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Abstract

In pharmacological experiments, a popular method
to discover the effects of psychotherapeutic drugs is
to monitor behaviors of laboratory mice subjected to
drugs by cameras. Automating behavior analysis of
laboratory mice saves both time and human labor. In
this study, we focus on automated action recognition
of laboratory mice from short video clips in which
only one action is performed. A two-stage recognition
method is designed to address the problem. In the first
stage, still actions such as sleeping are separated from
other action classes based on the amount of the mo-
tion area. Remaining action classes are discriminated
by the second stage in which we project 3D action vol-
ume onto 2D images by encoding temporal variations
of each pixel using discrete wavelet transform (DWT).
Resulting images are modeled and classified by hidden
Markov models in maximum likelihood sense. We test
the proposed action recognition method on a publicly
available mice action dataset and achieve promising
recognition rates. In addition, we compare our method
to well-known studies in the literature.

1. Introduction

In pharmacological experiments involving labora-
tory mice under the influence of psychotherapeutic
drugs, behavior pattern of the mice reveals important
clues about physiological effects of the drug. The sub-
ject must be monitored and its actions must be anno-
tated in an objective and measurable manner in order to
uncover the effects of injected drug. Considering that
pharmacological experiments are repeated many times
on hundreds of mice for statistical accuracy and con-
sistency, a vision-based action recognition system is

highly desirable, since it would save substantial amount
of both time and human labor. Another desired specifi-
cation is that the system should be non-intrusive which
is also addressed by a vision-based system.

There are a number of challenges that need to be ad-
dressed in order to design a robust action recognition
system for mice [7]. Unconstrained motion (i.e. ac-
tions in a burst and significant variations in actions),
highly deformable blob-like body and small body parts
of the mice are the biggest challenges which hinders
part-based and template-fitting approaches.

Animal action recognition has attracted less atten-
tion compared to human action recognition. Neverthe-
less, there has been a few remarkable studies for mice
action recognition. First of them is performed by Dollar
et. al[5] who expressed actions as a collection of visual
words extracted from spatio-temporal vicinity of inter-
est points in 3D. Visual words are represented by low-
level features such as normalized pixel values, bright-
ness gradient vectors and optical flow. Jhuanget. al [2]
proposed an action recognition method which imitates
visual processing architecture of human brain by hier-
archical spatio-temporal feature detectors.

Xue ve Henderson [10] constructed affinity graphs
using spatio-temporal features to detect Basic Behavior
Units (BBUs) in artificially created mice videos. BBUs
are assumed to be building blocks for more complex
behaviors. They applied Singular Value Decomposition
(SVD) to discover BBUs in a given complex behavior.
In addition to mice action recognition, there has been
also some vision based research on multiple mice track-
ing based on optical flow, active contours [11], and con-
tour and blob trackers [3].

In this paper, we present a two–stage method for be-
havior recognition of laboratory mice. First stage of
our framework is used to discriminate still actions such
as sleeping from the others. We take advantage of the



amount of motion area, that is covered by the subject
while performing the behavior. The second stage clas-
sifies the remaining four actions, namely, drinking, eat-
ing, exploring, and grooming.

Inspired by the work of T̈oreyin et. al [1], we uti-
lize Discrete Wavelet Transform (DWT) to analyze tem-
poral characteristics of individual pixels. Then, we
form actionsummaryimages (ASIs) using the amount
of temporal fluctuations at each pixel in the video vol-
ume. ASIs are transformed into subimage sequences by
blockwise raster scanning. We form multidimensional
observation sequences by taking intensity histograms of
each subimage in the sequence. Hidden Markov mod-
els (HMMs) with continuous observation densities are
used to model the observation sequences. Classification
of action videos with unknown classes is carried out by
trained HMMs in the maximum likelihood sense.

The paper is organized as follows: in Section 2, we
present the details of our action recognition algorithm.
In Section 3, we test our method on a publicly available
mice action dataset [5]. We also compare recognition
performance of our method with the algorithms in [5]
and [2]. Finally in Section 4, we conclude the paper
by giving a short summary and providing some future
research ideas.

2 Action Recognition Algorithm

2.1 Recognition of Still Actions

We classify sleeping action using a simple method
in which we exploit the area spanned by the subject
while performing the behavior. The main assumption
is that during sleeping the animal is almost still and the
spanned area is minimal compared to other behaviors.

In order to determine the spanned area for a given
video clip V , temporal standard deviationσt of each
pixel in the video volume is computed empirically and
thresholded with a predefined thresholdǫ. Pixels hav-
ing standard deviation above the threshold are consid-
ered to be moving pixels. This simple method is suf-
ficient to detect moving pixels, since video recording
is illumination-controlled in pharmacological experi-
ments. Then, we fit univariate Gaussian distributions
to sleeping and non-sleeping behaviors in the training
set using the number of moving pixels. We plot the
Gaussian distributions learned from training set videos
in Figure 1.

Given a test videoVT with the number of moving
pixels associated with it, we estimate the probability of
VT being a sleeping or non-sleeping video using trained
Gaussian distributions. Then,VT is classified according
to maximum likelihood criterion.
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Figure 1. Gaussian distributions for sleep-
ing and non-sleeping actions learned
from real data. Spanned area is quantified
in terms of number of pixels.

2.2 HMM based Action Recognition

2.2.1 Discrete Wavelet Transform and Feature Ex-
traction

Mice actions can be characterized by a combined mo-
tion of different body parts. Although body parts are
hard to detect and track, the action can still be charac-
terized by spatial configuration of image regions with
different motion energies as seen in Figure 2.

Therefore, we analyze the temporal characteristics of
image points by discrete wavelet transform (DWT) [6]
applied along the temporal axis. Only high frequency
components are considered, since most of the informa-
tion is carried in them. A simple measure of tempo-
ral variations in a pixel is the number of zero cross-
ings in its highband subsignal. Intensity of a pixel in
action summaryimage (ASI) is set to the zero cross-
ing number of the corresponding pixel in the original
video. Consequently, an ASI has the same resolution
as the original video. Some example frames from var-
ious actions and their ASIs are illustrated in Figure 2.
Small objects in ASIs are assumed to be generated by
background clutter noise, thus they are removed. Then,
a bounding box imageBB is formed such that all of the
pixels with nonzero intensity values in ASI are assured
to be insideBB.

In order to describe ASIs, we divide the bounding
box imageBB into a grid ofNSI × MSI overlapping
subimagesΩSI . We use an overlap ratio of 75% along
both horizontal and vertical directions. Tracing the
subimages in a raster scan fashion generates a sequence
of overlapping subimages. Tracing scheme is illustrated
in Figure 3. After obtaining the subimage sequence,
for each subimageΩSI , anmSI bin histogram is com-
puted based on pixel intensities. Collection of the his-
tograms in the same order with the subimage sequence
gives us the observation sequenceO = O1O2 . . . OT

to be used in HMMs. Here, observation symbolOn is
a mSI -dimensional vector and corresponds to the his-



Figure 2. Sample frames from various ac-
tions (top: exploring, middle: grooming,
bottom: eating) and their corresponding
ASIs.
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Figure 3. Scanning scheme of BB image.

togram of thenth subimage. Length of the observation
sequence isT which is simply the product ofNSI and
MSI i. e.,T = NSIMSI .

2.2.2 Modelling of Action Summary Images using
Hidden Markov Models

Hidden Markov models (HMMs) have been widely
used in speech recognition [4], face recognition [8], and
action recognition [9]. HMMs are well-known for their
applications on modeling time series.

Recall that by exploiting DWT and forming ASI for
each action, we were able to reduce the action recog-
nition problem to an image classification problem. In
view of the successful applications of HMMs on face
recognition, we prefer to follow the work of [8] to
model ASIs by HMMs.

We train an HMM modelΛ = (A,B,Π) for each
ASI (i.e. for each action video) using the associated ob-
servation sequenceO = O1O2 . . . OT with it. Here,Λ
includesN hidden states.A is the state transition proba-
bility matrix andΠ is the initial distribution of states.B
is the collection of observation probability distributions
for each state, which represents the probability of gen-
erating an observation in each state. In our application,

observation distributions are modelled by multivariate
Mixture of Gaussions with mean vectorµj , covariance
matrixΣj and weight vectorcj for thejth state.

The model parameters for each HMM are learned
by maximizing the probabilityp(O|Λ) using its training
observation sequenceO. Baum-Welch algorithm [4] is
employed to iteratively re-estimate the model parame-
ters such that the probabilityp(O|Λ) achieves its local
maximum. To classify a given test videoVT, its obser-
vation sequenceOT is formed as described in the pre-
vious section. Action inVT is assigned to the class of
most likely HMM model

argmax
c

p (OT | Λc) , 1 ≤ c ≤ # of trained HMMs.

In our method, the training set is the rest of the
dataset with the test video omitted. This procedure is
repeated for all of the video clips in the dataset and over-
all recognition accuracy is measured to be the average
of all classification runs.

3 Experimental Results

MATLAB implementation of our method is tested
on a publicly available mice action dataset recorded
by authors of [5]. The dataset consists of short
video clips manually cut from seven fifteen–minute
videos of the same mouse recorded at differ-
ent times of a day. In this dataset, there are
five action classes, namelydrinking, eating,
exploring, grooming, and sleeping. Al-
though there are five classes in the dataset, we notice
significant pattern variations among intra-class behav-
iors. Each video clip corresponds to one action and lasts
about 10–15 seconds. Videos are annotated by authors
of [5] using advice of veterinarians at the UCSD Animal
Care Program.

We apply the first stage of our framework to the
mice action dataset to eliminatesleeping action and
achieve 100% classification accuracy. Then, our HMM-
based method (see Section 2.2) is used to classify re-
maining action classes. Recognition performance is il-
lustrated by confusion matrices in Figure 4 (a) and (b).
Our overall recognition rate is 70%, i.e. every 7 out of
10 video clips are recognized correctly.

As seen from Figure 4 (a) and (b), onlyeating ac-
tion is successfully recognized. 100% success rate for
sleeping action is inherited from the first stage. Re-
maining actions are confused with each other. We be-
lieve thateating action is classified succesfully due to
similar appearances of ASIs associated witheating,
i. e. eating action turns out to be unimodal. On the
other hand, intra-class variances of ASIs generated by
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Figure 4. Confusion matrices of our
method and related studies.

other actions are quite high. We deduce that there are
no consistent patterns in other actions to be modeled
by HMMs. In other words ASIs generated by other ac-
tion classes are too random even for HMMs. Besides,
it is our belief that the length of the observation se-
quences is too short for training reliable HMMs. Recall
that the length of observation sequences was given as
T = NSIMSI . One may increaseNSI andMSI by
dividing bounding box imageBB into smaller subim-
ages. However, decreasing the size of subimages grad-
ually disregards spatial relation between pixels ofBB,
which will eventually decrease the quality of observa-
tion vectors and introduce inaccuracies in estimation of
HMM parameters.

We compare our method to [5] and [2] on UCSD
mice action dataset in Figure 4. Our method outper-
forms both [5] and [2] foreating andsleeping.
We achieve a similar recognition rate to [5] for
grooming action. Our performance fordrinking
andexploring are lower than both studies. Our over-
all recognition rate (70%) is very close to that of [5]
(72%) and lower than that of [2] (82%).

4 Conclusions

In this paper, we proposed a two–level system to rec-
ognize mice actions from short video clips. Designed
system is a preliminary work for a general continuous
action recognition system which greatly aids pharma-
cologists in their experiments on mice. The first stage of
the system is used to classify still actions such as sleep-
ing, where the second stage is a cascade combination of

two subsystems based on DWT and HMMs. We tested
our method on a publicly available dataset and achieved
an overall recognition rate of 70%. We observed that
quantifying the amount of motion is sufficient enough
to identify still actions. Accumulating temporal varia-
tions of individual pixels all over the time axis discards
local temporal information which could be useful in fea-
ture extraction. Instead, spatio-temporally windowed
wavelet coefficients can be a richer feature representa-
tion. Deciding on model complexity and observation
symbols is a key issue in HMMs. The observation sym-
bols must be long enough to reliably train HMMs. In or-
der to overcome this shortcoming, multiple observation
sequences extracted from multiple videos can improve
training of HMMs.
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