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Abstract - The purpose of this paper is to present an 

innovated fish recognition and verification method suited for 

the real world automatic underwater fish observation. Based 

on the fish recognition and verification, biologists can study 

fish population as well as identify new species of fish 

appearing in area of interest. A distributed real-time 

underwater video stream system has been developed in 

Taiwan for long-term ecological observation. The system also 

archives video data and incorporates data analysis. We 

propose a fish detection procedure on the video data to 

obtain multiple species of fish images with varied angles, 

sizes, shapes, and illumination, which leads to a fish category 

database. In recent years, a sparse representation-based 

classification (SRC) based on compressive sensing is 

developed. Based on the SRC method, we propose a 

maximum probability of parting ranking method for fish 

recognition and verification, in which the eigenfaces and 

fisherfaces are used for feature extraction on the category 

database. Experimental results show that the proposed fish 

recognition and verification method is able to achieve high 

accuracy and robustness. 
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1 Introduction 

 Ecological observation is imperative for marine 

scientists to study marine ecosystems.  It is however difficult 

to sustain a long term and real-time observation, mostly due 

to inaccessibility of the marine environment [1]. In the past 

few years, a distributed real-time underwater video stream 

system has been developed for long-term observation of 

ecosystem at the Southern tropical coast of Taiwan [2]. Not 

only can the video data be broadcasted in real-time via the 

Internet, but also archived to form a resource base for further 

analysis. A fish detection method that is able to efficiently 

discriminate moving fish and drift water plants is 

incorporated with the system to obtain multiple species of 

fish images with varied angles, shapes, and illumination. The 

detected images are subsequently collected to construct a 

fish category database on the fly. 

In recent years, a novel sampling method, compressive 

sensing, is proposed to find sparse solutions of 

underdetermined linear systems and proved to be effective 

[3]. The compressive sensing is based on the assumption of 

sparsity of signals of interest and reconstructs the signals 

exactly from far fewer samples of measurements below the 

Nyquist rate [4]. A sparse representation-based classification 

(SRC) method based on compressive sensing is proposed 

and successfully applied in face recognition [5], in which the 

training images are used as the dictionary of representative 

samples, and the testing image is coded as a sparse linear 

combination of the training images via l1-norm minimization. 

Following the SRC method, we propose a maximum 

probability of partial ranking method for fish recognition and 

verification based on the fish category database.  

The rest of the paper is organized as follows: Section 2 

briefly introduces fish detection method on distributed real-

time underwater video stream system. Section 3 describes 

the maximum probability of partial ranking method based on 

SRC for fish recognition and verification. Section 4 shows 

experimental results and the conclusion is drawn in Section 5. 

2 Fish Detection on Underwater Video 

Stream System 

 In this paper, the fish category database is constructed 

through a distributed real-time underwater video stream 

system, which enables a long-term underwater fish 

observation. Figure 1 shows the architecture of the video 

stream system. The video signals captured from CCTVs are 

converted into Motion JPEG stream. However, the stream 

size is huge and it has interlace effect that affects fish 

detection and tracking. We transfer the stream into multiple 

encoded formats and bitrates as well as implement inter-field 

deinterlacing method [6] to remove interlace effect. We 

compute Peak Signal-to-Noise Ratio (PSNR) between native 

Motion JPEG and other encoded formats to obtain a suitable 

solution, better quality and lower data size, for our system. 

Figure 2 shows the PSNR with different encoded formats 

and bitrates (left) and deinterlacing result (right up: original, 

right down: deinterlacing). In our system, mpeg4 format with 

5Mb bitrate (PSNR=31.87) enables to achieve our 

requirement, real-time observation and further fish analysis. 

Then, there are two processing mode for these mpeg4 

streams, one is converted into mpeg4 video files for storing 

into local storage, the other is directly transmitted into 

multicasting pool via ADSL lines for real-time observation. 



 

Figure 1. Architecture of the underwater video stream 

system. 

 
Figure 2. The PSNR (left) and deinterlacing (right) results. 

For the stored video data, fish detection is implemented. 

Gaussian Mixture Matrix (GMM) method [7] is utilized for 

background subtraction. Each pixel is modeled by a mixture 

of G Gaussian distributions. The history of a pixel is defined 

as a time series {X1, …, Xt}. The probability function of the 

pixel value in frame t is  

 (  )      
   

   (     
    

 )                      (1) 

Where   
  is the weight,   

  is the mean value,   
  is the 

covariance matrix of i
th

 Gaussian distribution at time t, and   

is a Gaussian probability density function. Figure 3(a) shows 

the background model and Figure 3(b) illustrates the 

detected foreground objects that include fish and water 

plants. 

The underwater environment in the real world is 

unconstrained, owing to the interference of the water plants 

drift severely. It raises the difficulty and complexity to 

discriminate moving fish and drift water plants. We proposed 

a bounding-surrounding boxes method that based on the 

concept that water plants always drift in a fixed field, but 

fish can move anywhere. Each foreground object is 

circumscribed by its bounding box with width d1 and height 

h1. Let (ox, oy) be the center point of the bounding box and 

the upper-left point is (ox-0.5*d1, oy-0.5*h1). Then, the 

surrounding box is set to T (T > 1) times the size of the 

bounding box with the same center point. Let B and S be the 

bounding box and surrounding box. The size and location of 

S is fixed in the image. The location of B of the object is 

observed in a period of time τ. If the location of the B is 

always inside the range of S, the object is classified as a non-

fish object (water plants) and it is eliminated from the 

foreground object. On the other hand, if the location of the B 

has left the range of S, the object is classified as a foreground 

object (fish). Figure 3(c) and 3(d) show the detecting results 

after tracking during a period of time τ. The yellow box 

represents the fixed surrounding box of the object. The red 

box and red line in Figure 3(c) represent the bounding box 

and the trajectory of foreground object, and the object is 

classified as “fish”. The blue box and blue line in Figure 3(d) 

represent the bounding box and the trajectory of foreground 

object, and the object is classified as “non-fish” object. Then, 

mean shift method is implemented for fish tracking [8]. 

  
(a)                                           (b) 

   
(c)                                          (d) 

Figure 3. (a) The background model (b) the foreground 

objects (c) The object (red box) is classified as fish (d) the 

object (blue box) is classified as non-fish (drift water plant). 

3 Fish Recognition and Verification 

 In this paper, a maximum probability of partial ranking 

method based on SRC is proposed for fish recognition and 

verification. A SRC method represents a testing image as a 

sparse linear combination of all training images and obtains a 

sparse solution via l1-norm minimization [5]. We could 

represent our fish images the same as SRC proposed method, 

and implement for fish recognition and verification. Suppose 

there are K species of fish in the fish category database, and 

we set                as the concatenation of the N 

training images from K species of fish, where N = 

n1+n2+…+nK. The training images of the i
th

 species of fish is 

defined as    [  
( )   

( )      

( )]           
( )

 is an m-

dimensional vector stretched by the j
th

 image of the i
th

 

species of fish. A testing image        of the i
th

 species of 

fish could be represented as a linear combination of the 

training images in     i.e.   ∑   
( )

  
( )

   
  
    ( )  where 

 ( )     
( )   

( )      

( )
       are weight coefficients. Let 

     represents the testing image   by using  , where   

= [ ( );  ( );…; ( )]. In noiseless case,   belongs to the i
th

 

species of fish that only the coefficients in  ( )  have 

significant values, and all the coefficients in  ( ), j=1,2,…,K 

and j≠i, are nearly zero. 

In noise case, the coefficients might distribute on multiple 

species of fish and it is difficult to accurately assign   to 

correct species of fish. Figure 4 shows the coefficients 

distribution of   in noise case. The testing image   belongs 



to, for example, the 19
th

 species of fish on the database, but it 

is assigned to 7
th

 species of fish if only the largest weighting 

coefficient is adopted, called SRC-LV. Due to the first 

largest coefficients might almost distribute on the correct 

species of fish, a maximum probability of partial ranking 

method as a classifier, called SRC-MP, is proposed to 

overcome the situation. First, the probability value   
( )  

  
( )

∑ ∑   
( )  

   
 
   

 is computed, where   
( )

 is the j
th

 non-zero 

coefficient greater than zero of the i
th 

species of fish of  ̂ . 

Then, we assign a partial ranking value   (first largest 

values), and sum up these largest   values to obtain a new 

probability value for each species of fish, respectively. The 

new maximum probability is adopted as the classifier for fish 

recognition.  

 

Figure 4. The weighting coefficient distribution of the testing 

image   in noise case. 

Fish verification verifies whether the testing image is one of 

the species of fish on the database (valid verification) or is a 

new species of fish (invalid verification). The weighting 

coefficients of an invalid testing image are not concentrated 

on specific species of fish, but instead distributed widely 

across the training images. For fish verification, we compute 

two verification rates: valid verification rate (VVR) and 

invalid verification rate (IVR). VVR represents the testing 

image is assigned to correct species of fish on the database, 

and IVR represents the testing image is reject due to it is a 

new species of fish. The complete fish recognition and 

verification method we proposed is summarized as bellow, 

1. Set    [  
( )   

( )      

( )]        as a matrix of the 

training images for K species of fish, and a testing image 

       ,  as input data. 

2. Solve the l1-norm minimization problem. 

 ̂         ‖ ‖              ‖    ‖             (2) 

3. Compute the probability value   
( )  

  
( )

∑ ∑   
( )  

   
 
   

 for all 

non-zero values greater than zero. 

4. Compute new probability value for each species of fish 

  ( ), respectively. 

for k <=  ,   ( ) =   ( ) +   
( )

 for i = 1, …, K,  where 

  
( )

 is the k
th

 largest probability value belonging to the 

i
th 

species of fish. 

5. Label    by identity( ) =           ( )}. 

The verification rates are computed as follows, 

6. Compute valid total number   
( )

 and invalid maximum 

number   
( )

. 

Where   
( )

 is the total number of the i
th

 valid testing 

species of fish that is classified to the i
th

 species of fish 

on the database, and   
( )

 is the maximum number that 

the i
th

 invalid testing species of fish is classified to a 

certain species of fish. 

7. Compute the valid probability value   
( )

 
  

( )

  
 and 

invalid probability value   
( )

 
  
( )

  
. 

8. Compute the valid mean value    
∑   

( )  
   

  
 and invalid 

mean value    
∑   

( )  
   

  
, where    and    are the 

number of valid and invalid testing species of fish, 

respectively. 

9. Assign a threshold value  
(     )

 
 . 

10. Compute VVR and IVR. 

VVR: VVR 
  

  
 , where    is the number that   

( )   . 

IVR: IVR 
  

  
 , where    is the number that   

( )   . 

4 Experimental Results 

 The fish category database that we constructed is 

composed of 1,000 fish images. Each image consists of 180 

rows and 130 columns pixels recorded in JPEG file format. 

Totally, there are 25 different species of fish. Each species 

was given 40 images with varied angles, shapes and 

illumination. The total 40 fish images of subject 2 are 

illustrated in Figure 5 as an example. 

 

Figure 5. An example of total 40 fish images of subject 2. 

4.1 Fish Recognition 

 We evaluate the performance of SRC-MP method for 

fish recognition on the fish category database. For each 

species of fish, we randomly selected 20 images for training, 

while the rest 20 images for testing. Eigenfaces [9] and 

fisherfaces [10] are used for feature extraction with the 

feature space dimensions d = 12, 16, 20, 30, 40, 50, 

respectively. We assign the partial ranking value   = 10 to 

compute the recognition rate. Table 1 shows the recognition 

rates of all methods: (1) Eigen + SRC-LV, (2) Eigen + SRC-



MP, (3) Fisher + SRC-LV and (4) Fisher + SRC-MP. Figure 

6 shows the curve of the recognition rates of all methods. 

Table 1. Recognition rates (%) of all methods associated 

with the corresponding dimensionality. 

 d = 12 d = 16 d = 20 d = 30 d = 40 d = 50 

(1) 61.6 71.0 73.2 77.0 77.2 80.0 

(2) 63.2 73.6 75.8 79.2 80.4 81.6 

(3) 58.2 60.2 63.0 68.2 77.4 79.6 

(4) 58.6 61.8 66.0 72.8 79.0 81.8 

 

Figure 6. Recognition rates of all methods versus feature 

dimension on the fish category database. 

4.2 Fish Verification 

 For each species of fish on the database, the first 30 

images for training and the next 10 images (i.e. valid images 

by default) for testing were sequentially selected in practice. 

We additionally collected 25 species of fish, different from 

those on the database, with 10 images each (i.e. prescribed 

invalid images) for the invalid verification testing. Table 2 

shows verification rates of all methods: (1) Eigen (Valid), (2) 

Eigen (Invalid), (3) Fisher (Valid) and (4) Fisher (Invalid). 

Figure 7 shows the curve of verification rates of all methods. 

Table 2. Valid and invalid verification rates (%) of all 

methods associated with the corresponding dimensionality. 

 d = 12 d = 16 d = 20 d = 30 d = 40 d = 50 

(1) 66.0 80.0 80.0 92.0 88.0 96.0 

(2) 92.0 88.0 80.0 92.0 88.0 92.0 

(3) 56.0 68.0 72.0 76.0 84.0 88.0 

(4) 72.0 76.0 76.0 88.0 88.0 88.0 
 

 

Figure 7. The verification rates of all methods versus feature 

dimension on the fish category database. 

5 Conclusion 

 In this paper, a maximum probability of partial ranking 

method based on sparse representation-based classification 

(SRC) was proposed for fish recognition and verification. 

The method was implemented on the real world fish category 

database. The database was constructed by implementing a 

fish detection procedure using bounding-surrounding boxes 

method on the video data that was acquired from a 

distributed real-time underwater video stream system in 

Taiwan. Experimental results showed the proposed method 

was able to achieve high recognition and verification 

accuracy and robustness. In the future work, we plan to 

identify fish species in real-time from the live video data. 

6 Acknowledgments 

 The research was funded by the Taiwan National 

Science Council (grant NSC 100-2933-I-492-001) and the 

European Commission (FP7 grant 257024) and undertaken 

in the Fish4Knowledge project (www.fish4knowledge.eu).  

7 References 

[1] Edgington, D. R., Kerkez, I., Cline, D. E., Mariette, J., 

Ranzato, M., & Perona, P. (2007). Detecting, tracking and 

classifying animals in underwater video. IEEE International 

Conference on Computer Vision and Pattern Recognition, 

634-638. 

[2] Shiau, Y. H., Chen, Y. H., Tseng, K. T., Cheng, J. S., 

Lin, S. I., Lo, S. W., & Chou, H. M. (2010). A Real-Time 

High-Resolution Underwater Ecological Observation 

Streaming System. International Society for 

Photogrammetry and Remote Sensing, 517-521.  

[3] Candes, E. J., & Wakin, M. B. (2008). An Introduction 

to Compressive Sampling. IEEE Signal Processing 

Magazine, 5, 2, 21-30. 

[4] Moler, C. (2010). ”Magic” reconstruction: compressive 

sensing. Cleves Corner, Mathworks News&Notes, 1-4. 

[5] Wright, J., Yang, A. Y., & Ganesh, A. (2009). Robust 

Face Recognition via Sparse Representation. IEEE Trans. on 

Pattern Analysis and Machine Intelligence, 31, 2, 210-227. 

[6] Lin, S. F., Chang. Y. L. & Chen L. G. (2003). Motion 

Adaptive Interpolation with Horizontal Motion Detection for 

Deinterlacing. IEEE Trans. On Computer Electronics, 49, 4, 

1256-1265. 

[7] Stauffer, C., & Grimson, W. (1999). Adaptive 

Background Mixture Models for Real-Time Tracking. IEEE 

Computer Society Conference on Computer Vision and 

Pattern Recognition, 246-252. 

[8] Cheng, Y. (1995). Mean Shift, Mode Seeking, and 

Clustering. IEEE Trans. on Pattern Analysis and Machine 

Intelligence, 17, 8, 790-799. 

[9] Turk, M., & Pentland, A. (1991). Eigenfaces for 

Recognition. Journal of Cognitive Neuroscience, 3, 1, 71-86. 

[10] Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & 

Mullers, K.R. (1999). Fisher Discriminant Analysis with 



Kernels. IEEE International Workshop on Neural Networks 

for Signal Processing, 9, 41-48. 


