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1. Introduction
Automatically classifying behavior of humans and animals from video is one of the most interesting and

challenging fields of computer vision, [3, 1, 6]. Most of the successful human behavior recognition works
use as features for classification information extracted from a direct representation of the scene (visual
features), as opposed to indirect representations such as silhouettes, body parts, pose or object positions,
which can be very sensitive to viewpoint variation and occlusions in real-world videos [10].

In contrast, indirect representation of the scene is widely used in the case of animals [1, 6, 4]. Animal
enclosures allow for a more controlled filming, which reduces viewpoint variations and occlusions, facil-
itating the extraction of indirect representations of objects in the scene. Moreover, animal bodies are less
expressive than humans, therefore causing direct visual features to work worse on animals [2].

One of the most widely used features for animal behavior recognition is the position of animals in
time (result of either manual annotations or an object detection+tracking algorithm) [1, 6, 4, 2]. From
the positions, usually several trajectory features are computed, such as distance between animals, their
direction of movement, velocity, acceleration, etc. These trajectory features are used, together with the
behavior labels, to train a supervised classifier that learns the discriminative features across behaviors.

In scenarios where videos are previously segmented 1, such as in KTH [11] or Hollywood2 [8] human
datasets, a classic supervised classifier such as SVM [14] or AdaBoost [5] is often used.

In more realistic scenarios, however, the task is to fully segment a continuous video into behavior in-
tervals (behavior category, starting frame, ending frame). Most works on animal behavior recognition fall
into this category [1, 6, 4, 2], while recent effort has also been made in the human action recognition
community to move in this direction, e.g. Virat dataset [9].

In this scenario, more intricate classifiers are needed. In [6] authors use a two layer SVMHMM, while
in [2] authors extend Auto-context [13] to video. These classifiers are able to detect behavior classes and
at the same time learn behavior transitions, successfully segmenting long, continuous videos into smooth
behavior intervals. In this work, we describe a novel extension of Structured SVM and benchmark it
against the Auto-context method to measure its robustness and versatility.

The rest of the paper is as follows: Section 2 briefly presents the two methods to be compared, Section
3 presents results on two different datasets (mice and flies) and discusses the results.

1Original videos are divided into clips and the classification task consists in determining what action each clip contains.



2. Learning algorithms
We benchmark our Structured SVM approach, which is based on a method proposed in [12] and has

been extended in our lab for segmentation of video into actions of fruit flies. We compare it to the method
published in [2] alongside CRIM13 dataset.

2.1. Structured SVM

Our approach to detecting actions within a sequence consists of two main components: an inference
algorithm that takes as input a sequence x and returns y, a segmentation of x into actions, and a learning
algorithm that learns a model from pairs of sequences and their ground truth segmentations, {(xi, yi)}.

The input x can be any object that evolves over time and contains distinct events of interest. In our exper-
iments, x is a parameterized video of animals interacting, where x(t) is a vector of features representing
the tracks of the animals at frame t. The output y can be described as a sequence of labeled intervals
(bouts), y = {yj} = {(bj, ej, cj)}, where yj is the jth interval in the segmentation of x, bj and ej mark the
beginning and end of the interval and cj is the class label of the activity that the boundary encloses.

In order to more appropriately represent statistical patterns of temporal motion during an action, the
algorithm relies on bout features, defined as ~ψ(x, b, e). These can be arbitrary functions over the set of per-
frame features x(t), b ≤ t ≤ e. These bout features are multiplied by a vector of learned model weights,
computing a score measuring the likelihood that an action occurs at a particular time in the video sequence.
These are combined with transition scores that encode the likelihood of two consecutive actions. Collec-
tively, these define a score function measuring the likelihood of a segmentation of a video sequence into
actions. Inference solves for the segmentation of a video that maximizes this score and is efficiently com-
putable using dynamic programming. Training minimizes a convex upper bound on a customizable loss
function that measures how much a predicted segmentation disagrees with the ground truth segmentation.

2.2. Auto-context

Recently, a novel method for social behavior recognition based on an extension of Auto-context to video
was presented in [2]. Auto-context was first proposed in [13], and has proved to perform well in high-level
computer vision problems that benefit from learning a context model.

As part of Auto-context, behaviors are first classified based only on local features (such as trajectory
features), and then in subsequent iterations by adding to the feature set a list of temporal context features,
computed from confidence levels output of classifiers at previous iteration. Authors propose to generate
a large pool of weak trajectory features from trajectory information, in a similar way to what is done for
object detection in the 2D case [15].

3. Results and Conclusion
For completeness, we benchmark both approaches discussed in Section 2 on two different datasets;

Section 3.1 presents the results of both methods on a new dataset collected in our lab, containing videos of
fruit flies interacting, and Section 3.2 shows the results on a subset of CRIM13 mouse dataset [2].

3.1. Flies

In collaboration with biologists, we have collected a new dataset containing videos of fruit flies interact-
ing. In each video, two flies were placed in a 50mm x 40mm chamber, with a patch of food in the middle,
meant to encourage aggressive behaviors. The videos are 20 minute long, recorded at 200Hz from a single
top down view, such that the length of a 2mm fly is equivalent to 25 pixels.

Each video was hand annotated by a behavioral expert into 4 main behaviors; touch, lunge, wing threat,
and wing extension, as well as the grab-bag category other. The most frequent behavior in these videos
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(a) Auto-context 68.0% (b) Structured SVM 75.0%
Figure 1. Confusion matrices and average agreement of the diagonal on our fly dataset.

is touch taking up 5% of the frames, and the most infrequent one is wing extension, taking up 0.3%.
In order to parameterize the videos we applied fly- detection and segmentation to each frame (using

morphological operations and template matching) to obtain five primary features: body position, body
orientation, wing positions, as well as pixel masks describing leg pixels, and on top of the detections we
used the Hungarian Algorithm in order to track the individual flies. From the primary features twelve
features, invariant of the flies’ absolute positions, were computed: velocity, angular velocity, min wing
angle, max wing angle, mean wing length, ratio between body’s major and minor axis, distance between
flies, angle between flies, facing angle of one fly to the other, minimum distance of a leg to both flies, ratio
between foreground and body pixels, and contrast. The resulting features x(t) which we use as input to our
learning system are those features and their first two derivatives, a total of 36 features per frame. Expanded
into bout-level features, the dimensionality of the learned model was 4650.

Figure 1 shows the results of both methods on our fly dataset. Both methods work reasonably well, and
in this case our Structured SVM approach outperforms Auto-context. Surprisingly, both methods make
similar mistakes across behaviors, especially when confusing wing threat and wing extension with none.
Auto-context struggles more with touch behavior.

3.2. Mice

The Caltech Resident-Intruder Mouse dataset (CRIM13) consists of 237x2 10 minute videos (recorded
with synchronized top and side view) of pairs of mice engaging in social behavior, catalogued into thir-
teen different actions. A team of behavior experts annotated each video on a frame-by-frame basis for a
neurophysiological study of mice [7]. The dataset is publicly available from www.vision.caltech.edu/

Video_Datasets/CRIM13/CRIM13/Main.html and is thoroughly described in [2].
In order to benchmark both classifiers on this dataset, we used as input the original 19 trajectory features

proposed by the authors in [2]2. For time limitation reasons (CRIM13 has 8M frames), we only used a
subset of the videos: the validation set. This set contains 10 full videos for training and 10 full videos for
testing, around 100k frames each, and uses only 10 of the 13 original behaviors.

Figure 2 shows the results of both methods on CRIM13. Both methods perform under 50%, with Auto-
context outperforming our Structured SVM approach. The main issue is that the validation set is too small;
some behaviors have only a few instances in the training set, making it hard to learn a robust classifier. In
fact, in the original publication, Auto-context ends up performing at 62% when trained on more data. The
main difference between the performance of the two approaches is that Structured SVM seems to struggle
more with the clean behavior, the one with highest intra-class variation.

3.3. Conclusions

We have benchmarked two different classifiers on two challenging animal behavior datasets, leaving
everything else fixed to evaluate their robustness and versatility. Results are encouraging, using each of the

2In the case of Auto-context, a set of 2850 weak features are generated from these 19 features.

www.vision.caltech.edu/Video_Datasets/CRIM13/CRIM13/Main.html
www.vision.caltech.edu/Video_Datasets/CRIM13/CRIM13/Main.html
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(a) Auto-context 42.3% (b) Structured SVM 37.2%
Figure 2. Confusion matrices and average agreement of the diagonal on validation set of CRIM13 dataset.

methods out of the box on the new dataset performed close the performance as optimized for the original
dataset. By optimizing the parameters of the Structured SVM for the mouse dataset we should be able to
achieve better results.
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