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Abstract—For the objective measurement of animal behavior
from video, automated recognition systems are frequently
employed. These systems rely on action models learned from
labeled example videos. Manually labeling videos of animal
behavior however is time consuming and error-prone. We
propose to reduce the labeling effort by selecting suitable
training instances from the unlabeled corpus and learn the
action models iteratively in interaction with the user. Due to
the typical imbalance of behavior datasets, a random selection
strategy would fail to sample enough minority class exam-
ples. To address the imbalance we first find potential action
prototypes by clustering the unlabeled data using a Dirichlet
process Gaussian mixture model. We then sample instances
from the prototypes and obtain a more balanced training set.
We evaluate our system on two rat interaction datasets with
different class priors and demonstrate an increased learning
rate that is superior to the baseline.

1. Introduction

Automatically recognizing rodent actions in videos plays
an integral part in quantifying rodent behavior for research
on, e.g., neurodegenerative diseases such as Huntington’s
disease. The automation has enabled researchers to classify
rodent actions in large datasets with reduced manual efforts
and improved reproducibility [1].

Typically, the recognition system is trained by learning
action models from a training set of labeled examples. The
creation of such a training set however is expensive and
error-prone. A human expert needs on average 1 hour to
annotate 5 minutes of video [2], [3]. Moreover, it is difficult
to estimate in advance how much training data is required
for an optimal recognition accuracy as it depends heavily on
the difficulty of the task. Finally, rodent behavior datasets
as in Figure 1 are often unbalanced with respect to the
different behaviors. This imbalance poses a challenge to
select suitable training videos as all behaviors must be
present to a sufficient amount.

We address the reduction of the labeling effort by formu-
lating the task of learning action models as an active learning
problem [4]. In active learning, the training set is initially
unlabeled and the learner iteratively queries an oracle, e.g.
a human expert, to label selected data points. Since we deal
with unbalanced data however, querying random points is in-
adequate. Figure 2 illustrates this aspect: by embedding the
data in a 2-dimensional, neighborhood-preserving space [5],

Figure 1. The animals in our two datasets YRPB (left) and PRSCA
(right) are at different ages. The age difference has a strong effect on
the occurrence of the various behaviors.

we can visualize how the large amount of contact instances
(blue circles) hides most of the structure that, if balanced,
is clearly present. The learner would clearly benefit from
balancing queries among action classes.

Contribution: we propose a sample selection algorithm
that explores the input space and searches for the inherent
structure in the unlabeled data before making a selection. We
uncover that structure by clustering the data into potential
action prototypes. The clustering is obtained by fitting a
mixture of Gaussians following a Dirichlet Process. We
then exploit the clusters and balance the queries among
them. The result is a training set with a more homogeneous
class distribution. To evaluate the effectiveness we compare
different selection strategies based on the obtained clustering
with a random baseline method.

We continue by discussing common learning schemes in
related work dealing with the recognition of rodent behavior
from video.
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Figure 2. 2-dimensional embeddings of a subset of YRPB. Left: random
sample; Right: balanced sample. This figure is best viewed in color.
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Figure 3. The datasets are unbalanced regarding the occurrence of each
action. The young rats (YRPB) spend much more time in contact than the
older rats (PRSCA).

2. Learning to recognize rodent behavior

The automated recognition of rodent behaviors involves
classifying video frames into behavior categories based on
features extracted from video. The features may be derived
from the trajectories of the moving animals [3], [6]–[8] as
well as from optical flow [2] and dense trajectories [9].

The classifier needs to be trained for a particular dataset.
The most common training approach is supervised learning
[2], [3], [6], [8], [10]–[12]. Supervised learning requires to
obtain a training set of videos labeled by experts. This set
needs to be sufficiently large to facilitate cross-validating the
model parameters and evaluating the accuracy. In practice,
it can be surprisingly challenging to create a high quality
training set that captures the natural variability of also rarely
occurring actions.

Although recent work has advanced our understanding
of rodent behavior recognition, few have addressed the
problems arising from the supervised learning approach.
One example that avoids the creation of a large training set
is the Janelia Automatic Animal Behavior Annotator [7]. By
adopting an active learning approach, the system’s classifier
is interactively trained by the user, who himself selects the
video sequences to label. We extend the idea by selecting
the examples automatically in a data-driven approach.

Our algorithm combines the ideas of a data-driven active
learning approach [13] and the properties of the Dirichlet
Process that facilitate the discovery of rare classes [14]. To
our knowledge we are the first to apply clustering-based
active learning to rodent behavior recognition.

3. Datasets

Our investigations are based on two datasets of rat social
behavior. They comprise continuous top-view video record-
ings of two rats interacting in a 90×90 cm cage. Example
frames are shown in Figure 1. Each frame is annotated by an
expert with one of six different action labels: approaching,
contact, following, moving away, solitary, or other. The
other class contains undefined behavior for which we do not
learn a model. The occurrence of actions is not uniformly
distributed but is highly skewed towards a majority class
(see Fig. 3 for the distribution of the class priors).

We obtain the trajectories of the animals using a cus-
tomized version of Noldus EthoVision XT [15]. This version

Figure 4. The features are derived from three tracked body points: the tail
base, the center point and the nose point. In total we derive 24 features.

maintains the identity of the animals up to about five errors
per five minutes of video, which are then corrected manually.
From the trajectories we compute 24 features derived from
12 base features per animal. The features are combined
across the animals by computing the min, max, and absolute
difference between the respective values. Refer to Figure 4
for an overview about the features.

The datasets differ considerably in their quality. YRPB
comprises about 14 min of selected sequences with revised,
frame-correct annotations. PRSCA is a larger dataset of nine
videos with 15 min each that is adopted without further
modification.

4. Active learning for rodent behavior recog-
nition

We now turn to our active learning framework. We first
formulate the learning task and then introduce the proposed
algorithm.

The learner has access to a large pool of unlabeled
data U and a pool of labeled instances L which may initially
contain a few random instances. The learner then iteratively
selects one instance xi from U and queries an oracle about
its true label yi. The instance is removed from U and added
to L. After each iteration or after a number of iterations,
a classifier is trained using the available labeled instances.
The task of the learner is to achieve a level of accuracy in
classification using fewer examples than a random learner.

4.1. Cluster-based query strategy

The key component of our active learning framework
is the sample selection process. We attempt to balance
the selection among the true action classes by exploring
the structure in the unlabeled data. Under the assumption
that instances of the same class are close in feature space,
we cluster the data into potential action prototypes. We fit
a Gaussian mixture model (GMM) while adding mixture
components following a Dirichlet process (DP) [16]. As the
DP is able to expand the mixture model theoretically to an
infinite number of Gaussians, it enables us to discover an
unknown number of clusters covering also small classes.

The process of selecting a query instance xi is divided
into two steps: we first select a cluster and then an instance
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(a) Dataset: YRPB (NYRPB = 18987)
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(b) Dataset: PRSCA (NPRSCA = 195015)

Figure 5. Learning curves of each strategy with its best scoring parameter set. Scores at each iteration are averaged across three cross-validation folds and
five repetitions each. Error bars give the standard error of the mean. The score of the supervised classifier with access to all labels is given for reference.

from that cluster. We explore three selection strategies in-
corporating different characteristics of the clusters:

• Alternating: The clusters are selected one-by-
one in round-robin sequence. Instances are then
picked at random.

• Likelihood: Clusters are selected in round-robin
sequence; instances are picked with probability ac-
cording to the likelihood that the cluster model has
generated the instance. This strategy is less likely to
select ambiguous instances where models overlap.

• Entropy: Clusters are selected with probability
according to the entropy of their known labels.
Heterogeneous clusters are therefore selected more
often. Instances are then selected randomly.

We compare the cluster-based strategies with the Random
baseline that samples instances disregarding the clustering.
For classification we follow a Bayesian approach and fit a
GMM to the labeled instances. We use one mixture compo-
nent per class with a diagonal covariance matrix, which we
found to work best in previous experiments. Note that any
type of classifier is applicable at this point. In particular we
have compared the GMM to an SVM but have found the
SVM to be prone to overfitting despite regularization and
sensitive to its parameterization.

5. Empirical evaluation

We evaluate our approach by computing the learning
curves in terms of the F1 score averaged over classes. The
F1 score is the harmonic mean between precision and recall.
Averaging the score over classes instead of frames prevents
the score from being dominated by the majority class.

For comparison we vary two parameters of the DP,
namely: the maximum number of clusters |C|max and the
concentration parameter α. We relate the number of clusters
to the number of action classes, |C|max = nc · nactions, and
vary nc ∈ {3, 5, 10}. The parameter α controls the chance
of creating new clusters so that a higher value of α leads to
more clusters. We vary α ∈ {1, 10}.

For cross-validation we split the dataset into three folds
such that folds consist of entire videos. Each learning ex-
periment is repeated five times and we average the results
over repetitions and folds.

Due to space constraints we cannot show all learning
curves. Instead we compute the area under the learning curve
(AUC) as a performance metric. We divide the area by the
number of iterations so that the maximum score is 1.

5.1. Results

The learning curves in Figure 5 show that the three
cluster-based strategies need fewer instances than the base-
line method to achieve high classification accuracy. They
even score higher than the supervised method on YRPB.

Between datasets, the learner appears more effective and
efficient for YRPB than for PRSCA, where the difference to
the baseline method is smaller and the final accuracy lower.

Among the methods and their parameterization the dif-
ferences in AUC are relatively small (Table 1). While α
has only a marginal effect on the performance, limiting the
number of clusters too much leads to lower performance as
clusters become larger and more likely to be heterogeneous.
Note that internally the parameters serve as an upper bound
to the number of clusters and therefore values higher than
reported do not have an effect on the score.

5.2. Discussion

The active learner works well on YRPB, but it does not
achieve a similar improvement over the baseline on PRSCA.
It appears that PRSCA is the more challenging dataset. We
believe that the main reason lies in the amount of label
noise present. If we analyze the distribution of labels in the
clusters after the last iteration, we find more heterogeneous
clusters than in YRPB. With too much heterogeneity, we
lose the ability to balance the sampling across actions and
the active learner is no better than the random learner.

Dealing with label noise is challenging; in particular if
the labeling has not even taken place yet as in active learn-
ing. A simple approach could be to exclude a particularly



Table 1. Area under learning curve for a range of algorithm parameterizations. Maximum is score is 1, best score per strategy in bold.

YRPB
nc 3 5 10
α 1.0 10.0 1.0 10.0 1.0 10.0
Alternating 0.550 0.557 0.593 0.608 0.621 0.625
Likelihood 0.572 0.570 0.603 0.603 0.628 0.615
Entropy 0.581 0.569 0.610 0.588 0.625 0.609
Random 0.517

PRSCA
nc 3 5 10
α 1.0 10.0 1.0 10.0 1.0 10.0
Alternating 0.471 0.469 0.494 0.489 0.497 0.491
Likelihood 0.477 0.475 0.490 0.495 0.496 0.494
Entropy 0.481 0.481 0.479 0.491 0.493 0.490
Random 0.472

noisy cluster as candidate for sampling. Eventually though,
we may want to perform probabilistic inference taking the
noisy oracle into account.

Most of the variation in the performance is due to the
parameterization of the clustering rather than the strategies
exploiting them. Evidently, most of the work is done by
the former. On the one hand, we could make better use of
the information that we obtain from the clusters. On the
other hand, being the backbone of the current learner it is
crucial to improve the clustering, for instance by considering
temporal dependencies.

The temporal dependency between frames may be useful
in two ways. The clustering of difficult, ambiguous action
classes could benefit from the fact that there should be more
frame transitions within a cluster (same action) than across
clusters (transition to another action). Similarly, we could
query short sequences while avoiding sequences that cross
cluster borders as they are more likely to contain transitions
between actions that are inherently difficult to label.

In summary, the evaluation shows that using clustering
to balance the selected samples among true action classes
increases the learning rate.

6. Conclusion

We have investigated a clustering-based active learning
framework for rodent behavior recognition. We have demon-
strated the effectiveness of our approach to use clustering
for balancing the sample selection among action classes. The
limitation of the algorithm as it relies on clusters with largely
homogeneous distribution of action labels is the subject of
future investigations. Potential directions of improvement
address both label noise and temporal information.

Furthermore, to stimulate queries of short sequences
instead of single frames, we would like to explicitly incor-
porate the expected labeling cost in the sampling. Exploiting
the temporal dependency of frames would allow for an esti-
mation of that cost. Eventually these enhancements should
lead to an increased learning rate and thus accelerate the
training of rodent behavior classifiers.
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gia, F. Papaleo, and V. Murino, “Automatic Visual Tracking and
Social Behaviour Analysis with Multiple Mice,” PLoS ONE, vol. 8,
no. 9, p. E74557, 2013.

[4] B. Settles, “Active learning literature survey,” University of
Wisconsin-Madison, Technical Report 1648, 2009.

[5] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–
2605, 2008.

[6] X. P. Burgos-Artizzu, P. Dollár, D. Lin, D. J. Anderson, and P. Perona,
“Social behavior recognition in continuous video,” in Proc. Conf.
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 1322–
1329.

[7] M. Kabra, A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson,
“JAABA: interactive machine learning for automatic annotation of
animal behavior,” Nature Methods, vol. 10, no. 1, pp. 64–67, 2012.

[8] E. Eyjolfsdottir, S. Branson, X. P. Burgos-Artizzu, E. D. Hoopfer,
J. Schor, D. J. Anderson, and P. Perona, “Detecting Social Actions
of Fruit Flies,” in Proc. Conf. Computer Vision (ECCV), vol. 8690,
2014, pp. 772–787.

[9] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative frame-
work for video segmentation and recognition,” in Proc. Conf. Appli-
cations of Computer Vision (WACV), 2016, pp. 1–8.

[10] W. Hong, A. Kennedy, X. P. Burgos-Artizzu, M. Zelikowsky, S. G.
Navonne, P. Perona, and D. J. Anderson, “Automated measurement
of mouse social behaviors using depth sensing, video tracking, and
machine learning,” Proc. National Academy of Sciences, vol. 112,
no. 38, pp. E5351–E5360, 2015.

[11] H. Jhuang, E. Garrote, X. Yu, V. Khilnani, T. Poggio, A. D. Steele,
and T. Serre, “Automated home-cage behavioural phenotyping of
mice,” Nature Communications, vol. 1, no. 6, pp. 1–9, 2010.

[12] M. Lorbach, R. Poppe, E. A. van Dam, L. P. J. J. Noldus, and
R. C. Veltkamp, “Automated Recognition of Social Behavior in Rats:
The Role of Feature Quality,” in Proc. Conf. Image Analysis and
Processing (ICIAP), 2015, pp. 565–574.

[13] S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,”
in Proc. Conf. Machine Learning (ICML), 2008, pp. 208–215.

[14] T. S. F. Haines and T. Xiang, “Active Rare Class Discovery and
Classification Using Dirichlet Processes,” International Journal of
Computer Vision, vol. 106, no. 3, pp. 315–331, 2013.

[15] L. P. J. J. Noldus, A. J. Spink, and R. A. J. Tegelenbosch, “EthoVision:
A versatile video tracking system for automation of behavioral ex-
periments,” Behavior Research Methods, Instruments, & Computers,
vol. 33, no. 3, pp. 398–414, 2001.

[16] T. S. Ferguson, “A Bayesian analysis of some nonparametric prob-
lems,” The Annals of Statistics, pp. 209–230, 1973.


	1 Introduction
	2 Learning to recognize rodent behavior
	3 Datasets
	4 Active learning for rodent behavior recognition
	4.1 Cluster-based query strategy

	5 Empirical evaluation
	5.1 Results
	5.2 Discussion

	6 Conclusion
	References

