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Abstract

Many laboratories work with the fruit fly
(Drosophila melanogaster) as the ideal model or-
ganism for performing genetic studies. The short
life cycle, low maintenance, and controllable popu-
lation size make it ideal for efficient analysis. How-
ever, dealing with the shear volume of assays in a
consistent, robust and reliable manner is a major
challenge. In this work we present an approach to
improve and automate this process using Computer
Vision based techniques. We show how this can be
performed to extract relevant behavioural statistics
which can then be compared favourably against ex-
pert human annotations.

1 Introduction

Laboratories engaged in genetic studies perform
many hundreds of assays in order to link targeted
mutations with phenotypical development and be-
haviour. These are often carried out by human ob-
servers who must watch and annotate hours of video
footage. Such an approach is consequently tedious
and prone to error - with no real consistency between
observers, nor across labs. This in turn makes it
harder to reconcile results and compare studies. A
far better solution would be to automatically anal-
yse incoming video data to determine and tag rele-
vant information, and so improve both the through-
put and standardise the output of the assays. This
motivation has recently led to commercial systems
[1], but still requires expert knowledge to tailor and
set-up for specific behaviours.

The fruit fly (Drosophila melanogaster) is widely
used as a model organism in part due to the advan-
tages it has of a short life-cycle and ease of mainte-
nance. Many studies of it focus of sex-specific be-
haviour [2] which forms a useful distinct subset of
recognisable interactions. Quantifying the extent to
which these occur forms the basis of a number of de-
rived statistics. Of particular interest is the courtship
index (CI) which is a measurement of the fraction
of the observed trial during which time the male ac-
tively courts the female (or any other target). To a
greater extent this is defined mostly by the orien-
tation of the flies and the degree of following that
occurs. It can include recognising other behaviours
such as wing vibration, which may indicate the in-
tensity of the event - but these subtleties can be very
hard to discern. This is why CI based on simple rel-
ative positions is generally accepted and used.

Tracking such small and mobile objects as
Drosophila presents many challenges. The scale of
the problem can broadly be constrained by the na-
ture and extent of the experimental space. For exam-
ple [3] look to track the in-flight motion using stereo
infra-red cameras in a highly controlled environment
to successfully track the actual trajectory of flies in
response to their visual landscape. At the other end
of the spectrum, other studies investigate fly motion
dynamics by relying on tethered flies, such as [4]
who have looked at the high-speed possibilities (at
6000Hz) of analysing flight by using advanced Com-
puter Vision techniques to track the individual wings
beats.

Between these extremes lie the smaller type of
assay in which the flies are generally not captured
in-flight, but are instead captured closer up at ef-
fectively higher-resolution to enable unique features



to be determined. Work by [5] looked at a com-
plete system for resolving location and behaviours
in the Mexican fruit fly (Anastrepha ludens). They
used a smaller scale stereo system to first localise
the flies (distances relative to other regions contain-
ing food, water, etc.) and to also extract a number of
image based features based on eigen-analysis. The
combined feature vector was then used with a hy-
brid data fusion and K-Nearest-Neighbour classifier
to achieve reasonable (94%) accuracy at determin-
ing behaviours from the set oft: [resting, walking,
eating, drinking, flying, ovipositing].

Related research in directly determining the CI
of courting flies was presented in our earlier work
[6]. The significance of that research was that mul-
tiple flies (and their interaction) were considered,
which made the task considerably more difficult -
in that the flies can crossover and occlude one an-
other. Despite these issues, successful tracking us-
ing a bounding box based segmentation algorithm
performed very well, as the flies could be clearly
differentiated in most cases, with their general ori-
entation calculated simply as the line from the cen-
tre of mass to the furthermost point on the outline.
One of the major problems still remained in resolv-
ing which end - head or tail - was which (an issue
directly tacked by our work). Further work that can
can resolve a greater number of targets and inter-
actions must rely on more advanced techniques for
multiple tracking, such as the work performed on
desert ants (Aphaenogaster cockerelli) by [7] using
a sophisticated particle filtering approach.

2 Approach
The primary contribution of our work is to improve
the robustness of automatic fly courtship analysis, by
considering the additional properties associated with
the flies’ motion. The main problems to overcome
with this are: (i) resolving the head-tail “flip” that
can occur when considering an ambiguous extracted
fly contour, and (ii) retaining the track on exactly the
same fly throughout the sequence. Given successful
tracking, we then classify the CI based on the rela-
tive features between the flies.

Building on earlier work (based on [8] and [6])
we first extract the outline contours of the two
flies. This follows a fairly standard image process-
ing pipeline of first masking a rectangular region of

interest containing the flies, followed by a Gaussian
3×3 smoothing operation and mean thresholding to
reveal candidate blobs. These are cleaned to remove
speckling by a set of morphological erode and di-
late operations, after which the remaining blobs are
described by ellipse fitting in terms of major/minor
axis length and area. The best blobs are are then
filtered by considering their size and compactness
(Figure 1).
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Figure 1. Segmentation by smoothing
(a), thresholding (b), cleaning and filter-
ing by size/compactness (c).

Next, to resolve the orientation of these fly blobs
we calculate the angle of the ellipse major axis to
the x-axis. This is, however, ambiguous - in that it
can have two values depending on which way the fly
is pointing. It was decided that rather than seeking
to discover which end was the head via image pro-
cessing, to instead exploit the fact that the flies gen-
erally never move backwards and turn consistently



(i.e. do not suddenly invert their direction). The
algorithm we use to determine this orientation thus
considers the motion and change in direction from
the previous time-step. If this effectively results in a
instantaneous reversal of the fly direction, or back-
ward motion, then this registers as a head-tail “flip”
to be corrected.

Additionally, in order to retain the correct track-
ing of individual flies we consider the circumstances
that can occur between candidate blobs over time,
especially in the case of occlusion where only a sin-
gle candidate blob is found. Our algorithm identifies
3 possibilities:

• One-to-one: this is where a fly blob matches
the previous frame with an exact correspondence.
Note that the blob may contain more than two
flies, in which case we should already know the
number of targets contained in the blob from
tracking previous merge operations. If there a sin-
gle target in the blob then we simple extract the
features directly. If there is more than one target
contained in the blob we must resolve the features.
This is performed by means of the algorithm pre-
sented in [6].

• Merge: this is where N blobs in the previous
frame merge to become a single blob in the cur-
rent frame. Here we record all the flies as con-
tained within the blob and attempt to uniquely re-
solve their features as mentioned above.

• Split: this is where one blob in the previous frame
splits in to N blobs in the current frame. The as-
signment of blobs to targets is carried out using
the following algorithm: for each target extrapo-
late predicted current position using a linear ex-
trapolation of the previous position velocity, and
acceleration. Then assign each target to the clos-
est current blob using the predicted position, with
the constraint that each blob must contain at least
one target. In addition to this measure we look
at the length of the period of occlusion that has
occurred for an target (i.e. the number of frames
between a merge and split involving a particular
target). If this is within some threshold then we
assume that the flies have run over the top of each
other (as is common) and we allocate the targets
using the position and velocity when the occlusion
began.

Finally, the features most representative of court-
ing can be chosen based on courtship ethograms
given in the literature (see i.e. [9]). The most repre-
sentative features were found to be the distance be-
tween the two flies and the orientation of the male
with respect to the female. By building these rel-
ative features from the tracking of individual flies,
we are able to automatically classify the CI using
decision-tree based supervised learning techniques.

3 Experimentation
Our data was captured from a grayscale camera cap-
turing at 320 × 240 pixels at 10f.p.s. The male
and female flies were loaded into a 2.5cm diameter
clear plastic arena (0.5cm in height) with a movable
wall to separate them. At the start of the experiment
the wall was removed and the flies allowed to in-
teract for 5 minute from which we then extract a 1
minute example (600 frames in length). In total we
performed 9 trials (with an additional trial created
by rotating one of the sequences by 180 degrees).
These same trial videos were also compiled together
to form a single 10 minute video that was manually
annotated by 10 expert observers for the CI. Exam-
ple frames are shown in Figure 2.

The basic tracking solution was able to success-
fully segment and determine the location of candi-
date fly blobs. However, as expected it confused ori-
entation in 54% of the extracted flies. By employing
the orientation algorithm we were then able to cor-
rect this down to 10%. Additional manual correc-
tion was then necessary to resolve these final “flips”
and to correct for the times where the labelling be-
tween male and female were switched due to occlu-
sion (this happened for 29% of the frames in the cor-
rected data).

From the 10 expert observers we derive a sin-
gle set of CI annotations by discarding annotations
where less than 3 observers agree. Using these ag-
gregate annotations, we then train the decision tree
using data from 7 minutes of the video and test
against the remaining 2 minutes (excluding the ro-
tated video), achieving 83% accuracy against the ag-
gregated annotations. This is well within the inter-
expert variability of the annotations. A benefit of us-
ing the decision tree as a classifier is that the inferred
rules are readable, so can also be directly validated
by the domain experts.
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Figure 2. Example frames showing
separate flies (a) occluded flies (b) and
courting flies (c).

4 Conclusion

In this work we have presented Computer Vision ap-
proach that attempts to automate and determine the
courtship index between pairings of Drosophila. We
show how it is possible to generate reasonably re-
liable statistics for the CI. However, while this im-
proves the current state-of-the-art, but does not yet
completely resolve the deceptively simplistic tasks
of orientation and occlusion.

For future work we are to consider more robust
statistical means of tracking over occlusion and in
retaining a fix on the head of the fly. Furthermore,
assessment of the performance of the fly tracking
in relation to the annotations of the experts raises a
number interesting of open issues regarding the con-
sistency and variability of correctly marked-up data.
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