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ABSTRACT
The energy reserves in cows in terms of body fat stores

and mobilization during the different lactation stages have im-
portant implications for milk production, animal well-being,
reproductive performance, and, more generally, farm produc-
tivity. This study explores the possibility to efficiently semi-
automate the process of body condition scoring using images
acquired by commercial low-cost digital cameras. The pro-
posed method has been compared with respect to state-of-
the-art approaches obtaining the best performances for Body
Condition Score evaluation.

1. INTRODUCTION

Body Condition Score (BCS) is widely considered an impor-
tant tool for management of dairy cattle because it is a simple
and repeatable system used to evaluate body fat stores and
estimate cumulative energy balance through visual or tactile
inspection [1]. The score range used by most dairy manage-
ment advisors applies a scale from 1 to 5, with 1 representing
emaciated cows and 5 representing obese cows [2].

Despite the general consensus of dairy producers, nutri-
tionists, consultants, and herd managers, on the benefits of the
BCS evaluation in farms, less than 5% of US dairy farms have
adopted this practice in the production chain. The main rea-
sons that discourage the use of the traditional BCS evaluation
techniques are the lack of computerized reports [3], the sub-
jectivity in the judgment that can lead to different scores for
the same cow under consideration, and the complex, not im-
mediate, and time consuming on-farm training of technicians.
Furthermore, the measurements must be revised frequently on
each cow, augmenting hence the costs for the farms.

Recent studies have addressed the problem of BCS esti-
mation directly from digital images. Ferguson et al. [4] as-
sessed the ability to assign a BCS to a dairy cow from digital
photographs. In that study, BCS could be assessed by human
observers from digital photographs or a video taken from the
rear of a cow at a 0 to 20 degree angle relative to the tail head.
Bewley et al. [5] assessed the feasibility of using digital im-
ages to determine BCS employing a semi-automatic estima-
tion technique from digital images. They considered a single
image of the dorsal view of the cow captured automatically
as cows passed through a weigh station and used 23 anatom-
ical points to define the shape of the body of the cow. These
points, selected in a manual way, were used to compute 15 an-
gles around the hooks, pins, and tailhead, in order to describe
the cow’s contour. Halachmi et al. [6] tested the hypothe-
sis that the body shape of a fatter cow is rounder than that
of a thin cow and, therefore, may better fit a parabolic shape.
The posterior part of the cow was considered and a parabolic

fitting was performed. The absolute differences between the
real body shape and the fitted parabola were used to estimate
BCS.

Despite the progress in this research area, such studies
have not addressed the problem of modeling the shape of
body cows to build a robust descriptor for automatic BCS esti-
mation. Among the visual cues used by human visual system,
the shape provides important information that allows humans
to distinguish between objects of different categories [7] as
well as information that are relevant to understand the differ-
ences in the appearance of an object within a specific class [8].
In computer vision literature, several shape descriptors have
been proposed [7, 8, 9]. More specifically, shape descriptors
based on Principal Component Analysis (PCA) [8] are used
to consider the different variability of anatomical landmarks
with respect to the average shape.

The aim of the present study is to model the shape of the
body of cows by capturing variability with respect to a “pro-
totype” shape properly derived by a set of examples and then
exploiting these variabilities to describe the cows’ body shape
in a reconstructive way. The BCS estimation is performed
after learning a regressor on the kernel PCA space of cow’s
shapes. A further objective was to build a benchmark dataset
useful for dairy cattle research purposes, available through
the Internet 1. The experimental results confirm the effective-
ness of the proposed approach that outperforms all previous
approaches in terms of BCS evaluation accuracy.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the employed model. Section 3 details the
experimental settings, and reports the obtained results. Fi-
nally, conclusions and avenues for further research are given
in Section 4.

2. PROPOSED METHOD

A general scheme of a system for semi-automatic evaluation
of the BCS from digital images is shown in Figure 1. The
system consists of two different blocks: Training and Employ-
ing. The Training block is used to learn the parameters of the
model employed to infer the BCS from features extracted on
digital images. The parameters are learned by using a set of
labeled examples. Once the training is completed the learned
parameters are exploited in the model to infer the BCS of new
samples during employing phase.

Each block is composed by different modules organized
in a sequential pipeline. The Training Block is composed

1The BCS Database is available at: http://iplab.dmi.unict.it/bcs/



Fig. 1. Scheme of the proposed approach.

by three modules used for acquisition of training examples,
for labeling of anatomical features, and for learning the BCS
model parameters. The Acquisition module is used to acquire
images to be used as examples in the learning of the model pa-
rameters. During the acquisition, the experts on visual BCS
assessment should evaluate on site the BCS of the involved
cows in order to build a consistent labeled dataset contain-
ing images with the corresponding BCS. The Labeling mod-
ule is devoted to the labeling of anatomical features on the
acquired digital images by making use of a user-friendly in-
terface that allows the experts to mark the anatomical fea-
tures. The Learning module is devoted to properly learn the
set of parameters involved in the BCS model (e.g., regressor
on anatomical points) making use of the labeled dataset.

The Employing Block is composed by three sequential
modules dedicated respectively to acquire a new unlabeled
sample, to identify the anatomical features through user inter-
vention and to automatically estimate the BCS of the sample
under consideration by using the model parameters obtained
in the learning phase. Both Training and Employing share the
same Hardware and Infrastructures Setup.

2.1. PCA Based Shape Analysis

Shapes are typically represented by locating a finite number
of landmarks on the outline of an object. The mathematical
representation for n landmarks located into the shape of an
object is a 2n-dimensional column vector:

s = [x1, x2, . . . , xn, y1, y2, . . . , yn]
T

=

= [s1, s2, . . . , sn, sn+1, sn+2, . . . , s2n]
T (1)

Let S = {s1, . . . , sm} a set of shapes and S
′

= {s′1, . . . , s
′

m}
the set of shapes obtained through the alignment procedure
(see section 2.3). The mean shape of S

′
can be simply com-

puted as follows:
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1

m

m∑
j=1

s
′
j (2)

The sample mean s′ is the zero-dimensional descriptor of the
dataset S

′
and can be considered as a ”prototype” of the data,

in the sense that it is the most similar to all the sample into
the dataset, but it does not reveal any of the variability in the
data. The modes of variations, the ways in which the points of

the shape tend to move with respect to the average shape, can
be found by applying principal component analysis (PCA) to
the deviations from the mean s′ . In this way a shape can be
considered as a linear combination of basis shape, and the
basis components can be used as descriptor of the shape [8].

2.2. Kernel PCA Based Shape Analysis

Kernel PCA has been successfully used for statistical shape
analysis [10]. Kernel PCA is the extension of PCA to deal
with non-linear cases using the technique of kernel methods.
The basic idea beyond kernel methods is to map the data in
the input space (S

′
in our case) into a high dimensional feature

space via some non-linear function Φ and then apply a linear
method in the augmented space to do further analysis. Let Φ :
R2n → RnΦ be a mapping function acting on the input space
S
′
. Kernel PCA finds the principal axes by diagonalizing the

following matrix:
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Taking into account the nφ × nφ covariance matrix above,
the modes of variation are described by the unit eigenvectors
of CΦ such that

CΦeΦ
k = λ

Φ
k eΦ

k i = 1, . . . , nΦ (4)

eΦ
k

T eΦ
k = 1 k = 1, . . . , nΦ (5)

where λΦ
k is the kth eigenvalue of CΦ. The eigenvectors

of the covariance matrix corresponding to the largest eigen-
values describe the most significant modes of variations in
the variables used to derive the covariance matrix CΦ. Note
that the original linear method PCA is a particular instance
of the kernelized method (e.g., Kernel PCA) since the a pos-
sible mapping function is Φ(x) = x. Taking into account
the considerations in [6], where the BCS is estimated using
a parabolic fitting of the cows’ shape, in our experiments we
have used Kernel PCA to model the shape of cows. Specifi-
cally we used the Linear and Polynomial mapping function to
produce the results in Section 3.

2.3. Shape Alignment

To obtain a consistent shape representation, location, scale
and rotational effects need to be filtered out. This can be done
by aligning the corresponding anatomical landmarks of the
different involved shapes. The alignment of shapes was car-
ried out by establishing a coordinate reference (position, scale
and rotation, commonly known as pose) to which all shapes
must be referred. The reference anatomical landmarks we
used for this task are the landmarks corresponding to foreribs,
tail and hooks, as highlighted in Figure 2(a).

First, shapes are translated to the origin (Figure 2(b)).
Shapes are then rotated such that the left hook and the right
hook have the same horizontal coordinate (Figure 2(c)). To
perform translation and rotation of shapes, the middle point



Fig. 2. Anatomical landmarks in a cow body shape (a), shape translation
(b), shape rotation (c), and shape scaling (d).

between the left hook and the right hook was taken into ac-
count. Finally, shapes are scaled to fit in a unit square (Figure
2(d)). After alignment, all the shapes referred to the same
coordinate system centered into the origin.

2.4. Cows’ Body Shape descriptor and BCS Estimation

The eigenvectors {eΦ
k }

nΦ

k=1 useful to describe the shapes were
computed using Kernel PCA (see Section 2.2). Any shape in
the training set mapped into the kernel space through Φ can
therefore be generated by using the following equation:
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The eigenvectors {eΦ
k }

nΦ

k=1 are the set of basis of the shapes
into the kernel space Φ(S

′
) useful to generate new samples.

Unseen shapes in the kernel space can be generated by chang-
ing the values of each aΦ

j,k taking into account that its variance
is represented by λΦ

k . Since most of the sample of the training
set lies within three standard deviations of the mean, the suit-
able range for aΦ

j,k is [−3
√
λΦ
k , 3

√
λΦ
k ]. The range of each

aΦ
j,k can be used to detect outlier that in our case are probably

due to error in manual labeling. Given a training set of cow
shapes, kernel principal component analysis can be applied
after alignment and hence each shape s

′

j can be described by
using the vector aΦ

j = [aΦ
j,1, ..., a

Φ
j,nΦ

]. The shape descriptors
of the training set can be used together with a linear regressor
to build a system for BCS estimation:

BCSj = a
Φ
j,nΦ

wnΦ
+ a

Φ
j,nΦ−1wnΦ−1 + ...+ a

Φ
j,1w1 + w0 (8)

Given the descriptors of the shape in the training set, the re-
gression model can be fitted by using least squares method.
The learned parameters [w0, w1, ..., wnΦ

] are then used to in-
fer the BCS of new shape samples describing them by using
the basis [eΦ

1 , ..., eΦ
nΦ

] learned on the training set.

3. EXPERIMENTAL SETTINGS AND RESULTS

Images of cows in a dairy farm were acquired by means of a
standard network digital camera. The camera was positioned
at the exit gate from the couple of milking robots at 3 m from
the floor to allow capturing images of the dorsal area of cows.

The image acquisition system gathered a huge amount of
data (approximately 172800 images for each acquisition in-
terval of four hours) to be analyzed. The useful information
(i.e., the cow is in the scene) was contained in a very small
subset (about 40). To overcome this problem, we developed
a series of ad-hoc image processing algorithms. First, a fil-
tering was performed through the analysis of the absolute in-
terframe error between adjacent frames. When a cow passes
through the gate the absolute interframe error typically has
higher values with respect to that obtained by the difference
of two images without cow (background). Considering an ac-
quisition interval of four hours, a peaks and valleys plot is
obtained. Each peak represents an image containing a cow
whereas the valleys are only related to the background. The
filtering software identifies the highest peaks and then a fixed
number of images (200 in our implementation) was selected
automatically around them. Considering the reduced subset,
the mean absolute interframe error was then used as starting
point for local variance analysis (i.e., the variance was com-
puted considering a sliding window of 20 elements). Plateau
was strongly related to consecutive background frames and a
background frame Bg was selected from this uniform region.
Afterward, the differences between all the selected frames and
Bg were computed. The peak indicated the frame that dif-
fered more with respect to Bg: the corresponding frame there-
fore contained the whole cow. In order to cope with motion
blur, out of focus, and other acquisition problems, five frames
around the identified frame were selected. Finally the best
frame was manually identified among the five frames. The
aforementioned filtering process led to a final set with 286
images, corresponding to 29 different cows. An ad-hoc ap-
plication was implemented to allow technicians to label each
acquired image with the 23 anatomical points useful for BCS
estimation according to [5]. All the labeled images together
with the related ground truth (anatomical points and BCS) and
the labeling SW are available at http://iplab.dmi.unict.it/bcs/.

In order to assess the effectiveness of the methods, the
Leave One Out Cross Validation (LOOCV) procedure and
the Regression Error Characteristic Curves (REC) were used.
Each run of LOOCV involved a single observation of the
dataset as test, and the remaining samples as training data.
This was repeated to guarantee that each sample was used
once as the test data. The average error rate was computed
taking into account all runs. The REC curve is essentially the
cumulative distribution function of the error. The area over
the curve is a biased estimation of the expected error of an
employed regression model.

Results of errors obtained from estimation of BCS using
the different models are reported in Table 1.
The Halachmi approach 2 was not able to provide satisfactory
results. The parabolic fitting, performed considering only the

2The experiment in which the Halachmi approach is used exploit only
the 23 anatomical points of the cows’ shape.



Method Mean BCS error
Modified Halachmi 0.9837
Bewley (model 1) 0.3295
Bewley (model 2) 0.3289

Proposed Model 1: Linear Kernel PCA 0.3218
Proposed Model 2: Polynomial Kernel PCA 0.3059

Table 1. Mean BCS error comparison.

Fig. 3. Proposed kernel approach with polynomial kernel (blue line) versus
Bewley’s model 2 (red line). Our approach follows the ideal line better than
Bewley’s model.

Fig. 4. REC Curves of the different models involved in the comparison.

labeled points, may be not accurate enough. Bewley’s mod-
els obtained similar results (model 2 was slightly better than
model 1). Their performances are better for the central BCS
values (around 3.5) and worst in the extreme cases (2.5 and
4.5) corresponding to thin or fat cows. Our approaches3, in
particular the one using polynomial kernel, outperforms the
other techniques, obtaining satisfactory results even in the ex-
treme cases. As shown in Figure 3, the method employing
polynomial kernel is able to follow the ideal line better than
Bewley’s approach. In Figure 4 the comparison through REC
curve confirms that the proposed approach outperforms state-
of-the-art methods in estimating BCS.

3We call Proposed Model 1 the approach in which Linear Kernel is used,
whereas Proposed Model 2 the ones exploiting Polynomial Kernel.

4. CONCLUSION AND FUTURE WORKS

BCS estimation systems are desired to cut down time and
costs of the traditional BCS estimation techniques. These
systems can produce an objective evaluation of BCS in a way
that is less invasive for the cows. In this paper a new method
for BCS estimation is introduced. The cow body shape is
described considering the deviation from the average shape
in the kernel space. The method produced a description of
the shape to be used for automatic estimation of BCS through
a regression machine. Experimental results confirm the ef-
fectiveness of the proposed approach which outperforms the
previous state-of-the-art methods in the field. A second con-
tribute of the paper is related the benchmark dataset built
for dairy cattle research purpose. Future works will be de-
voted in building a fully automatic system for BCS evaluation
in which the shape of a cow will be automatically extracted
through segmentation procedure from digital images acquired
with a low cost camera. Additional side views will be con-
sidered to better estimate the BCS. Moreover, the benchmark
database will be extended to include more samples and ex-
tremal cases (cows with BCS<2.5 and 4.5<BCS).

5. REFERENCES

[1] J. D. Ferguson, D. T. Galligan, and N. Thomsen, “Prin-
cipal descriptors of body condition in holstein dairy cat-
tle,” Journal of Dairy Science, vol. 77, 1994.

[2] G. M. Jones P. E. Wagner Wildman, E. E. and R. L.
Bowman, “A dairy cow body condition scoring system
and its relationship to selected production characteris-
tics,” Journal of Dairy Science, vol. 65, 1982.

[3] W. R. Ward, “Body condition scoring - technique and
application,” Cattle Practice, vol. 11, 2003.

[4] J. D. Ferguson, G. Azzaro, and G. Licitra, “Body condi-
tion assessment using digital images,” Journal of Dairy
Science, vol. 89, 2006.

[5] J. M. Bewley, A. M. Peacock, O. Lewis, R. E. Boyce,
D. J. Roberts, M. P. Coffey, S. J. Kenyon, and M. M.
Schutz, “Potential for estimation of body condition
scores in dairy cattle from digital images,” Journal of
Dairy Science, vol. 91, 2008.

[6] I. Halachmi, P. Polak, D. J. Roberts, and M. Klopcic,
“Cow body shape and automation of condition scoring,”
Journal of Dairy Science, vol. 91, 2008.

[7] S. Belongie, J. Malik, and J. Puzicha, “Shape match-
ing and object recognition using shape contexts,” IEEE
Trans. on Pattern Analysis and Machine Intelligence,
vol. 24, 2002.

[8] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham,
“Training models of shape from sets of examples,” in
British Machine Vision Conference, 1992.

[9] E. Persoon and K. S. Fu, “Shape discrimination using
fourier descriptors,” IEEE Trans. on Systems, Man and
Cybernetics, vol. 8, 1997.

[10] Y. R. Samuel, S. Dambreville, and A. Tannenbaum,
“Statistical shape analysis using kernel PCA,” in In:
SPIE, Electronic Imaging, 2006.


