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Abstract

We propose a method for automatically setting the
foreground detection threshold implicit in background
subtraction algorithms by measuring the similarity be-
tween the shape of a detected foreground region and
a set of reference contours over a range of thresholds,
and selecting the threshold that maximises this similar-
ity measure. This method is shown to select appropriate
thresholds for a range of unseen video frames.

1. Introduction

This paper attempts to address the problem of spec-
ifying an appropriate threshold parameter for detecting
foreground objects from video data in conjunction with
a background model, such that their shape is accurately
reflected by the perimeter of the extracted contour re-
gion. We consider this problem in the specific context
of rodent tracking - a deceptively simple task that has at-
tracted considerable interest as an enabling technology
for behaviour analysis applications ranging from neuro-
science [5, 8] to animal welfare monitoring [1].

In general, it is clear that accurate identification of
the image region occupied by a moving object is a use-
ful precursor for determining its articulated configura-
tion. For rodents, this is a particularly salient issue as
the contour provides a crucial cue for determining po-
sition of the tail [4], and for tracking in general [9, 2].
While many sophisticated techniques can be brought to
bear on the task of background modelling, subsequent
identification of foreground regions entails the applica-
tion of an arbitrary threshold. Figure 1 illustrates the
dilemma that is encountered when selecting an appro-
priate foreground segmentation threshold: if too high,
the tail is not represented; if too low the shape becomes
distorted.

We attempt to solve this problem in this paper by ap-
proximating the human intuition that would allow us to
arrive at the middle threshold shown in Figure 1, specif-

ically: to choose the threshold that yields the contour
most closely resembling a rodent. In the remainder of
this paper we describe a simple algorithmic implemen-
tation of this intuition, where a learned set of prototypi-
cal rodent outlines is used as the basis for automatically
quantifying the relative quality of a series of contours
pertaining to different foreground detection thresholds.
While it may be possible to prespecify a threshold that
is appropriate for a given video sequence, this is un-
likely to be appropriate for other video sequences with -
for example - different lighting conditions. In contrast,
by prespecifying only the shape of the object of interest,
the proposed method may yield appropriate foreground
selection in a much wider range of video sequences. It
should be noted, however, that we consider this prob-
lem under the specific assumption that a clear top-down
view of the rodent is available at all times.
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Figure 1. The problem of selecting
an appropriate foreground segmentation
threshold.

Finally, it is interesting to note that a related idea has
previously been proposed in the medical imaging litera-
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Figure 2. Representation of 2D contours
using 1D signatures (see text for details.)

ture: Sang et al. [6] have proposed a technique whereby
appropriate segmentation thresholds for subsections of
digital subtraction angiography images are determined
using a series of tests that encode domain knowledge
about the appearance and diameter of blood vessels.

2. Method

2.1. Shape representation and comparison

In order to compare different extracted contours, we
employ a simple but effective shape representation tech-
nique originally proposed by Chang et al. [3] whereby a
1-dimensional signature is generated for a given shape
boundary by recording the distance zi from each bound-
ary point (xi, yi) to the shape’s centre of mass (cX , cY )
as follows:

zi =
√

(xi − cX)2 + (yi − cY )2 (1)

This representation, illustrated in Figure 2, has been re-
cently employed by Xi et al. [10] as the basis for an
effective algorithm for identifying commonly occurring
shape “motifs” in a database of images. As in [10] we
define this signature as the sequence of distances re-
sulting from a clockwise traversal of the shape bound-
ary, and normalise the descriptor such that its maximum
value is 1.

We then resample the resulting signature using lin-
ear interpolation, so that each shape is described by a
vector of fixed length N . Although it would be possible
to use more efficient coefficient-based representations
(see e.g. [7]) the present approach simplifies the task
of comparing shapes in a rotationally invariant manner.
While it is clearly possible to compare two shapes by
computing the Euclidean distance between their resam-
pled signature vectors (as follows) this approach could
yield a large difference between two identical shapes
unless they happen to be perfectly aligned.

D(~a,~b) =

√√√√ N∑
i=1

(ai − bi)2 (2)

To address this issue, we adopt the following dis-
tance metric [10] which determines the minimum dis-
tance between two signature vectors over all possible
rotational alignments

Drot(~a,~b) = min
r

D
(
~a, rot(~b, r)

)
(3)

where

rot(~z, r) = [zr, . . . zN , z1, . . . zr−1] (4)

generates the rth of N possible rotations of a signa-
ture vector ~z. It is worth noting that the chosen vector
length N places an upper limit on the computational
complexity of evaluating this distance function; in the
remainder of this paper we set N = 100.

2.2. Dictionary construction

Given a set of example contours corresponding to the
shape of interest (in our case a top-down view of a ro-
dent), we construct a “dictionary” of reference contours
that can be used to assess the resemblance of a given
contour to this shape (see next section). Since the shape
signatures can only be meaningfully compared using a
distance function, identifying the underlying clustering
of the data corresponds to analysing the distance matrix
for the set of contours.

Spectral clustering - which uses the eigenvectors of
the affinity (i.e. inverse distance) matrix to reconstruct
a coordinate space where a dataset can be clustered -
thus provides a useful way to cluster the example shape
signatures. Here, we employ the “self-tuning” spec-
tral clustering algorithm proposed by Zelnik-Manor and
Perona [11], which also provides a means to automati-
cally infer the number of clusters in the dataset. Given
a set of cluster memberships for the contour examples,
a dictionary is then constructed by identifying for each
cluster a “central example” that is closest (on average,
in terms of Equation 3) to all other cluster members. For
each cluster a mean contour signature is then calculated,
after rotating each member to optimally align with the
central example, yielding a small set of representative
contours.

2.3. Threshold selection

Given a dictionary P = {~p1, . . . , ~pM} containing M
reference contours, we can then assess the resemblance
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Figure 3. Example video frame and back-
ground image.

of a given contour (with signature ~z) to the shape of in-
terest by determining its distance to the closest example
in the dictionary as follows:

Q(~z) = min
m

Drot(~z, ~pm) (5)

Thus, given a set of contours Z =
{~z(tmin), . . . , ~z(tmax)} extracted using different
foreground thresholds, the desired threshold simply
corresponds to the one that minimises Equation 5:

threshold = arg min
t

Q(~z(t)) (6)

3. Results

In this section we apply the preceding method to a
5000 frame video sequence of a rat performing a be-
havioural task on a “plus-maze” platform, as shown in
Figure 3. First, a median background image was con-
structed from a random sample of 100 different frames,
so that foreground regions could then be identified by
placing a threshold on the normalised difference be-
tween each frame and the background image. Using
this background image, we extracted a set of 200 ref-
erence contours (a subset of these are shown on the
left hand side of Figure 4) by manually setting the seg-
mentation threshold for a series of randomly selected
frames. These contours were then converted to 100 di-
mensional vectors, and a distance matrix was calculated
using Equation 3. Application of the spectral clustering
algorithm described in [11] yielded a set of 9 clusters,
whose corresponding mean shape signatures are shown
on the right hand side of Figure 4.

Using this dictionary of 9 shape signatures, sub-
sequent application of the thresholding technique de-
scribed in Section 2.3 yielded promising results, illus-
trated in Figure 5. The green contours show the con-
tour chosen by the proposed method while the red/blue

Figure 4. Extraction of shape signature
prototypes from a set of example con-
tours (see text for details.)

contours show those resulting from the lowest/highest
thresholds within the range evaluated ( 10

255 →
200
255 ). The

right-hand plots illustrate show how Equation 5 changes
as a function of the threshold. In the vast majority
of cases a reasonable foreground threshold was deter-
mined; however, in a small number of cases - e.g. Fig-
ure 6 - the extracted contour does not contain the tail.

Figure 5. Example contours resulting
from the proposed thresholding method.
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Figure 6. An example failure of the pro-
posed method.

Figure 7. Application of the proposed
technique - using the original shape pro-
totypes - to a new video of a mouse.

Finally, to assess the generality of the proposed tech-
nique, we used the dictionary of prototypes shown in
Figure 2.2 to perform threshold selection on an entirely
different video sequence (of a mouse). While the results
were not as consistent, correct thresholds were still cho-
sen for a significant proportion of frames, e.g. Figure 7.

4. Discussion

This paper has explored the possibility of using prior
shape knowledge to choose appropriate foreground seg-
mentation thresholds, providing some indication of the
potential efficacy of this idea. There are, however, a
number of deficiencies in the present exploration that
need to be addressed. In particular, the present results
are highly biased towards a single dataset: it would be
desirable to generate a set of protoypes from several
datasets, and assess the method on further unseen video
data.

Moreover, the present work does not provide any
numerical quantification of the quality of the results
- one way to achieve this would be to examine the
tracking performance (e.g. using a contour dependent
method such as [4]) resulting from the proposed fore-

ground segmentation method. Finally, there are a wide
range of other techniques for representing and compar-
ing shapes (see e.g. [12]) that would be interesting to
explore in conjunction with the proposed method. Thus,
by demonstrating that shape information can potentially
be used to select appropriate foreground segmentation
threholds, this paper has identified a promising tech-
nique worthy of further exploration.
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