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1. Introduction and Overview

A variety of animal species carry permanent markings on
their coats, be that for the purpose of survival-boosting cam-
ouflage [4, 14] or signalling [5, 8]. In many cases, these
prominently visible surface patterns are composed of spots
and stripes, which are suspected to originate from reaction-
diffusion (RD) systems first described byTuring [15]. As a
consequence of this deterministic, yet chaotic formation pro-
cess, resulting markings often differ significantly from indi-
vidual to individual while following a wider theme typical
for a species [11]. Figure1 illustrates the extent of observ-
able coat variations in two sample species: African penguins
and plains zebras.

In this paper we describe minutiae detection in Turing
patterns based on the detection of phase curls. The tech-
nique compactly captures individuality of RD patterns by
robustly localising and typing sparse phase singularities.
The foundations of the approach are discussed in detail and
we give theoretical and experimental evidence for a generic
applicability as a tool for individual animal identification.
Finally, we briefly discuss real-world applications that have
utilised the technique and can provide extended evaluations.

Figure 1: Coats of African Penguins and Plains Zebras.The
images show two species that develop highly individual markings
while following a species-wide, visual theme. Note the unique dis-
tributions of line bifurcations on the zebras and of chest spots on
the penguins.

2. Properties of Turing-patterned Coats

In order to expose common properties of animal patterns
evolving under reaction-diffusion, we first investigate a
generic model of animal skin described by a spatiotemporal,
two-channel image functionI : (x, t) → (a, b) that maps

Figure 2: Evolution of a Reaction-Diffusion System. Time
series of a reaction-diffusion system simulation on a closed
128 × 128 domain I. Note a transition towards equally sized
spots, where the dominant spatial frequencyf and its harmonics
induce concentric rings in the Fourier spectrum.(parameters:

ga =
k1a
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b
−k2a+k1k3, gb = k4a

2−k5b+k6, γ = 1, δ = 10, k1 =

0.05, k2 = 0.045, k3 = k6 = 0, k4 = 0.0004, k5 = 0.2)

from a positionx on a surface patch and a timet of obser-
vation to two local morphogene1 concentrationsa and b.
These concentrations are interpreted as facilitators of
pigmentation. As outlined byMurray [11], the dynamics of
such RD systems can be described by the combined effects
of morphogene specific reaction kineticsga : (a, b) → a
and gb : (a, b) → b, plus continuously changing state
diffusion governed byFick’s Second Law[6], yielding
a partial differential form:
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whereγ is a scale parameter andδ is the diffusion ratio.
Figure 2 visualises an evolution of non-trivial patterns in
such a system. According toTuring’s [15] fundamental
finding, non-trivial patterns can evolve on this domainI
if and only if the system converges fort → ∞ towards
a steady state in the absence of diffusion and diverges in
its presence. Using linear stability analysis,Murray [10]
condenses this into four inequations:

tr(B) < 0, |B| > 0, F > 0, F 2 − 4δ ∙ |B| > 0

F = δ dga
da
+ dgb
db
, B =

[
dga
da

dga
db

dgb
da

dgb
db

]
(2)

whereB is the Jacobian andF holds a measure for the
diffusion-balanced strength of reaction genetics. These con-
straints circumscribe a compact subspace in the domain of
free parameters; theTuring Spacevisualised in Figure3.

1Turing [15] employs the term ‘morphogenes’ (morphe=form, ge-
nea=generation) for the chemicals involved in pattern formation.



Figure 3:Visualisation of the Turing Space. The image shows
locally occurring patterns superimposed on the pattern-supporting
subspace (Turing Space) of the parameter space.[Simulation via

Gray-Scott kinetics [9], specifically that isga = k1(1 − a) + ab2 and

gb = b(k1 + k2)− ab2 under a diffusion ratio ofδ=4]

Notice that spot or line patterns in this domain show two
system-intrinsic properties:

1) There is a specificbandf of spatial frequenciesthat
is amplified in Turing patterns. As derived in [11], this
dominant band can be described quantitatively as:

γL1/(8δπ
2) < f2 < γL2/(8δπ

2) (3)

where theL1/2 = F ±
√
F 2 − 4δ|B| represent the two

zero crossings of the quadratic dispersion relation. Note that
the band is clearly visible in the Fourier spectrum (Figure2)
and that, despite disproportional growth effectsafter pattern
fixation (see Figure4), the band remains widely intact over
local regions. Thus, features of Turing patterns are confined
in spectral bands around a locally dominant frequencyfx,
known a priori. This property significantly limits the search
space for any practical extraction of local features caused
by reaction-diffusion.

Figure 4: Growth-related Differences in Zebra Species.
Growth after pattern lay-down promotes locally variable dominant
pattern frequenciesf , while topological variance is strongest in re-
gions at body junctions during lay-down (red) and rapid growth
areas (yellow) compared to regions of relative homogeneity (blue).
However, in both cases there exists a locally dominant pattern fre-
quency for every location on the coat.[images based on work in [11]]

2) Turing patterns often exhibitquasi-randomly dis-
tributed minutiae points, more specifically line bifurcations,
line endings and isles. As visualised in Figure5, singulari-
ties can be categorised into distinct minutiae types. Amongst
other properties, these locations constitute sources or sinks
of the local gradient direction field rendering the direction of
the gradient structurally indeterministic, i.e. they are phase
singularities. Morphologically, they resemble pixels of the
skeletonised signal that do not have exactly two neighbours.

Building upon these two properties outlined, we will
now describe a generic minutiae detector able robustly to

Figure 5: Types of Minutiae in Turing Patterns. Occurrences
in areas of high morphogene concentration (H-type shown as
white) and in areas of low concentration (L-type shown as black).
Singularities are often accompanied by singularities of opposite
type at a distance around the dominant frequencyf (indicated
as red discs). Three categories can be observed: 1)bifurcations
where stripes fork, 2)terminationswhere lines end, and 3)isles
where two terminations have fused into a (symmetrical) spot.

construct a visually characteristic fingerprint for Turing-
patterned animals.

3. Phase Curl Detection

As described, the RD structure of the patterns dictates
confining the visual search for minutiae to a spectral band
around a locally dominant frequencyf , and a strictly local
context within the gradient direction field. Starting with a
model for the latter, letΘf represent the low-pass filtered
gradient direction field of the input signalI:

Θf = arctan

(
∂Gf ∗ I
∂y

(
∂Gf ∗ I
∂x

)−1)

(4)

where∗ denotes convolution andGf is a Gaussian low-pass
kernel suppressing the redundant spectrum ofI above
the locally dominant frequencyfx, which is calculated
dynamically over local windows in order to adjust for
differences in local pattern scale in zebra (see Figure6a).
Vector differentiation∇Θf of this field will yield phase
singularities at zero crossings as, for instance, shown by
Bray and Wikswo[1]. However, due to its derivative nature
the operator∇ is sensitive to noise. Since minutiae are
surrounded by prominent partial curls of phase as illustrated
for an isle-type minutiae landmark in Figure6b, we suggest
utilising the entire structural context ofΘf around a
candidate locationx to probe for minutiae.

Figure 6: Dominant Frequency Field and Gradient Direction
Field. (left) Coat pattern patch of a plains zebras and dominant
frequency field holding the strongest local frequencyfx at differ-
ent locationsx of the texture (where the wavelengthλx = 1/fx
is shown in pixels). This fieldfx is homogenous in African
penguins.(right) A spatial phase singularity marks extreme point
at the centre of an isle feature; the surrounding curl of gradient
directionsΘf ;



Curl Detection. In order to test the context of a loca-
tion x for a phase curl, a set ofm phase histogramshx is
constructed by probing the structure of gradient directions
in disc-shaped neighbourhoods. An accumulator arraya(x)
then gathers evidence fromL2-distances between eachn-
bin histogram and the even phase distribution (representing
an ideal curl). Formally, the calculation ofa(x) can be
denoted as:

a(x) = 1−
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︷︸︸︷
m∑

j=1

√√
√
√
√
√
√wj
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n
)2

︸ ︷︷ ︸
bin residual

(5)

whereDjx is a disc-shaped neighbourhood aroundx of ra-
diusj/(2fxm), hjx(i) represents the value of theith bin and
|Djx|/n =

1
n

∑n

i=1
h
j
x(i) is the mean bin value of thejth his-

togram,|.| represents the set cardinality, andwj is a weight-
ing and normalisation term2 that favours close-by evidence
and ensures thata(x) ∈ (0, 1). A single bin value is cal-
culated as the number of neighbourhood locations that have
their gradient direction falling into the band captured by bin

i, that ishjx(i) =
∣
∣
∣
{
d ∈ Djx | i = 1 + b

n Θf (d)
2π c

}∣∣
∣.

This detector is theoretically sound, but basic threshold-
ing of the detector output in real-world examples can pro-
duce missing minutiae in cases where the ‘single dominant
local frequency’ constraint degenerates around bifurcations
(illustrated in Figure7).

4. Type and Topology Constraints

The detectora(x) registers both types (represented as L-
type=black=−1 and H-type=white=1) of landmarks as dis-
tinct maxima. A robust disambiguation between minima and
maxima can be achieved by multiplication with a bandpass-
sensitive blob responseIf , e.g. using a DoG kernel respond-
ing to the dominant bandf .

Type Detection. A specific typeT ∈ {1,−1} of
landmarks (e.g. all L-type features) can then be recognised
via a combined detector functionζ

T
(x):

ζ
T
(x) = (T+12 − T If (x)) a(x). (6)

Figure 8 illustrates resulting images from an application
of ζ

T
(x). The fusion fixes several shortcomings of its con-

stituents: the ‘intensity-blindness’ of the curl detector is bal-
anced and the poor disambiguation performance of DoG be-
tween line endings and line segments due to the radial sym-
metry of the kernel is eliminated.

Topological Constraint. Finally, based on the observa-
tion that minutiae in zebras occur in L-H-type combinations,
a topologically-aware detectortT (x) that can deal with
degenerated bifurcations can be constructed as:

t
T
(x) = ζ

T
(x) maxx̄∈Dx

(
ζ−T (x̄)

)
(7)

2Bin weighting useswj = (M
(1+m−j)
Nj

)2 where the normalisation

constantM = 2
m2+m

balances the importance weights whereas the

Nj = |D
j
x|

√
(n−1)
n

describe the maximal cumulative residual of a his-

togram (i.e. all gradients inDjx aim at the same direction). For the imple-
mentation, free parameters were chosen to bem = λx/2 (no. of different
neighbourhoods) andn = 8 (no. of different histogram bins to resolve
phase).

Figure 7: Curl Detection by Histogramming. (top) Schematic
illustration of the curl detector;(middle) The image shows a
visualisation of the accumulator arraya(x) built from (bottom)the
underlying, original zebra textureI(x) with strong curl maxima
superimposed. Note that a number of bifurcation features depart in
their properties from the dominant frequency assumption, i.e. the
width of contributing stripes varies greatly. As a result, features
are missing or misplaced. For instance, the three black bifurcations
at the body centre are not detected whilst their counterparts (i.e.
white stripe terminations) are found. Topological pairing con-
siderations help overcome the problem of degenerated bifurcations.

whereDx is a disc-shaped neighbourhood3 aroundx of ra-
dius(1 + ε)/fx.

The technique is robust with respect to noise (see
Figure9 for experimental evidence on penguins). Figure10
depicts example applications of the typed detector to animal
identification from wildlife photographs of African pen-
guins and to plains zebras (using the topological extension).

5. Applications

The technique described has become part of several real-
world animal identification systems including the African
penguin recognition project (www.SpotThePenguin.com),
which provides automated identification of individual
African penguins directly in their habitat [12]. Another
technique for robustly comparing extracted minutiae land-
marks for individual animal identification is, for instance,
published and evaluated in [3]. A review of the latest ap-
proaches to using extracted landmarks for individual iden-
tification against population databases is given in [2]. Re-
cently, a first cross-disciplinary paper of a studycomparing

3The parameterε is empirically set to0.5; it embodies the degree of
natural deviation of pattern elements fromf .



Figure 8: Minutiae Type Recognition (left) and Visualisation
Topological Constraints (right).

Figure 9: Repeatability of Spot Detection under Noise.The
graph shows experimental results conducted on 50 penguin chest
patterns filmed in good lighting conditions. In order to determine
the robustness to noise, Gaussian noise was added at different
levels and the percentage of accurately detected spots (repeatability
rate) as well as the rate of falsely identified landmarks (imposter
rate) were measured.

manual field identification against fully automated penguin
identification using the approach (see Figure10, top) has
been published in [12], outlining options for a potentially
fully automated population monitoring of African penguins.

6. Conclusion

In this paper, we have presented a technique for minu-
tiae extraction that, underpinned by the theoretical anal-
ysis given, is readily applicable to characterising Turing-
patterned animal coats. The procedure yields sparse, typed
sets of minutiae configurations that are characteristic of in-
dividual animals as used in animal ID projects [7, 13, 16],
which currently rely on manual landmark identification.
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