; : : :qng be two sets of paired homogeneouspoints linked by a proje
tive transform. The 2D proje
tive transform T 
anbe represented with a 3 � 3 matrix having an arbitrary s
aling, and thus 8degrees of freedom. If n = 4, then T 
an be solved for exa
tly. Here, weexpe
t that n will be mu
h bigger than 4 and so use the dire
t linear method[7℄ to estimate T su
h that: qi := TpiLet T = 0� t11 t12 t13t21 t22 t23t31 t32 t331ADe�ne: t = (t11; t12; t13; t21:t22; t23; t31; t32; t33)0
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tors so pi = (pix; piy; 1)0 and similarly for qi. Constru
t the2n� 9 matrix A:A(2i� 1; :) = (pix; piy; 1; 0; 0; 0;�qixpix;�qixpiy;�qix)A(2i; :) = (0; 0; 0; pix; piy ; 1;�qiypix;�qiypiy;�qiy)The solution ve
tor t is the eigenve
tor of A0A with smallest eigenvalue.2.3 PICP AlgorithmUsing the results from the previous subse
tions, we de�ne the Proje
tiveICP algorithm (PICP) as follows (adapted from [10℄). Let S be a set of Ns
oplanar 2D points fs1; : : : ; sNsg and M be the 
orresponding 2D model.Let dp(s;m) be the proje
tive distan
e between point s 2 S and m 2 M.Let CP(s;M) be the `
losest' point in M to the s
ene point s, using theproje
tive distan
e de�ned in Se
tion 2.1.1. Let T[0℄ be an initial estimate of the homography.2. Repeat for k = 1::kmax or until 
onvergen
e:(a) Compute the set of 
orresponden
es C = SNsi=1f(si; CP (T[k�1℄(si);M))g.(b) Compute the new homography T[k℄ between point pairs in C usingthe method of Se
tion 2.2.It is possible for the ICP algorithm to diverge if the initial transformationestimate is not 
lose enough to the 
orre
t alignment. This problem also arisesin the PICP algorithm, whi
h 
an lead to very distorted transformations. Thisbehavior was observed in the experiments presented below, when the initialtransformation estimate left the registration features 
lose to a distin
tlydi�erent part of the s
ene.3 Planar Stru
ture Registration Using PICP forAugmented RealityUsing the theory developed in Se
tion 2, we look at dire
tly proje
ting planargraphi
al stru
tures from the graphi
al spa
e to the image spa
e. In thenext se
tion, we present results for 3D graphi
al obje
ts 
omposed of planarsubstru
tures.Assume that we are trying to map a planar 
urve S = f
(�)g; � 2 [0::1℄(represented homogeneously) onto an image plane using the homography T,that is, drawing T
(�). We need to estimate T.Assume that we have identi�ed 
orresponding stru
tures in the image,and have a set of points P = fpig; i 2 [1::n℄ that des
ribe that stru
ture.For example, this might be the boundary of the obje
t as lo
ated by an edgedete
tor. Using the theory in Se
tion 2, we want to estimate the T that bestsatis�es pi = T
(�i) for the 
orresponding proje
tively 
losest point pairs
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(�i))g. This in turn requires �nding the 
orresponding point pairs. Aswe are working in the PICP framework, this sear
h redu
es to �nding the
losest pairs between f(T[k�1℄
(�i);pi)g at the kth iteration of the PICPalgorithm, where T[k�1℄ is the k � 1st estimate of the homography.As �i spe
i�es a 
ontinuous 
urve, �nding the point in P 
losest to ea
hT[k�1℄
(�i) 
an be quite time-
onsuming. Fortunately, the homography isinvertible, so instead we sear
h for the pairs f((T[k�1℄)�1pi; 
(�i))g and theninvert the estimated homography to get T[k℄.Table 1. Average, standard deviation and maximum deviation of the averageboundary distan
e between the estimated and true graphi
 obje
t re
tangles forthe PICP, 3D and PICPe (using Eu
lidean distan
e for the 
losest point) algo-rithms at 4 pixel Gaussian noise standard deviations.Noise PICP 3D PICPemean std max mean std max mean std max0 0.35 0.04 0.42 0.99 0.45 2.03 0.33 0.03 0.4010 0.35 0.04 0.49 0.90 0.35 2.34 0.33 0.04 0.4420 0.38 0.07 0.70 1.03 0.38 2.90 0.33 0.07 0.6730 0.43 0.11 0.86 1.33 0.44 3.29 0.37 0.10 0.80
3.1 EvaluationWe investigated the PICP approa
h's stability 
ompared with two alterna-tives: 1) estimating the 3D transform and then proje
ting and 2) using theEu
lidean distan
e rather than the proje
tive distan
e in the portion of thePICP algorithm that �nds the 
losest point. The motivation for the se
ondalternative is that we are attempting to stabilize the graphi
s in the im-age plane, so perhaps using image plane distan
es might be better than theproje
tive distan
e.The test graphi
al obje
t is a re
tangle of dimensions 0.5 by 1, proje
tedinto a sequen
e of 20 views with a moving 
amera. Real stru
tures like thissimulation in
lude a pi
ture on a gallery wall, a noti
e or advertising board,or a building side. The image ba
kground has intensity 20 and the re
tanglehas intensity 100. Gaussian noise of varying standard deviation is added atea
h pixel.Ten instan
es of the image with di�erent noise were generated at ea
hview, giving a total of 200 samples at ea
h noise level. The Canny edgedete
tor found the edge points used for registering edges of the re
tangle.The 3D transformation used in alternative method 1 is estimated by: 1)estimating the 
orners of the re
tangle from the image edges and 2) sear
hingfor the 3D points along the lines of sight through the 
orners that best �t the
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tangle. Better 3D performan
e in this experiment 
ould probablybe a
hieved by estimating the 
orner positions better.The experiments re
orded two measures of stability: 1) the distan
e ofthe estimated graphi
al obje
t origin from the known true origin and 2) anestimate of the average distan
e between the true and estimated re
tangle'sboundary. The former assesses the stability of a given point and the latterassesses the stability of overall shape mat
hing and registration.The PICP algorithm was allowed to run for up to 50 iterations, or termi-nate early if the 
umulative proje
tive distan
e between the registered edgepoints and 
orresponding model re
tangle points di�ered between iterationsby less than a threshold value (0.004). On average, the PICP algorithm re-quired 15 iterations (range 4{32).Table 1 shows the average boundary distan
es and the results for theorigin distan
es are similar. It is 
lear that the boundary alignment algorithmsare mu
h more a

urate (
omparing means) and stable (
omparing standarddeviations and maximum errors) than the 3D approa
h at all noise levels.Between the two boundary alignment algorithms, it appears that the usingEu
lidean distan
e instead of the proje
tive distan
e in the feature mat
hingstage produ
es slightly lower average error.
a) b)

) d)Fig. 1. Snapshot of the video transfer onto a 
urved boundary. a) One frame of theoriginal sequen
e, b) one frame of the transfer sequen
e, 
) 
ropped eye from thetransfer sequen
e, whose boundary is mapped onto the template boundary, and d)
orresponding frame from result sequen
e.This experiment required approximately 2 se
onds per iteration withabout 200-230 edge points on a 270 Mhz Sun workstation and unoptimizedMatlab 
ode. This suggests the possibility of overlay at around 10 frames perse
ond on a 1 Ghz PC, and real-time video with optimized C/C++ 
ode.



PICP & Stabilizing AR Overlays 7To demonstrate the performan
e on a real video sequen
e, observe the ani-mated GIF at URL: http://www.dai.ed.a
.uk/homes/rbf/PICP/pi
p.htm.This shows the transfer of a video sequen
e (88 frames) of an eye blinkingonto an oÆ
e interior sequen
e 
ontaining a template with a 
urved boundary.The sour
e eye was manually edited to sele
t the eye window with shape as
aled version of the tra
ked template. The PICP algorithm was then used toregister the shapes for transfer of the winking eye into the tra
king sequen
e.Figure 1 shows a single frame from the animated sequen
e.A se
ond interior sequen
e 
an be see from the same URL, whi
h showsthe augmentation of a 
orridor s
ene with navigation instru
tions, su
h asmight be presented to an emergen
y servi
e person on a future head-mountedAR display. In this 
ase, the overlay lies in the same proje
tive plane as theregistration features, whi
h were mat
hed to the interior edges of the O, butdid not use any of the registration features. Figure 2 shows one frame of theresult sequen
e (11 frames) and the overlay plane. Note that the transfer stillis stable even though perspe
tive distortion is now appearing.

a) b)Fig. 2. Snapshot of the transfer onto a 
orridor s
ene: a) One frame of the resultsequen
e and b) the transfer overlay, in
luding the registration features.4 3D Stru
ture Registration Using Constrained PICPIf the graphi
al obje
t to be proje
ted 
ontains 3D stru
ture, then one 
anuse the normal approa
h of estimating the full 3D transformation and thenapplying image proje
tion using a 
amera model. As both intrinsi
 and ex-trinsi
 
amera model estimation 
an have instabilities, then the graphi
alobje
t might jitter around the video obje
t.One 
an alternatively apply an extension to the method of Se
tion 3 ifthe 3D obje
t 
onsists of 
onne
ted planar segments (e.g. a polyhedral ortriangulated model). For example, the planar models 
ould be di�erent fa
esof an obje
t or walls of a building.



8 Robert B. FisherThe problem with applying the method of Se
tion 3 dire
tly to the in-dividual planar segments is the individually estimated homographies might
ause the shared edges of the graphi
al obje
ts to no longer align when pro-je
ted. Hen
e, this se
tion looks at how to estimate the individual surfa
ehomographies subje
t to the 
onstraint that shared model verti
es are 
oin-
ident in the proje
ted image (whi
h also guarantees that the shared edgesare 
oin
ident).Formally, let M1 = f
1(�1)g and M2 = f
2(�2)g, �i 2 [0::1℄ be twoplanar 
urves (represented homogeneously) mapped by the homographiesT1 and T2 into a 
ommon image plane 
ontaining image feature pointsS1 = fp11;p12; : : :p1n1g and S2 = fp21;p22; : : :p2n2g. (See Figure 3.) Weassume that the image feature points have already been segmented into sets
orresponding to the appropriate graphi
al obje
t, by some pro
ess not 
on-sidered here. Some feature points of S1 and S2 will be shared; these are theverti
es and 
urves 
ommon to both sets.

T 1

c 2 ( λ )

c1 ( λ )
a

b

S
S

1

2

a’

b’

T 2

Fig. 3. Proje
tion of 2 non-
oplaner 
urves 
i(�) via homographies Ti into a 
om-mon image mapping shared point a to a0 and b to b0.Suppose that 
1(�1k) and 
2(�2k), k = 1::K, map to the same image point.For example, these are the verti
es at the end of a shared line segment.Then, the problem 
an be formulated as: Find the T1 and T2 that min-imizes the mapping distan
e (using dp()) of f
1(�1)g and f
2(�2)g onto S1and S2 respe
tively su
h that�kT1
1(�1k) = T2
2(�2k)�k are new unknown variables for the di�eren
e in homogeneous s
aling.To solve the problem, we eliminate the �k to form six new s
alar equalitiesas follows. Let T ji be the jth row of homography Ti. Then isolating �k in the
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onstraints produ
es: �k = Tj2
2(�2k)Tj1
1(�1k)for shared points k = 1::K and homogeneous 
oordinates j = 1; 2; 3. One ofj = 1; 2; 3 
an be derived from the other two so we just use j = 1; 2. Equatingthese for �k and simplifying gives the 
onstraints:Cjk(T1;T2) = [(Tj2
2(�2k))(T3�j1 
1(�1k))� (T3�j2 
2(�2k))(Tj1
1(�1k))℄2The goal is to estimate T1 and T2 that minimizesE(T1;T2) = n1Xi=1 dp(T1�1p1i;M1) + n2Xi=1 dp(T2�1p2i;M2)subje
t to Cjk(T1;T2) = 0 for k = 1::K and j = 1; 2.We solve this minimization using Werghi's te
hnique [13℄ for multiply
onstrained minimization. De�ne a 
ost fun
tionF (�;T1;T2) = E(T1;T2) + � Xk=1::K;j=1;2Cjk(T1;T2)Then we:1. Compute initial estimates of T1[0℄ and T2[0℄ independently using thePICP method of Se
tion 3.2. Set � to a small value (1.0).3. Re
ompute 
orresponden
es between 
losest model and data edge points,as needed for 
omputing E().4. Minimize F () using a standard numeri
al method with T1[t�1℄ and T2[t�1℄as the initial estimate to get T1[t℄ and T2[t℄5. In
rease � (50%) and return to step 3 until the desired degree of 
onstraintis a
hieved. In this 
ase, we want T1
1(�1i) and T2
2(�2i), i = 1; 2 to liewithin 0.1 pixel.If more than two planar segments are in the model, the method generalizesby adding extra 
onstraints for ea
h shared point.4.1 EvaluationTo evaluate the 
onstrained proje
tion method, we show �rst some perfor-man
e results using syntheti
 images, and then an example with a real image.The syntheti
 results used two 
onstrained semi
ir
les linked perpendi
-ularly as seen in Figure 4a. The individual semi
ir
le edges are registeredto the image edges shown in Figure 4b, and then 
onstrained to share thesame straight edge. The resulting 
onstrained mapping proje
ts the model



10 Robert B. Fisheredges onto the image (Figure 4
). This problem was 
onstrained in about 15minutes using Matlab on a 270 Mhz Sun.Regenerating this image with di�erent image noise (� = 10) 5 times ea
hover a tra
king sequen
e with 10 positions gave an mean average boundarydistan
e error of 0.53 pixels, with standard deviation 0.087 and maximumaverage error of 0.71 pixels. Thus, the pro
ess is stable below the level ofinteger pixel edge data to image noise.
Fig. 4. Test images for 3D registration, showing: a) the raw image, b) the edgesused for image 
apture 
) the two registered semi
ir
le models proje
ted onto theraw image.We also applied the 
onstraint method to a real image, namely for tra
kinga real apple wedge somewhat similar to the syntheti
 example. Figure 5 showsa) one raw image, b) the edges from that image, 
) the apple model �tted toboth sides of the sli
e and d) the 
orresponding frame from result sequen
ewith the model proje
ted onto the image.To demonstrate the performan
e on a real video sequen
e, observe the ani-mated GIF at URL: http://www.dai.ed.a
.uk/homes/rbf/PICP/pi
p.htm.Here, the mat
hed edges are not as reliably and stably found, nor does theapple have the spheri
al wedge as in the syntheti
 example. Thus, the tra
k-ing is reasonable but not as stable; however, the 
onstraint is always satis�ed.Be
ause of the optimization step, the 
omputation took about 10 minutes perimage (again in Matlab on a 270 Mhz Sun). This te
hnique is easily appli
ableto ar
hite
tural stru
tures be
ause of the many 
onne
ted planes.5 Con
lusionsThis paper has introdu
ed the PICP registration algorithm that a
ts in pro-je
tive, rather than Eu
lidean spa
e. One of the key advantages of the algo-rithm is that it does not require expli
it feature point 
orresponden
es. Withthis algorithm, we showed that it 
an be used for more stable registrationof augmented reality graphi
s on top of video, by dire
tly registering to theimage edges rather than via a 3D pose estimation. Further, we extended thesingle plane proje
tion method to in
orporate multiple 
onstrained planes,
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a) b)

) d)Fig. 5. Snapshot of the video transfer onto a 
urved boundary. a) One frame (13)of the original sequen
e (60 frames), b) the edges that are being �t by the twoinstan
es of the model, 
) the transfer model and d) the 
orresponding frame fromresult sequen
e.thus allowing simultaneous registration of 3D stru
tures. Both of the te
h-niques presented here (proje
tive point alignment and 
onstraints in align-ment) have mu
h potential in AR appli
ations, parti
ularly in man-madeenvironments be
ause of their many individual and joined planar stru
tures.The 
onstraint linkage approa
h 
ould potentially be used in more generalAR appli
ations (su
h as ensuring obje
ts lie on a groundplane or road), orwhere the proje
ted obje
t has independently registerable sub
omponents,but the PICP approa
h is limited to appli
ations where the proje
tion ma-trix 
an be dire
tly estimated from the point 
orresponden
es. Note that the
orresponding points need not be real features, but 
ould be de�ned by e.g.lo
al texture distributions.If the registered feature is mat
hed to an o

luding 
ontour, then the ap-proa
h will fail as the transformation requires exa
t 
orresponden
es. How-ever, if the s
ene has some other features, su
h as internal markings, that 
anbe used for registration, then estimating the homography might be possible.If 
ontours are ambiguous, thus produ
ing alternative 
orresponden
es, thenhigher level pro
essing would be needed to resolve the ambiguity. This is a
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ommon failing of ICP-like algorithms, whi
h depend on being initially 
loseenough to a solution that 
orre
t 
onvergen
e happens.The iterative method demonstrated here has some similarity to bundle ad-justment [7℄. Bundle adjustment only optimizes the transformation, whereasthe algorithm presented here also optimizes the point 
orresponden
es. Bun-dle adjustment 
an optimize over the whole image sequen
e, whi
h was notdone here. This 
ould be in
orporated here as well, at a 
omputational 
ost.Be
ause of the independent frame transformation estimation, the graphi
s
an still have some residual jitter in ea
h frame. This 
ould be smoothed, e.g.by Kalman �ltering; however, raw video also jitters due to 
apture ele
tron-i
s instability and human jitter during 
apture. Thus, the proje
ted graphi
sneeds to be able to tra
k the a
tual video, rather than an idealized version.A
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