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Abstract

This paper examines the problem of detecting var-
ious types of animals in video sequences taken in the
wild. Given that manually extracting and labeling an
animal’s position in a video sequence is very labor-
intensive, an automatic solution would be extremely
useful. We propose a method that provides accurate lo-
calization of the animals using a very general approach.
Our technique first separates the background from the
video frames using Robust Principal Component Analy-
sis. It then locates and filters candidate regions contain-
ing the animal using local entropy and large displace-
ment optical flow respectively. We also verify the effec-
tiveness of our algorithm on video sequences of various
types of animals.

1. Introduction

For several years now, detection of wildlife in images
and video has been an area of great interest amongst bi-
ologists. Often times, scientists desire to track and an-
alyze the movement and behavior of various types of
animals by viewing videos from camera traps [9]. Un-
fortunately, locating and identifying the animal in each
individual video frame is extremely labor intensive and,
at times, difficult. Also, camera trap videos tend to have
very low frame rates which cause popular tracking and
supervised learning algorithms to fail.

Despite being of great importance, there has been
surprisingly little work on the problem of animal detec-
tion. One method proposed by Forsyth and Ramanan
[8] builds an appearance model for the animal using
low-level detectors and mean shift and uses it to detect
the animal in future frames. While their method exhibits
impressive results, it only deals with three different ani-
mal species. Another technique by Burghardt and Calic
[2] tracks animals by first detecting their faces via Haar
features, however such an approach would fail when de-
tecting animals whose faces are not visible. Other ap-

proaches [4] [6] have the user mark or extract the loca-
tion of the animal by hand. This, of course, is extraor-
dinarily time-consuming for multiple species.

In this paper, we propose a method that is able to
detect multiple types of animals in a completely un-
supervised fashion. Our algorithm can be summarized
as a three step process. First, we use Robust Principal
Component Analysis (RPCA) [3] to remove the back-
ground of each video sequence. We then take take the
remaining foreground regions and isolate the animals
using local entropy and connected component analysis.
Finally, we incorporate motion information using large
displacement optical flow to retain areas in the frames
corresponding to large changes in velocity.

The remainder of this paper is organized as follows:
Section 2 will describe the details of the algorithm. Sec-
tion 3 will provide some experimental results. Section
4 will present directions for possible future work.

2. Proposed Method
2.1 Background Subtraction

When dealing with object detection in video, the
first step is to locate areas of interest via background
subtraction. The key objective of background subtrac-
tion is to form a model that accurately captures the in-
formation corresponding specifically to the background
of a video scene. As a result, any foreground activ-
ity can be thought of as a strong deviation from the
established model. Background subtraction via adap-
tive Gaussian mixture models [10] is a commonly cho-
sen method, however it fails when dealing with rel-
atively short length video sequences with low frame
rates. Therefore, we must consider another approach.

Let us consider a K frame video sequence with N
pixels per frame and a matrix M ∈ RN×K where
each column of M represents the vector form of each
frame in the video sequence. Principal Component
Analysis (PCA) attempts to model data using a low-



dimensional subspace with entries that are slightly cor-
rupted by Gaussian noise. Although a low-dimensional
representation of a video scene is highly desirable, the
assumption that entries are only slightly corrupted is
invalid when trying to model the foreground. Fore-
ground pixels can be thought of as gross deviations from
the background meaning that they will cause the low-
dimensional space provided by PCA to not accurately
represent the background data.

Robust Principal Component Analysis, on the other
hand, states that the data matrix M can be expressed as
the sum of a matrix of low-rank L and a sparse matrix
S. If we were to inspect the matrix M more closely,
we would notice that the columns are highly correlated
with each other. Therefore, the low-rank matrix L pro-
duced by RPCA will contain columns corresponding to
the background of each frame in the video sequence.
Meanwhile, the columns of the sparse error matrix S
will contain the foreground activity (i.e. the outliers to
the background model).

To accomplish this goal, RPCA attempts to solve the
following optimization:

minimize
L,S

rank(L) + λ||S||0

subject to M = L+ S
(1)

where ||S||0 represents the number of non-zero ele-
ments in matrix S. Unfortunately, the above optimiza-
tion is NP-hard and requires some simplifications. The
optimization can be made convex by replacing the ||S||0
term with the L1 norm. Also, the rank of the matrix L
can also be replaced with its L1 equivalent: the nuclear
norm. This yields the following objective function:

minimize
L,S

||L||∗ + λ||S||1

subject to M = L+ S
(2)

After finding the matrices L and S that minimize the
above function, we obtain results like the ones shown
in figure 1. The leftmost column displays frames from
the original video sequence (i.e. a column of the M ma-
trix) while the center and rightmost columns show the
corresponding columns in the low-rank and sparse error
matrices respectively. Given that the animal is not a part
of the background, it is always found in the sparse error
component.

2.2 Extracting Candidate Regions

After each frame has been split into its low-rank and
sparse component, we do further processing on each
sparse error frame to locate the animal. Upon closer
inspection of each sparse error frame, the viewer will

Figure 1. Application of Robust Princi-
pal Component Analysis to Specific Video
Frames with Corresponding Low-Rank
and Sparse Error Output Frames

notice that the majority of its pixels are zero, or normal-
ized to 128, as desired. However, there are smooth re-
gions corresponding to the animal and moving objects
in the background. To extract the contours separating
these smooth regions and the background, we compute
the local entropy of each pixel in the frame.

Traditionally, entropy is defined as the amount of
disorder within a given probability distribution. One
can verify that distributions with higher entropy tend to
have higher variance as well. When considering im-
ages, we can model the pixels as a probability mass
function. However, instead of computing the entropy
of the entire image, we instead consider a small N ×N
neighborhood of each pixel and calculate the entropy
locally [5]. From this, we can see that areas of similar
intensity will have relatively low entropy while sharp
changes in pixel intensity such as the animal’s boundary
will correspond to high entropy. A visualization can be
seen in the upper-right image in figure 2. The brighter
pixels correspond to regions of high entropy.

In order to isolate these high entropy regions, a
threshold is applied to create a binary image similar
to the one shown in lower-left corner of figure 2. Af-
terward, every connected component in the image is
extracted and used to create a general bounding box.
These boxes, as shown in the lower-right corner of fig-
ure 2, are used as candidate regions when locating the
animal, thereby minimizing the search space within a
given frame.

2.3 Large Displacement Optical Flow

In order to select the bounding box containing the
animal, the candidate regions must be filtered based on
some criterion. Our approach considers the amount of
motion contained within each candidate region. If we
consider the bounding boxes that result from the local
entropy filter, shown in the lower-right image of figure



Figure 2. Local Entropy Visualization -
White-nosed Coati Sequence

Figure 3. Large Displacement Optical
Flow - White-nosed Coati Sequence

2, we can see that they either contain the animal or small
moving parts of the background. The fact that each box
contains some degree of motion information is a conve-
nient result of the camera being stationary. We contend
that the region corresponding to the animal will contain
the largest amount of motion.

When modeling the movement of pixels from one
frame to the next, the most common practice is to com-
pute the optical flow of the sequence. Optical flow tech-
niques attempt to estimate the velocity of each pixel
given a set of adjacent frames. Several algorithms
for computing optical flow have been proposed in the
past several years, however we selected the technique
by Brox and Malik called Large Displacement Optical
Flow [1].

In their paper, the authors describe how their method
is able to allow for large displacements while still ex-

hibiting high accuracy. They accomplish this by first
forming a region hierarchy for each pair of adjacent
frames. Then each region is assigned a descriptor con-
taining an orientation histogram and color information.
They then perform descriptor matching to establish a set
of correspondences between the two images. These de-
scriptor correspondences allow for large displacement
in motion, however some extra conditions must be ap-
plied in order to preserve the smoothness of the flow
field. This process can be represented using an energy
minimization function:

E(w(x)) =

∫
Ψ(|I2(x+w(x))− I1(x)|2)dx

+ γ

∫
Ψ(|∇I2(x+w(x))−∇I1(x)|2)dx

+ β
5∑

j=1

∫
ρj(x)Ψ((u(x)− uj(x))2 + (v(x)− vj(x))2)dx

+ α

∫
Ψ(|∇u(x)|2 + |∇v(x)|2 + g(x)2)dx

(3)

In the above function, I1 and I2 represent the input
frames, x := (x,y) represents a point in the image, and
w := (u,v) is the desired velocity vector. α, β and γ are
tuning parameters that control the weight of the smooth-
ness, region correspondences, and gradient constancy in
the objective function respectively.

Large displacement is extremely useful for our pur-
poses because often times the animals move very
quickly from frame to frame creating large changes in
position. This could also be because the camera trap
is unable to fully capture the animal’s motion given its
low frame rate. Despite this, we can still attain an ac-
curate flow field to track the animal’s motion. We apply
large displacement optical flow to every pair of adjacent
video frames and extract a flow field. Some examples of
images used are shown in the top row of figure 3. The
extracted flow field for these two frames is shown in the
lower-left corner of figure 3. In these images, the hue
indicates the direction of the motion while the bright-
ness indicates the magnitude.

Upon retrieval of the flow field, we compute the
maximum magnitude within each candidate bounding
box. Since our hypothesis was that the animal exhibits
the most motion within a scene, we retain the bounding
box with the largest maximum magnitude. A sample
result can be seen in the lower-right of figure 3.

3. Experiments and Analysis

To assess the accuracy of our technique, we applied
our algorithm to several video sequences of animals



Table 1. Detection Accuracy within 50
Pixel Radius over 10 Different Animals

Animal
Type

Frames
Correct

Frames
Total

Detection
Accuracy

Agouti 268 310 86.45%
Coati 89 130 68.46%
Bird 140 210 66.66%
Tinamou 202 230 87.80%
Roe Deer 254 435 58.39%
Capuchin 324 420 77.14%
Coyote 225 315 71.43%
Raccoon 180 247 72.87%
Turkey 252 275 91.64%
Crow 114 140 81.43%
Overall 2048 2712 75.52%

taken at several times of day and in a variety of weather
conditions. The sequence lengths varied from 10 to 100
frames and were captured at 1 FPS. This set of data con-
tained approximately 2700 video frames spanning 10
different animal species. We created our own ground
truth images by first labeling and storing the bounding
box containing the animal, if present. We then ran our
algorithm on the same video frames and compared the
output bounding boxes with the ground truth. If the
centroids of the two bounding boxes were within some
threshold, then it was considered a correct detection.

When running our algorithm, we used the Aug-
mented Lagrange Multiplier (ALM) Method provided
by Yi Ma and his group at the University of Illinois - Ur-
bana Champaign [7]. Meanwhile, for the local entropy
filter we considered a 5x5 local neighborhood around
each pixel. To compute the optical flow of the frames,
we used the code provided by Brox [1] and set the tun-
ing parameters, α, β and γ to 15, 300 and 5 respectively.

Our method achieves a detection accuracy of 75.52%
when considering bounding boxes within a 50 pixel ra-
dius of the ground truth. A detailed breakdown of the
results can be seen in table 1. From these detection ac-
curacies, we can see that the algorithm performs quite
well for a variety of animals. If the radius is increased
to 100 pixels, the accuracy increases to 79.42%.

Closer inspection of our results indicated that the
algorithm performed poorly in video sequences with
a high-degree of background motion such as rain or
snow. In these particular instances, objects that would
normally be classified as background (snow, rain, etc.)
would be considered corruptions to the scene and would
subsequently be placed in the sparse error component.
As a result, further processing on the sparse error frames
would generate bounding boxes that did not contain the

animal and ended up generating false detections.

4. Future Work

In this paper, we have shown how an extremely gen-
eral framework can be used to detect various differ-
ent animals reliably from camera trap video with low
frame rate. Some possible directions for improvement
include making the technique more robust to dynamic
backgrounds and also finding a way to detect a variable
number of animals within a given sequence.
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