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Abstract 
 

In an attempt to understand how the brain encodes 
tactile stimuli, neuroscientists commonly investigate 
how rodents translate whisker motion into a sensory 
percept. Analysis of whisker dynamics is a challenging 
task. Rats, have about 30 whiskers per side and in 
single-viewing angle experiments, occlusion and 
intersection occur frequently.  

In this paper we present an unsupervised method 
for whisker detection. Based on the shortest path 
optimisation criterion, the method is designed for 
detecting paths that are smooth, continuous, and 
connected to the head contour. 
 
 
1. Introduction 
 

Research aimed at understanding how the brain 
encodes tactile stimuli is often performed on rats and 
mice [1]. Rodents, in their whiskers, have one of the 
most advanced tactile sensory systems. Unlike many 
other whiskered mammals, they use their vibrissae 
actively. By contracting the muscles in the whisker 
follicle, they produce an oscillatory motion to sweep 
through the air and to palpate objects. In order to 
characterize their tactile system, neuroscientists search 
for correlates between inputs and outputs. Outputs are 
obtained by recording neuronal signals from specific 
brain areas, while the inputs are extracted from the 
whisker dynamics. 

Whisker dynamics can be captured using high-
speed cameras with a frame rate typically set to 500 or 
1000 fps. Since every experiment trial lasts 2 seconds 
and several hundreds of trials are collected per animal 
per day, there is an urgent need for automated video 
analysis tools.  

Several tools have been developed to address this 
problem. In [2] the authors proposed a semi-automated 
method where the user selects manually the initial 
whisker position. The selected points are interpolated 
with a spline serving as the whisker model. Every 
subsequent frame is filtered with oriented filters tuned 
by the model position and orientation. The model then 
generates a subset of splines capturing its possible 
deformations and translations. The spline that best 
covers the filtered pixels is selected for updating the 
model. A completely automated method was presented 
in [3], where in each frame individual whiskers are 
detected by joining paths arising from grouping of 
pixels with similar orientations and with a high 
intensity gradient. Once the individual paths are fitted 
into a spline, the tracking is performed computing a 
similarity measure between splines in contiguous 
frames and thus grouping them into streaks. In [4] 
whiskers are detected by iteratively overlapping short 
segments using the criteria of minimum image 
intensity in the overlapped section. Then whiskers are 
tracked using the nearest neighbour rule.  A similar 
method was presented in [5], where the authors 
published only their detection algorithm. After the 
detection of starting sites based on local line 
orientation and intensity variance, the authors detect 
whiskers with an iterative line following approach.  

These tools address in general two problems: the 
detection of whiskers and their tracking. The extensive 
literature of contour tracking methods (for a survey see 
[6]) shows that accurate contour initialization is crucial 
for multiple object tracking algorithms. For this reason 
we present an unsupervised method for whisker 
detection designed for detecting paths that are smooth, 
continuous, and connected to the head contour. 
 



2. Problem statement 
 
Unlike many natural objects that exhibit significant 
differences in texture or colour, vibrissae can be 
characterized only by their shape and position. The 
whisking motion is contained mainly in a plane parallel 
to the axis from eye to the tip of the snout, so the top 
view is the preferred camera position in single view 
experiments. Whiskers grow out of the snout pad 
organized in 5 rows with about 6 whiskers per row, 
making a total of about 30 whiskers per side. The 
whisking cycles between separate rows are sometimes, 
but not always, in phase so the detection method must 
address intersections and partial occlusions (Figure 1) 
in experiments where whiskers are left full-length.  

The expected output of an automated video 
analysis tool varies according to the investigated 
hypothesis. Typically it can be the whisking angle, 
which requires only the detection of a short part of the 
whisker near the base, or the entire shape, if more 
complex features like curvature variations along the 
shaft are of interest.  

The method we present is suitable for detecting 
the whole shape. It is designed to provide a spline as 
output function in order to facilitate the computation of 
relevant geometric parameters. 
 

 
Figure 1. Input image of an exploring rat   

 
3. Whisker detection 
 
 Whisker detection is essentially a contour 
extraction problem, where in order to reduce false 
positives, three vibrissal characteristics must be 
considered. Vibrissae extend radially from the head, so 
if we express their shape in polar head-centered 
coordinates, they can be correctly modeled as 1-D 

curves with radius acting as curve parameter; vibrissae 
are smooth, so low order continuous 1-D functions can 
be used to interpolate them correctly, and they grow 
out of the snout, thus among the detected curves, only 
those connected to the snout profile are detected as 
whiskers.  

Therefore we formulate the whisker extraction as 
a shortest path problem on a graph [7], where vertices 
and edges represent detected points and their 
connectivity, points on the snout contour constitute the 
sink nodes and the detected line tips are the source 
nodes. In this formulation, valid whiskers are detected 
as minimum cost paths between the source nodes and 
the sink nodes. In the following sections we will 
explain how we preprocess the image, build the graphs 
and extract whiskers.  
 
3.1 Image preprocessing  
 
In our approach, whisker detection starts with 
background subtraction. On average the rodent is 
present during the entire duration of the movie, so 
instead of assuming the first frame of the sequence as 
the background image, we need to extract it 
automatically. Since our lighting and camera are set up 
to film the silhouette of the rodent, we extract the 
background image by selecting for every pixel its 
brightest value in the whole movie. After the 
background subtraction, we apply histogram 
equalization in order to normalize the intensity range 
of image differences in a standard interval. On the 
equalized image we apply tensor voting [8] for de-
noising and line enhancement. In essence the tensor 
voting method converts every pixel to a matrix and, by 
applying a convolution with a bell-shaped kernel, 
determines the local features orientations and saliency. 

 
Figure 2. Preprocessed image with a subset of 
intensity peaks sampled on circular paths and 

marked with ʻ+ʼ 
In a second step the method filters the image with 

an oriented Gaussian-shaped kernel and enhances the 



line features. The resulting image, pictured in Figure 2, 
shows the whiskers enhanced by the preprocessing 
step. The image serves as starting point for whisker 
detection. 

 
3.2 Graph building 
 

In the preprocessed image, whiskers appear as 
dark lines on a light-grey background, with their 
thickness tapering with distance from the snout. In our 
test movies the width of whiskers ranges between 1 
and 4 pixels, so we mark the shaft position by applying 
intensity peak detection on circular paths centered in 
the head. Circular paths provide a good approximation 
to shaft perpendicular paths and they can be efficiently 
computed using constant radius paths in polar 
coordinates. Considering that vibrissae are smooth 
curves, we do not need to mark all intensity peaks in 
the image. We sample the image using equidistant 
circular paths, where the graph vertices represent 
detected peaks, while their spatial connectivity is 
encoded using graph edges. In this way we drastically 
reduce the number of vertices in the graph.    

Every vertex is characterized by its position and its 
local line orientation (derived in the tensor-voting 
step). We connect two vertices with a unitary weight 
edge if their distance is under a predefined threshold 
and if the two absolute differences between the 
candidate edge orientation and the line orientation of 
its vertices are under a predefined threshold, which was 
usually set to 15°. This double condition avoids the 
creation of edges between whiskers that run parallel to 
each other (Figure 3). 

Since the radius of the vertices increases with the 
distance from the snout, we can define ingoing and 
outgoing edges. If an edge connects two points with 
different radius, it is defined as outgoing for the vertex 
with greater radius and incoming for the vertex with 
the smaller radius. In the rare event that two vertices 
have the same radius, they are connected with a bi-
directional edge. 

 
3.3 Whiskers as paths in the graph 
 

The resulting graph edge matrix shows that most 
of vertices have more than one ingoing and one 
outgoing connection. Our oriented graph paths stretch 
from farthest nodes to closest nodes, but unless we 
specify that we want paths routed into the snout, we 
can obtain only a generic line detector. For this reason 
we add to the graph an additional set of vertices 
located on the snout contour. These vertices are 
marked as sinks and they are connected with an 
incoming edge to every non-sink vertex in a predefined 
neighborhood.  

 

 
Figure 3. A zoomed picture showing graph 

vertices and edges 

 
After the definition of sinks, we need to provide 

weights to edges. Since we defined them with unitary 
weights, a shortest path optimization will select the 
path with the minimum number of vertices regardless 
any whisker geometry criteria. The ideal weights 
should enforce smooth paths, however it is not possible 
to assign a static weight to an edge because the same 
edge may approximate perfectly one whisker shaft and 
poorly another with different orientation. For this 
reason we propose a dynamic weighting method for the 
graph edges, where the weight is proportional to the 
orientation difference between the edge and a smooth 
whisker approximation called stroke.  

 We construct strokes in the following way: since 
most vertices have more than one input and output 
edge, we select only one input and one output edge for 
every vertex based on shortest distance criteria. This 
approach decomposes the graph into sets of connected 
vertices, defined strokes, that smoothly approximate 
parts of whiskers.  

For every stroke we set its farthest vertex as 
source node. Using a standard least squares method we 
fit its vertices (expressed in polar coordinates) with a 
1-D third order polynomial. This smooth curve, once 
extrapolated toward the snout, provides in most 
situations a good approximation of the whisker shape 
and position. Based on this extrapolation we select a 
subset of vertices and sink nodes within a predefined 
distance of the extrapolated curve. For every edge, we 
set its weights equal to the absolute difference between 
the real edge end nodes coordinates and the fitted end 
node coordinates. 

With this formulation, we penalize edges having 
different orientations of the polynomial template. 



Starting from the source vertex, we calculate the 
shortest paths to the selected subset of sink nodes. For 
every path we fit the vertices with a cubic spline using 
arc-length parameter. For these splines we calculate a 
fitness measure based on the linear combination of 
smoothness measure and approximation error. The 
smoothness measure is calculated as the absolute sum 
of the local curvature calculated in M equidistant 
points (usually M = 30). The approximation error is 
defined as the mean value of the angle difference 
between vertices coordinates and their spline 
interpolation in polar coordinates. We use this error to 
penalize non smooth paths because they produce large 
approximation errors. The spline with the smallest 
fitness measure exhibits smooth shape and good 
approximation of detected peaks.  

 

 
Figure 4. Detected whiskers  

 
Some whiskers are approximated with separated 

strokes, so it often turns out that the optimal path 
derived for the farthest stroke also covers the resulting 
paths of the lower strokes. For this reason, we intersect 
the obtained paths and eliminate those completely 
contained in other paths. The resulting set of paths, 
displayed in Figure 4, is fitted with a spline and serves 
as the output of the method. 

 
4. Results 
 

We evaluated the method on movies with different 
number of whisker per side. Figure 4 shows a medium 
to high complexity scene and allows a qualitative 
evaluation of the method’s strengths and weaknesses. 
Most of the whiskers have been correctly detected. 

There are no anomalous, jerky curves. However where 
whiskers stick together the method provides the 
optimal minimal curvature approximation, which in a 
small number of frames is not the correct one. The 
method also fails to trace whiskers upon their entire 
length whenever the tip is slightly out of focus as in 
lower right-head side of Figure 4. For this reason in the 
quantitative evaluation that compares our method to 
manually traced whiskers, we considered a true 
positive case if a detected whisker was overlapping at 
least 80% of pixels of a whisker in the gold standard, 
the manual tracing. In an 18-frame sequence, with 
about 9 manually labeled whiskers per side, the true 
positive rate is 250, the missed detection is 36 and the 
false detection is 20, mainly due to hairs or very short 
whiskers. True negative rate was considered zero.  

 The average running time for a 512x512 frame 
varies between 4 sec. for a single row to 7 sec. for a 
full-pad on a MacBook Pro© 2.0 Ghz with Matlab© 
R2009A. The code has not been optimized for speed. 
 
5. Conclusion 
 
We present a contour detection algorithm formulated 
for detecting whiskers. The method embeds 
smoothness information in a shortest path optimization 
framework. An extension of the algorithm is currently 
being tested for whisker tracking. 
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