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ABSTRACT 
 
This paper presents a method to compute skeleton graph of 
butterflies extracted by colour images. This approach has been 
proved effective when applied to butterfly recognition, despite of 
their complex colour patterns and shapes. At first, we have 
decomposed a given coloured image into a group of contour parts, 
generating a binary segmented image. Secondly, we have analyzed 
the binary images containing bi-dimensional bounded shapes, 
generally not-simply connected. In order to do so, we have 
considered a generalized anisotropic flow for the evaluation of an 
external force field which will be applied on a parametric active 
contour procedure. Through the divergence we have investigated 
the field flow at different times noticing that the field divergence 
satisfies an anisotropic diffusion equation as well. Hence, it 
emerged that the curves of positive divergence can be considered 
as propagating fronts that converge to a steady state formed by 
shocks points. Using several natural shapes, we have proved that 
the sets of points inside the forms where divergence assumes 
positive values converge to the skeleton. This methodology has 
also been tested on shapes with boundary perturbations and 
disconnections. 
 

Index Terms— Skeleton, medial axis, anisotropic flow, 
divergence flow 
 

1. INTRODUCTION 
 

 
This work investigates a new method for recognition of biological 
structures. Classification criteria often aim to research the basic 
morphological features and a typical approach to identify an 
unknown form is to measure morphological and metric attributes, 
such as positions of landmarks, size, extension, curvature, and so 
on. Instead, with this study we present an alternative methodology 
for butterfly recognition based on skeleton detection. Indeed, 
skeletons are frequently used as shape descriptors in biological 
species classification. The first step of our method consists in 
performing the segmentation of the initial colour image into 
regions, to find boundaries and the most significant areas which 
are frequently disconnected (Fig.1). In this way we produced a 
binary image with a shape not-simply connected in which we can 
distinguish the principal body components: head, thorax, abdomen, 
forewings and hindwings.  
 

 

 
 

      
       

 
      
Fig. 1. Butterflies: Aureliana, Papilio Palinurus and Triodes Rhadamantus  

Afterwards, we have applied a new approach for tracing 
skeleton of a given 2D bounded shape, which relies on divergence 
of an anisotropic vector field flow. To this aim, we have generated 
a vector force field for edge extraction through the resolution of a 
generalized parabolic equation, initialized to the gradient of an 
edge detector. Therefore, we have recourse to divergence in order 
to better analyze the field convergence. As the vector field varies 
over time, its divergence will change accordingly. Then, we 
focused our attention on its convergent behaviour since it will 
result essential to skeletonize the extracted contour. Indeed, the 
analysis of convergence is very helpful also for edge extraction 
because it allows to enclose regions from which the field flow has 
been originated and to position a suitable initial contour for shape 
reconstruction. This skeletonization method has a straightforward 
implementation and we have tested it with a wide set of 2D binary 
shapes, even if not closed or not-simply connected. Since this 
approach is able to analyze not-simply connected objects with 
irregular boundaries, it turns out to be suitable for processing 
natural and coloured images derived by real life. 
 
2. SKELETONIZATION USING THE ANISOTROPIC 
DIVERGENCE FLOW 
 
This study mainly deals with parametric deformable models. 
Within this scenario, edge detection is realized by a deformable 
process through active contours or surfaces, embedded on image 
domain, that move under the influence of internal and external 
forces [1],[2]. Internal forces are designed to smooth the model 
during deformation. External forces are computed from image data 
and are used to move the model towards the researched features 
[3], [4], [5]. We suggest that such external forces  
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can result as solution of the following anisotropic diffusion 
equation [6] 
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where div and ∇  are divergence and gradient operators 
respectively, g(.) is the diffusion coefficient. In this prototypical 
parabolic equation the initial condition f∇   is the gradient of an 

edge detector and ( )vF   is a forcing term for the diffusion process. 
The initial vector field f∇ is composed by vectors directed 
towards edges with norms significantly different from zero only in 
proximity of them. The diffusivity function g(.) is monotonically 
decreasing to zero, as a consequence, the vector flow will take 
place inside or outside the bounded region, and thus the shape 
contour will be a barrier for flow propagation. We refer to the 
force field generated by (1) as Anisotropic Vector Field (AVF) [7]. 
In this more general framework, we could consider the GGVF, the 
Generalized Gradient Vector Flow [8], as a special case of 
equation (1). Indeed we recall that the GGVF model satisfies the 
equation: 
                      ( ) ( ) ( )fvfhvfgvt ∇−⋅∇−∇⋅∇=
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So, if we rewrite equation (1) as: 
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we derive the GGVF field assuming:      
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where ( ) ( )⋅−=⋅ gh 1  is a monotonically decreasing function. The 
source term considered in the GGVF model does not produce a 
significant contribution, because it tends to zero both near edges, 
due to the chosen initial conditions, as well as far from them, since 
the function h(.) is decreasing. If we take into account a source 
term significantly different from zero, such as: 
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the convergence of the diffusion process will get faster since this 
source term is approximately null near edges but it increases as 
moving away from them [6],[7]. To avoid the effects of the 
initialization problem [9],[10],[11] we suggest to study the basic 
structure of the field through its divergence, which is a measure of 
field convergence at a given point. In order to do so, we have 
evaluated the divergence map associated to the field, that is a 
grayscale image depicting divergence values [12]. This map is 
characterized by a gray background with divergence values almost 
zero, black curves with negative divergence in correspondence to 
edges and a set of light curves with positive values, defining 
regions from which the vector field comes out. The divergence 
map will guide us in the choice of shape and position of an 
appropriate initial contour. The evolving curve will fit well into the 
final edge [12] only if any selected initial contour encloses 
completely the regions from which the field flows. 

2.1. Flow of divergence and skeletonization 
 
As the divergence operator is applied to a vector field varying on 
time, the related divergence map is varying as well. In Fig.2 we 
show the divergence maps of a fish realized using the AVF vector 
field at different times.   

        
Fig. 2. Divergence Maps with different numbers of iteration 

As we can see, the curves of positive divergence gradually 
flow from edges inside and outside the bounded shape. In addition, 
we can analytically prove that also the field divergence satisfies a 
diffusion equation [12]. The curves of positive divergence can be 
considered as propagating fronts of the evolution 
function ( )vdiv 

=ϕ . The set of points in the image domain where 
the function  ϕ  assumes positive values correspond to the position 
of a propagating interface. We called these curves positive-valued 
sets [12]. Specifically given an image ),( yxI , let C  be the object 
considered for edge extraction with boundary C∂ . We distinguish 
the positive-valued sets in the interior of the shape C  from those 
outside:  
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These will be defined as internal positive-valued sets and external 
positive-valued sets, respectively. At the end of the flow process, 
the evolving curve +

Intϕ  converges to an equilibrium configuration 
forming the skeleton of the shape, as shown in the test image 
reproducing a butterfly (Fig.3). 

 
Fig. 3. Divergence Maps of a butterfly with different iteration numbers 

Between the several equivalent definitions of skeleton for bi-
dimensional shapes [13],[14], one of them describes this notion 
through the grass fire model. According to this theory, all points 
along the object boundary are simultaneously set on fire, flames 
propagate both inside and outside the region, and the skeleton 
points are located where the internal evolving fronts meet 
themselves. According to the Huygens Principle, the skeleton 
points are the shocks that appear during propagation.  

 

Fig. 4. 3D representation of propagating fronts with positive divergence 

By a careful analysis of divergence maps, we notice that the 
contour with negative divergence values does not move, whereas 
the sets +

Intϕ  and +
Extϕ  can be thought as wave fronts propagating 



inside and outside C . We assume that the stationary configuration 
of the internal positive-valued sets gives rise to the skeleton, 
named internal skeleton, whereas the external positive-valued sets 
form a sort of external skeleton. In the three-dimensional graphs of 
Fig.4, we clearly see that the skeleton is the loci where the 
propagation fronts +

Intϕ collide with each other, without crossing. 
Once the steady state has been reached, the identification of shock 
points is straightforward because the evolving surface changes 
sharply from null to positive values in correspondence to them. 
Applying this skeletonization method to the not-simply connected 
shape of Fig.5, we observe that the divergence flow generates 
wave fronts propagating inside the white circular forms. Their 
skeleton curves collapse in a point for the small circle and in a 
segment for the ellipse. In the meantime, the external positive-
valued sets of the white holes flow towards the internal positive-
valued set of the black rectangle, and at the end, they collide 
without crossing. In this way the steady configuration of the 
diffusion process gives rise simultaneously to the skeleton of the 
white holes and of the background region, not-simply connected.     

                                                                                                                                                                       

 

                

Fig. 5. Propagating fronts of divergence for a not-simply connected shape 

According to another definition, the skeleton or medial axis 
[15],[16],[17] is described as the locus of the centres of all 
maximal inscribed circles. We could note that the positive-valued 
sets +

Intϕ , related to the steady state of divergence flow, satisfy this 
defining property: to any skeleton point corresponds at least two 
boundary points. In Fig.6 and Fig.7 we show the divergence maps 
and some maximal inscribed circles for the rectangle with two 
holes of Fig.5, and for the butterflies Papilio Palinurus and 
Aureliana, respectively. 
 

       
Fig. 6. Skeleton: locus of centres of maximal inscribed circles 

  
 

                           
Fig. 7. Skeleton: locus of centres of  maximal inscribed circles                   

Another approach for medial axis detection is based on 
distance transform values [18], [19] [20] [21], which specify the 
distance of each point to the closest boundary. The skeleton is 
described as being the locus of local maxima, or ridges, on the 
distance transform. However, the detection of skeleton points as 
gradient singularities of DT is difficult and numerically unstable 
[22],[23],[24]. Through the steady configuration of divergence, 
skeleton extraction can be performed in a simplified way because 
its points do not correspond to discontinuities of the first order 
derivatives of a distance function, but to discontinuities of the 
divergence function itself, ( )vdiv 

=ϕ . In addition, the detection 
of these singularities is directly performed because the divergence 
map’s intensities are significantly different from zero only in 
correspondence of the boundary, the external skeleton and the 
internal one, where they result negative and positive respectively. 
The skeleton curves lie along the discontinuities of the evolution 
function ϕ  that passes abruptly from null to positive values. These 
features are clearly evident through the three-dimensional plot of 
the function ( )vdiv 

=ϕ  related to a rectangular shape (Fig.8). 

       
Fig. 8. Skeleton of a rectangular form: branches and junction points 

Furthermore it emerged that the local maxima of the function 
+
Intϕ correspond to the junction points of the skeleton branches. 

Indeed, three wave fronts coming from consecutive sides meet and 
merge in each of the two junction points. According to the 
superposition principle, their intensities add up reaching local 
maxima (Fig.8).    
                                 
2.2. Properties of Skeletonization using divergence flow 
    
With regard to the uniqueness of the skeletonization process, we 
could verify that the skeletons of the two shapes in Fig.9 are very 
similar.  

                   
Fig. 9. Not-convex and triangular forms  

The comparison of Fig.10 and Fig.11 leads us to conclude that 
the not-convex shape and the triangle have the same internal 
positive-valued sets +

Intϕ whereas the sets of points +
Extϕ  are 

totally different. Therefore the uniqueness of skeleton will be 



ensured only if both sets +
Intϕ  and +

Extϕ  are considered. We 
assume that two forms have the same shape and hence belong to 
the same equivalence class, if and only if  both sets +

Intϕ and +
Extϕ  

are equivalent, except for similarity transformations. 

 
Fig. 10.  Evolution of positive-valued sets for a non-convex form 

 
Fig. 11. Evolution of positive-valued sets for a triangular form 

Now we address the well-known problem of any 
skeletonization method that is the intrinsic sensitivity to even small 
boundary variations [24]. To this regard, we have investigated the 
features of skeleton in presence of boundary perturbations of 
different level and outlines, as those displayed in Fig.12. 
Observing the three-dimensional representation of the divergence 
map, we can highlight significant differences in the profiles of 
branches generated by divergence flow with an increasing level of 
perturbations (see the right-hand side of Fig.12).  

 

Fig. 12.  3D Divergence Map of a shape with boundary perturbations of 
different degree 

The areas of the region bounded by the corresponding profiles 
will be very different as well. These areas will provide a 
quantitative measure for the level of irregularities and their values 
are strictly related to the magnitude of protuberances. With regard 
to the ability to reconstruct the original object from skeleton, we 
know that the medial axis, with the associated distance values, 
defines the medial axis transform or MAT, which is a complete 
shape descriptor because it can be used to recover the original 
form [24],[25],[26]. An object can be entirely reconstructed by 
computing the union of maximal inscribed balls with radii 
specified by the distance function values. Using this approach the 
original shape can be restored through the medial axis points 
detected recurring to the extraction of the positive-valued sets 
+
Intϕ as the steady configuration has been reached. To this aim, we 

have evaluated the level sets of the divergence function related to 
this field state. From isolines of the divergence’s map contour we 
have automatically selected the curve that encloses the skeleton 
[6], which will be called skeleton contour. With this term we refer 
to the minimal closed curve which contains the skeleton. In this 
way the original shape can be reconstructed by selecting such 
curve as initial contour for the deformation process. By means a 
backward procedure, the original shape can be exactly restored 
through the vector field previously calculated. In Fig.13, as a 

demonstrative example, we have applied this procedure to the not-
simply connected object of Fig.5.   

         
Fig. 13.  Skeleton-contours and shape reconstruction  

3. SKELETON-BASED ANALYSIS  
The present skeletonization method captures intrinsic shape 
information about objects and it can be successfully used to shape 
matching and classification on silhouettes derived by natural 
images, as those of Fig.1. In order to do so, firstly we have 
evaluated the steady configuration of the internal positive-valued 
sets +

Intϕ . Then, we have generated a two-level maps (Fig.14) from 
which we have extracted the fore mentioned skeleton contours. 
The skeleton contour is a one-dimensional differentiable manifold 
that can be used as a shape descriptor in biological species analysis 
and recognition. 

 
Fig. 14.  Representation of positive-valued sets of Papilio Palinurus and 
Triodes Rhadamantus butterflies 

The following figures (Fig.15,16,17) represent the extracted 
skelton contours of butterfly wings and of their coloured internal 
parts. The graphs below, show the evaluation of the angles ( )sθ  of 
tangent vectors versus a normalized curvilinear abscissa, computed 
for the corresponding skeleton sections. The blue circles are the 
initial points selected for the analysis of each curve. Through the 
tangent vectors we carry out a skeleton representation that is 
invariant for affine transformations. We notice that the internal 
skeleton contour of the principal body part is characterized by a 
strong axial symmetry. As we can see in Fig.18, the external 
skeleton pinpoints sections with high curvatures and consequently 
it enables to identify landmarks. In addition it can be selected as 
initial contour for restoring the original shape.        

     

Fig. 15.  Skeleton-contours and angles θ(s) of tangent vectors (Aureliana) 



                                                                                       

Fig. 16.  Skeleton-contours and angles θ(s) of tangent vectors (Papilio 
Palinurus) 

    
Fig. 17.  Skeleton-contours and angles θ(s) of tangent vectors (Triodes 
Rhadamantus) 

                            
Fig. 18.  Shape recontruction of Triodes Rhadamantus using external 
skeleton 
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