
Monitoring Creatures Great and Small: Computer Vision Systems for
Looking at Grizzly Bears, Fish, and Grasshoppers

Greg Mori Maryam Moslemi Naeini Andrew Rova Payam Sabzmeydani
Jens Wawerla

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

1 Introduction
For natural scientists, gathering data can be a labour-

intensive and expensive process. As an example, tra-
ditional techniques for population-scale data collection
are marking and recapturing individual animals or per-
forming aerial counts. As an alternative or complement
to these methods, the use of camera systems, which col-
lect information largely in the absence of human opera-
tors, is increasing in popularity. However, cameras gen-
erate large amounts of data, which are typically sorted
manually to collect the required data. As computer vi-
sion researchers, there is a great opportunity to aid nat-
ural scientists by automating parts of the video analysis
process.

The Scientific Data Acquisition, Transportation and
Storage (SDATS) project has the aim of researching
methods of reducing the expense and manual labour in-
volved in gathering scientific data in the field. SDATS
projects include developing a system, deployed near the
arctic circle, for recording videos and automatically de-
tecting grizzly bears [3], stereo tracking of grasshop-
pers in cages and attempting to recognize their actions
by analyzing their 3D movement [1], and developing
a method for automatically determining the species of
fish from images collected with an underwater video
camera [2]. In this paper we summarize these three pre-
vious SDATS projects1 and provide a discussion.

2 BearCam: Monitoring Grizzly Bears
The BearCam is a camera system deployed in Fall

2005 to monitor the behaviour of grizzly bears at the
Ni’iinlii Njik (Fishing Branch) Park. The system aids
biologists monitoring grizzly bear behaviour at a new
ecotourist destination. The main objective of the biolo-
gists’ study was to assess whether ecotourists negatively
affected grizzly bear feeding behaviour at this salmon
spawning stream. This camera system served two pur-
poses: 1) to increase the observation area without ad-
ditional observers or without reducing the researcher’s

1We would like to acknowledge our natural scientist collaborators
Lawrence Dill, Kristina Rothley, Shelley Marshall, and Greg Dutton.

time at the primary observation area, and 2) to record
bear behaviour in an area of minimal ecotourist activ-
ity without requiring the researcher’s physical presence,
which would effectively render this no longer a minimal
human activity area.

This park is a remote wilderness area in the Yukon,
Canada, just below the arctic circle. The only man-
made structures are a handful of wooden huts and elec-
tricity is provided by a small gas-powered generator.
We developed a camera system for operating in these
challenging conditions. We also developed a novel
“motion shapelet” algorithm for automatically detect-
ing bears in the video captured by this camera system.

2.1 Detecting Bears
Our system monitors the river site for 4 hours per

day. Biologists require enormous amounts of time to
manually search these videos for bear activity. For this
reason, we developed an algorithm for automatically
detecting the presence of bears in the recorded video.

In our bear detection algorithm, a set of informative
mid-level features is automatically learned. These mid-
level features, called shapelet features, are constructed
from low-level features. Shapelet features which best
discriminate between object and non-object classes are
built. The AdaBoost algorithm is used as the core com-
putational routine, using it once to build the shapelet
features, and again to build a final classifier from these
shapelets.

In our work, we use background differences and gra-
dient responses as our lowest level features. We use the
absolute value of gradient responses, computed in four
different directions. The absolute value is used because
the sign of the gradient is uninformative due to varying
background colours. To reduce the influence of small
spatial shifts in the detection window, we locally aver-
age each of these cues by convolving the responses with
a box filter.

We define a motion shapelet feature as a weighted
combination of low-level features. Each low-level fea-
ture consists of a location, a direction or motion, and
a strength. Each motion shapelet feature will cover a



(a) (b) (c) (d)

Figure 1: Illustration of learned motion shapelets. Col-
umn (a) shows low-level gradient features with positive
parity, (b) those with negative parity. Column (c) shows
motion features with positive parity, (d) those with neg-
ative parity.

small sub-window of the detection window, and its low-
level features are chosen from that sub-window.

We consider k sub-windows wi ∈ W , i = 1, . . . , k
inside our detection window. We build a separate mid-
level motion shapelet feature for each sub-window wi.
To do this, we collect all the low-level features ft(x)
that are inside that sub-window and consider decision
stumps based on them as potential weak classifiers of
an AdaBoost run: ht(x) = ptft(x) < ptθt where
θt ∈ (−∞,∞) is the classification threshold of the
weak classifier and pt = ±1 is a parity for the inequal-
ity sign.

After creating these motion shapelet features, a sec-
ond run of AdaBoost over all of them is used to build a
final classifier.

We visualize the results of the motion shapelet learn-
ing algorithm in Figure 1, which shows the sum of
all the low-level features selected inside all the mo-
tion shapelet features over the entire detection window.
The selected low-level features are separated in two
groups according to their classification parity. This par-
ity shows whether the selected feature is part of a posi-
tive (bear) or negative (non-bear) discriminating motion
shapelet feature.

2.2 Results
We performed experiments comparing the use of dif-

ferent parameter settings and a comparison of shape and
motion features in isolation and together. Space does
not permit a full description of these experiments. We
performed tests on whole video frames, a realistic test
of the final system. We ran our detector in a “window-
scanning” fashion, sliding it across the input frame and
running our classifier at each location.

For training, we marked 451 windows containing
bears from 6 different clips of video as our positive set,
and extracted non-bear windows from the same videos.
A test set from a separate set of 4 video clips was cre-
ated. For the purposes of this experiment, an image is
considered a true positive if it contains at least one bear,
and a false positive if it contains no bears. 405 frames
containing at least one bear were labeled as our positive

Figure 2: The two types of fish to be classified: Striped
Trumpeter (l), Western Butterfish (r)

set, while 16000 frames not containing bears comprise
the negative set.

We marked a region of interest (ROI) within the
video, in order to ignore areas where bears cannot ap-
pear. We ran our detector over each image, and kept the
single highest-valued response over all detection win-
dows within the ROI as the response for each image.

This method proves effective at automatically detect-
ing the occurrence of bears For example, we can detect
76% of the frames containing bears at 0.001 false posi-
tive images per image examined, or 88% at 0.01. Such
a detection rate would be useful for building an interac-
tive system, where a user could be guided to frames in
the video where bears are likely to be present.

3 Fish Species Recognition
Quantifying the number of fish in a local body of

water is of interest for applications such as guiding fish-
eries management, evaluating the ecological impact of
dams, and managing commercial fish farms. Going be-
yond an aggregate count of aquatic animals, informa-
tion about the distribution of specific species of fish can
assist biologists studying issues such as food availabil-
ity and predator-prey relationships. Applications like
these motivate the development of methods for collect-
ing biological data underwater.

In our work, we only address the species recognition
problem, and assume that a pre-processing step has ob-
tained bounding boxes containing individual fish. Fig. 2
shows examples of the two species of fish we attempt to
discriminate between.

We approach this task as a deformable template
matching problem followed by the application of a clas-
sifier based on texture features. Aligning the images be-
fore classifying by appearance provides a demonstrable
increase in performance.

3.1 Deformable Template Matching
For each of the two classes, we repeat the following

steps. First, a representative template image is chosen.
A set of interest points, sampled from Canny edge de-
tection results, is chosen on the template. These interest
points are connected into a minimum spanning tree.

Correspondence between a new test image and a
template is performed by finding a configuration which



minimizes a cost function defined using these interest
points and tree. If a tree has n vertices {v1, . . . , vn}
and an edge (vi, vj) ∈ E for each pair of connected
vertices, then a configuration L = (l1, . . . , ln) gives an
instance of an object, where each li specifies the loca-
tion of part vi. Then, the best match of a template to a
test image is

L∗ = arg min
L

(
n∑
i=1

mi(li)+
∑

(vi,vj)∈E

dij(li, lj)

)
(1)

where mi(li) is a matching cost between features in the
model and query image at location li, and dij(li, lj) is
the amount that model edge (vi, vj) is changed when
vertex vi is located at li and vj is placed at lj . In our
method, mi(li) is a matching cost based on shape con-
texts and dij(li, lj) = ‖(lj − li)− (lmj − lmi )‖2, with lmk
denoting the location of vertex vk in the model tree.
3.2 Results

Once the query images have been transformed into
estimated alignment with the template they are pro-
cessed to extract texture properties. First, each image
is convolved with a 3-pixel-tall vertical central differ-
ence kernel. The motivation for vertical derivative fil-
tering is that after successful warping, the vertical di-
rection captures the most image information. Next, the
filter response is half-wave rectified to avoid cancella-
tion during subsequent spatial aggregation. Each half-
wave component of the filter response is summed into
7-pixel square sections. Finally, all of the combined fil-
ter responses are concatenated into a feature vector as
input to an SVM.

For each species of fish being classified 160 im-
ages were manually cropped from frames of underwa-
ter video. In these 320 images, the fish appear at dif-
ferent angular poses although all of their heads face
the right. All images were converted to grayscale, de-
interlaced and resized to 50 × 100 pixels, empirically
chosen based on the size of the majority of fish in the
images. Half of these data were used for training, and
half for testing.

Experiments were performed with linear and poly-
nomial SVM kernels. Linear kernels obtained 84%
(no warp) and 90% (warping) classification, polynomial
81% (no warp) and 86% (warping). With both, warping
the fish into alignment with a template improved classi-
fication performance.

4 Clustering Grasshopper Actions
Our biologist partners are interested in analyzing the

behavior of grasshoppers with a particular focus on
predator-prey relationships. An adult grasshopper is
placed in an enclosure with one of its natural predators,
a juvenile spider. Though the spider is immature, and

Figure 3: Experimental setup for grasshopper monitor-
ing. A “time-lapse” visualization of a portion of video
is used – only one grasshopper is present in the enclo-
sure. A stereo pair of cameras is used, only one image
is shown here.

hence harmless, the grasshopper will still exhibit be-
haviour similar to that it would in the presence of a real
threat. The actions of the grasshopper in response to
this threat can be studied under a range of environment
variables – temperature, illumination level, presence of
food source, etc.

As is commonly the case, many hours of data need
to be collected in such a study, and an automated sys-
tem for collecting these data would be very useful. We
have developed a novel application of computer vision
methods to this problem in order to track grasshoppers
and form clusters of similar “actions.”

Tracking this insect is difficult due to its small size
and its colour variation (dorsal / ventral). In addition,
the insect makes occasional very swift jumps which are
difficult to track. In consultation with our biologist part-
ners, three walls of the enclosure were painted pink,
with a glass face left for viewing. This overcame these
difficulties, and a simple image differencing scheme is
used to detect and track the grasshopper. Figure 3 de-
picts this experimental setup.

4.1 Approach
Our biologist partners are particularly interested

in movement rates and location preferences of the
grasshopper under the different experimental condi-
tions. Since we require 3D information for these data,
we use a calibrated stereo pair of cameras to track the
location of the grasshopper in 3D.

Summary statistics on location or movement rates
can be computed given these 3D tracks. However, these
do not tell the whole story – for example a few sudden
jumps over the course of an experiment would not be
obviously different from a slow meandering around the
enclosure. The biologists also wish to obtain a finer-
grained analysis of the grasshoppers’ actions.

To this end, we attempted to automatically group



segments of these tracks into similar types of motions,
or perform clustering into primitive action types. These
clusters of similar motion could then be presented to a
user who could use them to gain insight into the be-
haviour of the grasshopper over the experiment.

We construct a motion feature from windows of con-
tiguous frames within the 3D track of the grasshop-
per. A Gaussian filter is used to remove the noise in
the tracker output. Then for each non-overlapping win-
dow of size W of 3D position of the object we com-
pute the difference between xt (location of grasshop-
per in 3D at time t) and xt+δt for each of the frames
in this window. So our feature vector Vt for window
of size W of 3D coordinates sequence in time will be
Vt = {|xk − xk+δt

| : k = t, t+ 1, . . . , t+W}.
We then perform spectral clustering on these W di-

mensional feature vectors. For our application, there
will be thousands of windows of frames, so construct-
ing, storing, and computing the eigenvectors of the ma-
trix needed for spectral clustering will be intractable. To
overcome this limitation, we apply the Nystrom exten-
sion which provides a method for extrapolating eigen-
vectors computed on a portion to the entire matrix.

4.2 Results
We tested the presented algorithm on 16500 frames

of a video of one grasshopper. Stereo tracking, motion
feature computation, and spectral clustering of windows
of frames are all performed. We performed experiments
with different numbers of clusters. In order to verify the
accuracy of our clustering, we manually marked ground
truth labelling of these frames into 3 classes of distinct
actions – standing still, walking and jumping.

The cluster purity, or percentage of frames which be-
long to the dominant type in each cluster, is relatively
high – near 90% for all numbers of clusters in the range
3-8. The “jumping” action proved the most difficult,
due to its rarity. However, with a sufficient number of
clusters (more than 5) approximately 80% of “jumping”
frames are placed in a “jumping” cluster.

We have also experimented with a preliminary
method for visualizing the entire video based on these
clustering results, grouping together snippets of video
which are placed in the same cluster.

5 Discussion
In this paper we have described three applications

of computer vision to biological data collection tasks
in different domains. Our experience on these projects
has convinced us that a symbiotic relationship between
computer vision researchers and natural scientist part-
ners exists.

A vast number of research projects in the natural sci-
ences require monotonous manual labour for data col-
lection. Gathering large amounts of data can be ex-

pensive and error-prone due to its tedium. Providing
these scientists with data that has been automatically
processed by computer vision algorithms would be of
great benefit. It would be possible to conduct larger-
scale studies and free up researchers to focus on other
tasks.

For computer vision researchers, the natural science
domain provides challenging real-world datasets to test
the capabilities of vision algorithms. These datasets are
often collected outside the laboratory and are subject to
real-world lighting and other imaging difficulties. Fur-
ther, the ground-truth definitions, and the decisions on
which objects to track or recognize are in the hands of
natural scientists. This separation of performance mea-
surement from algorithm design is advantageous.

We also believe that progress in the “looking at an-
imals” domain will advance the state of the art in the
“looking at people” domain. Many of the same prob-
lems exist in the two domains. For example, in the
fish species counting problem we made attempts to au-
tomate the fish detection problem. However, these at-
tempts were confounded by shifting lighting conditions
underwater due to waves, large amounts of sediment
and debris floating in the water, low colour contrast be-
tween the fish species and the water/sand, large varia-
tions in the image sizes of fish, and focus problems with
the camera. All of these problems are present in some
form in the surveillance of people.

The bear detection algorithm similarly suffered from
these difficulties. The false positives for bear detection
are often found in textured areas, such as those on the
banks of the river, or regions of the water, which con-
tain large amounts of gradient information. In addition,
areas of motion, such as birds or ripples in the water,
also lead to false positive detections.

In some cases, such as the grasshopper action prob-
lem, it is possible to instrument the environment so as
not to affect the behaviour of the subject. Even in this
setting though, problems remain. Our attempt at au-
tomatically clustering the motions of the grasshopper
were an initial foray into attempting to obtain some
primitive “action” vocabulary. This is also an open
problem in the study of human movement.
References
[1] M. M. Naeini, G. Dutton, K. Rothley, and G. Mori. Action

recognition of insects using spectral clustering. In IAPR
Conf. on Machine Vision Applications, 2007.

[2] A. Rova, G. Mori, and L. M. Dill. One fish, two fish, but-
terfish, trumpeter: Recognizing fish in underwater video.
In IAPR Conf. on Machine Vision Applications, 2007.

[3] J. Wawerla, S. Marshall, G. Mori, K. Rothley, and
P. Sabzmeydani. Bearcam: Automated wildlife monitor-
ing at the arctic circle. J. of Machine Vision Applications,
2008. (to appear).


